
Dept of ECE, Atria Institute of Technology Page 1

 DEPARTMENT OF ELECTRONICS AND COMMUNICATION

 ATRIA INSTITUTE OF TECHNOLOGY

(Affiliated To Visvesvaraya Technological University, Belgaum)

Anandanagar, Bangalore-24

DSP LAB MANUAL

5th SEMESTER ELECTRONICS AND COMMUNICATION

 SUBJECT CODE: 18ECL57

 2020-21

Dept of ECE, Atria Institute of Technology Page 2

Introduction to MATLAB

MATLAB stands for matrix laboratory. It is a technical computing environment for

high performance numeric computation and visualization.

MATLAB integrates numeric analysis, matrix computation, signal processing and

graphics in an easy to use environment.

MATLAB is a high-level language and interactive environment that enables you

to perform computationally intensive tasks faster than with traditional programming languages

such as C, C++, and Fortran.

Introduction to Digital Signal Processing

A digital signal processing system uses a computer or a digital processor to process the

signals. The real life signals are analog and therefore must be converted to digital signals before

they can be processed with a computer. To convert a signal from analog to digital, an analog

to digital (A/D) converter is used. After processing the signal digitally, it is usually converted

to an analog signal using a device called a digital-to-analog(D/A) converter. The below block

diagram shows the components of a DSP scheme. This figure contains two additional blocks,

one is the antialiasing filter for filtering the signal before sampling and the second is the

reconstruction filter placed after the D/A converter. The antialiasing filter ensures that the

signal to be sampled does not contain any frequency higher than half of the sampling frequency.

If such a filter is not used, the high frequency contents sampled with an inadequate sampling

rate generate low frequency aliasing noise. The reconstruction filter removes high-frequency

noise due to the “staircase” output of the D/A converter.

The signals that occur in a typical digital signal processing scheme are: continuous-time

or analog signal, sampled signal sampled-data signal, quantized or digital signal, and the D/A

output signal. An analog signal is a continuous-time, continuous-amplitude signal that occurs

in real systems. Such a signal is defined for any time and can have any amplitude within a given

range. The sampling process generates a sampled signal. A sampled signal value is held by a

hold circuit to allow an A/D converter to change it to the corresponding digital or quantized

signal. The signal at the A/D converter input is called a sampled data signal and at the output

is the digital signal. The processed digital signal, as obtained from the digital signal processor

, is the input to the D/A converter. The analog output of a D/A converter has “staircase”

amplitude due to the conversion process used in such a device. The signal, as obtained from

the D/A, can be passed through a reconstruction low pass filter to remove its high-frequency

contents and hence smoothen it.

Block diagram of Digital Signal Processing system

Dept of ECE, Atria Institute of Technology Page 3

There are several toolboxes available from MATLAB. These tool boxes are collections of

functions written for special application such as symbolic computation, image processing,

statistics and control system design.

In Matrix laboratory there exist 3 major windows which is termed as basic windows as

listed 1. Command window.

2. Graphics or figure window.

3. Editor window.

COMMAND WINDOW

This is the main window It is characterized by the Matlab command prompt’>>’. When

you launch an application program, MATLAB puts you in this window, all commands

including those for running user written programs are typed in this window at the MATLAB

prompt.

GRAPHICS or FIGURE WINDOW

The output of all the graphics commands typed in the command window is flushed to

the graphics or figure window. The user can create as many as many figure windows, as the

system memory will allow.

EDITOR WINDOW

This is where you write, edit, create, and save your own programs in files called ‘m-

files’. MATLAB provides its own built in editor.

MATLAB FILE TYPES

Mat lab has three types of files for storing.

1. M-files

2. MAT –files

3. MEX-files.

M-files

They are standard ASCII text files with a .m extension to the file name. There are two

types of m-files namely script file and function file.

MAT-files

These are binary data files, with a .m extension to the file name. MAT files are

created by MATLAB when you save the data with the save command. The data is written in a

special format that only MATLAB can read.

MEX-files

These are MATLAB callable FORTRAN and C programs with a . mex extension to

the file name.

Dept of ECE, Atria Institute of Technology Page 4

data analysis

siganl

processing

polynimials

solution of

ode's

Tool Boxes

signal processing and robust control

statistics

control system and system identification

neural networks

communications

image processing

GRAPHI

C

.2-D

graphics

User
BUILT IN FUNCTIONS

extra computaions extra
functions linear algebra functions

MATLAB

External interface

(mex-files)

interface with

'C'and fortran

programs

Dept of ECE, Atria Institute of Technology Page 5

Part A : MATLAB Programs

Program 1:Verification of the Sampling theorem

Theory: Sampling is a process of converting a continuous time signal (analog signal) x(t) into

a discrete time signal x[n], which is represented as a sequence of numbers. (A/D converter).

Converting back x[n] into analog (resulting in x (t)) is the process of reconstruction.(D/A

converter)

Aliasing-A high frequency signal is converted to a lower frequency, results due to under

sampling. Though it is undesirable in ADCs, it finds practical applications in stroboscope and

sampling oscilloscopes.

Algorithm:

1. Generate original First Sine signal.

2. Generate the second sine signal

3. Add both signal

4. Sample the combined signal at different rates.

5. Display the sampled signal

6. Recover the continuous signal from the samples.

Aim : Sample a Bandlimited continuous time signal bandlimited to Fm Hz under the

conditions

1. (i)Nyquist Rate (ii)Twice the Nyquist rate (iii)Half the Nyquist rate

Find the Effect in each of the above case and reconstruction of the signal in time domain

2. Reconstruct the sampled Signal

clear all %removes all variables from the

workspace

clc %clears the command window

close all %closes all open figure

windows

f1=input('The Frequency of the first sine wave in Hz :');%Frequency of the first sine wave

A1=input('Amplitude of first sine wave:'); %Amplitude of first sine wave

f2=input('The frequency of the second sine wave in Hz:'); frequency of the second sine wave

A2=input('amplitude of second Sine wave:'); %amplitude of first Sine wave

fs=input('enter the sampling frequency in Hz:'); %the sampling frequency

p=input('the number periods for display='); %number periods for display

teta=input('Phase Shift for First Wave:'); %Phase Shift for First Wave

t=0:0.0001:p*(1/f1); %time index

xf1=A1*cos(2*pi*f1*t + teta);

subplot(2,2,1); %first sine wave plot

plot(t,xf1);

xlabel('time in seconds-->');

ylabel('amplitude-->');

title('plot of first cosine wave');

Dept of ECE, Atria Institute of Technology Page 6

axis([0 (p*(1/f1)) -1.2 1.2]);

grid on;

xf2=A2*cos(2*pi*f2*t);

subplot(2,2,2); %second sine wave plot

plot(t,xf2,'r -',t,xf1)

xlabel('Time in seconds-->');

ylabel('Amplitude-->');

title('plot of Second Cosine wave');

axis([0 (p*(1/f1)) -1.2 1.2]);

grid on;

xsum=xf1+xf2; %summation of two sine

waves

subplot(2,2,3); %plot of summed wave

plot(t,xsum);

xlabel('Time in seconds-->');

ylabel('Amplitude-->');

title('Plot of summed cosine waves');

axis([0 (p*(1/f1)) -2.2 2.2])

grid on;

ts=0:1/fs: p*(1/f1); %sampling

xs=A1*cos(2*pi*f1*ts+teta)+A2*cos(2*pi*f2*ts);

nt=0:length(ts)-1;

subplot(2,2,4)

stem(nt,xs);

axis([0 (length(nt)-1) -2.2 2.2]);

title('plot of sampled signal');

grid on;

ts=0:1/fs:1;

xs=A1*cos(2*pi*f1*ts)+A2*cos(2*pi*f2*ts);

xfftmag2=abs(fft(xs)); % Frequency domain representation

figure(2),subplot(2,1,1)

plot(xfftmag2);

subplot(2,1,1)

xlabel('frequency in hz-->');

ylabel('Amplitude-->');

title('the plot of cosine wave in the frequency domain');

grid on;

T=(1/fs); % Reconstruction of original signal

n=(0:T:1-T);

xs=A1*cos(2*pi*f1*n)+A2*cos(2*pi*f2*n);

t=linspace(-0.5,1.5,2000);

ya=sinc((1/T).*t(:,ones(size(n)))-(1/T).*n(:,ones(size(t)))).*xs;

subplot(2,1,2)

plot(n,xs)
xlabel('frequency in hz-->');

Dept of ECE, Atria Institute of Technology Page 7

ylabel('Amplitude-->');

title('the plot of reconstruction of original signal');

axis([0 0.12 -2 2]);

grid on;

Result : Output will be displayed on the command window and figure window .

PROGRAM 2A

Aim: I: To find the linear convolution of the two discrete sequences and verification of its

properties.

(1) Commutative Property : A Conv B =B Conv A

(2) Distributive Property : A×(B conv C) = A×(B) conv A×(C)

(3) Associative Property : A Conv(B + C) = (A conv B) +(A conv C)

II: :To find the Circular convolution of the two discrete sequences and verification of its

properties.

Procedure:-

1. Read the input sequence, x[n] and plot
2. Read the impulse response of the system, h[n] and plot

3. Convolve the two results and plot them

Description:-

Linear Convolution involves the following operations.

1. Folding

2. Multiplication

3. Addition

4. Shifting

These operations can be represented by a Mathematical Expression as follows:

y[n] = x[k]h[n-k] where

x[]= Input signal Samples h[]= Impulse response co-efficient. y[]= Convolution output.

n = No. of Input samples h = No. of Impulse response co-efficient.

Eg: x[n] = {1, 2, 3, 4}

h[k] = {1, 2, 3, 4}

Where: n=4, k=4. : Values of n & k should be a multiple of 4.

If n & k are not multiples of 4, pad with zero’s to make

multiples of 4

r= n+k-1 : Size of output sequence.

= 4+4-1

= 7
r= 0 1 2 3 4 5 6

n= 0 x[0]h[0] x[0]h[1] x[0]h[2] x[0]h[3]

1 x[1]h[0] x[1]h[1] x[1]h[2] x[1]h[3]

2 x[2]h[0] x[2]h[1] x[2]h[2] x[2]h[3]

3 x[3]h[0] x[3]h[1] x[3]h[2] x[3]h[3]

Output: y[r] = { 1, 4, 10, 20, 25, 24, 16}.

Dept of ECE, Atria Institute of Technology Page 8

NOTE: At the end of input sequences pad ‘n’ and ‘k’ no. of zero’s

MATLAB Code

I: To find the linear convolution of the two discrete sequences and verification of its

properties.

clear all %removes all variables from the workspace

clc %clears the command window

close all %closes all open figure windows

x=[2 1 2 1]; %first sequence is x with time index nx

nx=0:3;

h=[1 2 3 4]; %second sequence is x with time index nh

nh=0:3;

b=[5 6 7 8]; %second sequence is x with time index nh

nb=0:3;

y=conv(x,h); %convolution result

ny=[nx(1)-nh(1):nx(length(x))+nh(length(h))]; %corresponding time index calculation

%plot the two sequences and the corresponding convolution

%Output

subplot(3,1,1);

stem(nx,x);

xlabel('n-->');

ylabel('x-->');

title('first sequence');

grid on;

subplot(3,1,2);

stem(nh,h);

xlabel('n-->');

ylabel('h-->');

title('second sequence');

grid on;

subplot(3,1,3);

stem(ny,y);

xlabel('n-->');

ylabel('y-->');

title('Linear Convolved sequence');

grid on;

disp('First Sequence is :') ; x

disp('Second sequence is :') ; h

disp('Linear convolution is :');y

(1) Commutative Property : A Conv B =B Conv A

m=conv(x,h); %Left hand convolution result

nm=[nx(1)-nh(1):nx(length(x))+nh(length(h))]; %corresponding time index calculation

o= conv(h,x); %Right hand convolution result

Dept of ECE, Atria Institute of Technology Page 9

nm=[nx(1)-nh(1):nx(length(x))+nh(length(h))]; %corresponding time index calculation

disp('Left hand Sequence'); m

disp('Left hand Sequence'); o

if(m==o)

disp('Commutative Property is proved')

else

disp('Commutative Property is not proved')

end

(2) Distributive Property : A×(B conv C) = (A×B) conv (A×C)

A=[2 1 2 1]; %first sequence is A with time index nA
B=[1 2 3 4]; %second sequence is B with time index nB

C=[5 6 7 8]; %Third sequence is C with time index nC

A1=4;

LHS1=conv(B,C);

LHS= A1.*LHS1

RHS1= A1.*B;

RHS2 = A1.*C;

RHS = conv(RHS1,RHS2)

if(LHS==RHS)

disp('Distributive Property is proved')

else

disp('Distributive Property is not proved');

end

(3)Associative Property : A conv(B +C) = (A conv B) +(A Conv C)

LHS1= B+C;

LHSA=conv(A,LHS1);

RHS1= conv(A,B);

RHS2= conv(A,C);

RHSA= RHS1+RHS2;

if(LHSA==RHSA)

disp('Associative Property is proved')

else

disp('Associative Property is not proved');

end

Result : Output will be displayed on the command window and figure window .

PROGRAM 2B: CIRCULAR CONVOLUTION OF TWO SEQUENCES.

Procedure:-

1. Enter the sequence x[n]

2. Enter the sequence y[n]

3. Find the lengths of x[n] and y[n] ie; Nx and Ny respectively

Dept of ECE, Atria Institute of Technology Page 10

4. Check Nx=Ny : proceed if equal

5. Initialize a loop variable number of output points

6. For each out sample , access the samples of y[n] in the cyclic order

7. Find the sum of products of x[n] and cyclically folded and shifted y[n]

Description:-

Steps for Cyclic Convolution

Steps for cyclic convolution are the same as the usual convolution, except all index calculations

are done "mod N" = "on the wheel"

Steps for Cyclic Convolution

Step1: “Plot f[m] and h[−m]

Subfigure 1.1 Subfigure 1.2

Step 2: "Spin" h[−m] n times Anti Clock Wise (counter-clockwise) to get h[n-m] (i.e. Simply

rotate the sequence, h[n], clockwise by n steps)

Figure 2: Step 2

Step 3: Point wise multiply the f[m] wheel and the h[n−m] wheel. Sum=y[n]

Step 4: Repeat for all 0≤n≤N−1

Example 1: Convolve (n = 4)

Subfigure 3.1 Subfigure 3.2

Figure 3: Two discrete-time signals to be

convolved.

 h[−m] =

Dept of ECE, Atria Institute of Technology Page 11

Figure 4

Multiply f[m] and sum to yield: y[0] =3

 h[1−m]

Figure 5

Multiply f[m] and sum to yield: y[1] =5

 h[2−m]

Figure 6

Multiply f[m] and sum to yield: y[2] =3

 h[3−m]

Figure 7

Multiply f[m] and sum to yield: y[3] =1

Dept of ECE, Atria Institute of Technology Page 12

MATLAB Code

clear all %removes all variables from the workspace
clc %clears the command window

close all %closes all open figure windows

x1=[2 1 2 1]; %first sequence x1

nx1=0:length(x1)-1; %time index for first sequence

subplot(3,1,1); %plot first sequence

stem(nx1,x1);

xlabel('n-->');

ylabel('x1--');

title('First sequence');

grid on;

x2=[1 2 3 4]; %second sequence x2

nx2=0:length(x2)-1; %time index for second sequence

subplot(3,1,2); %plot second sequence

stem(nx2,x2);

xlabel('n-->');

ylabel('x2-->');

title('First sequence');

grid on;

N=4; %circular convolution order is N

if length(x1)>N %check for length of x1 and x2 with respect to n

error('N must be >=the length of x1');

end;

if length(x2)>N

error('N must be >=the length of x2');

end;

x1=[x1,zeros(1,N-length(x1))]; %if N >length(x1) or length(x2)Zeropad

x2=[x2,zeros(1,N-length(x2))];

m=[0:N-1];

for n=0:N-1,

y(n+1)=sum(x2(mod(n-m, N)+1).*x1); %plot convolved sequence

end; %circularly fold x2,x2(-m,mod n) ,for m=0,1,...,n-1

%convolve the circular shifted folded sequence with x1

ny=0:3;%y(n)=sum(x1(m)*x2((n-m)mod n))

subplot(3,1,3);

stem(ny,y);

xlabel('n-->');%x2=x2(mod(-m,n)+1);

ylabel('y-->');

title('First sequence');

grid on;

disp('First seq is:');x1

disp('second seq is :');x2

Dept of ECE, Atria Institute of Technology Page 13

disp('circular convolution is :');y

Properties

(1) Commutative Property : A Conv B =B Conv A

(2) Distributive Property :A×(B conv C) = A×(B) conv A×(C)

(3) Associative Property :A Conv(B +C) = (A conv B)+(A conv C)

Note: code to check the properties Circular Convolution same as Linear Convolution

Sl.
No

Property Linear Convolution Circular Convolution

1 Commutative Yes Yes

2 Distributive Yes Yes

3 Associative yes Yes

Result : Output will be displayed on the command window and figure window .

PROGRAM 3A

Aim: Find the Autocorrelation and Cross correlation of given two sequences and verify

their Properties

Theory: Correlation is mathematical technique which indicates whether 2 signals are related

and in a precise quantitative way how much they are related. A measure of similarity between

a pair of energy signals x[n] and y[n] is given by the cross correlation sequence rxy[l] defined

by :

The parameter ‘l’ called ‘lag’ indicates the time shift between the pair.

Autocorrelation sequence of x[n] is given by :-

Some of the properties of autocorrelation are enumerated below –
1. The autocorrelation sequence is an even function i.e., r xx [l]=r xx [−l]

2. At zero lag, i.e., at l=0, the sample value of the autocorrelation sequence has its maximum

value (equal to the total energy of the signal ex) i.e.,

This is verified in Fig. where the autocorrelation of the rectangular pulse (square) has a

maximum value at l=0. All other samples are of lower value. Also the maximum value = 11 =

energy of the pulse [12+12+12..].

Dept of ECE, Atria Institute of Technology Page 14

3. A time shift of a signal does not change its autocorrelation sequence. For example, let

y[n]=x[n-k]; then ryy[l] = rxx[l] i.e., the autocorrelation of x[n] and y[n] are the same regardless

of the value of the time shift k. This can be verified with a sine and cosine sequences of same

amplitude and frequency will have identical autocorrelation functions.

4. For power signals the autocorrelation sequence is given by :

and for periodic signals with period N it is :

and this rxx[l] is also periodic with N. This is verified in Fig. where we use the periodicity

property of the autocorrelation sequence to determine the period of the periodic signal y[n]

which is x[n] (=cos(0.25*pi*n)) corrupted by an additive uniformly distributed random noise

of amplitude in the range [-0.5 0.5]

Procedure:-

1. Read the input sequence

2. Auto correlate the signal using xcorr(x,x)

3. Display the Autocorrelation result in suitable axis

4. verify the correlation property: Rxx(0)=energy(x)

5. verify the property : Rxx is an even function

Part A : Auto Correlation-MATLAB Code

Clear all %removes all variables from the workspace

Clc %clears the command window

close all %closes all open figure windows

x=[1 2 1 1]; %read the input signal

n=0:1:length(x)-1; %define the axis

subplot(2,1,1); %plot the signal

stem(n,x);

xlabel('n-->');

ylabel('x-->');

title ('sequence x');

grid on;

Rxx=xcorr(x,x) %autocorrelate the signal

nRxx=1:length(x)+length(x)-1; %axis for the autocorrelation result

subplot(2,1,2); %Display the result

stem(nRxx,Rxx);

xlabel('nRxx-->');

Dept of ECE, Atria Institute of Technology Page 15

ylabel('autocorrelation of x-->');

title('Autocorrelated sequence of x');

grid on;

%Verification of the autocorrelation properties

Property-1:Rxx(0) gives the energy of the signal

energy=sum(x.^2); %Energy Of the signal = SUM(Squares of x)

center_index=ceil(length(Rxx)/2); %get the index of the center value

Rxx_0 = Rxx(center_index) %access center value rxx(0)

%check if the rxx(0)=energy

if Rxx_0==energy;

disp('Rxx(0) gives energy--property-1 is proved');

else

disp('Rxx(0) gives energy--property-1 is not proved');

end

%property-2:Rxx is even

Rxx_Right=Rxx(center_index:1:length(Rxx))

Rxx_Left=Rxx(center_index:-1:1)

ifRxx_Right==Rxx_Left

disp('Rxx is even');

else

disp('Rxx is not even');

end

Result : Output will be displayed on the command window and figure window .

PROGRAM 3B

Part B: To find the Crosscorrelation of given sequences

Theory:

Cross Correlation has been introduced in the last experiment. Comparing the equations for

the linear convolution and cross correlation we find that

convolving the reference signal with a folded version of sequence to be shifted (y[n]) results

in cross correlation output. (Use ‘fliplr’ function for folding the sequence for correlation).

The properties of cross correlation are

1) The cross correlation sequence sample values are upper bounded by the inequality

2) The cross correlation of two sequences x[n] and y[n]=x[n-k] shows a peak at the value

of k. Hence cross correlation is employed to compute the exact value of the delay k between

the 2 signals. Used in radar and sonar applications, where the received signal reflected from

Dept of ECE, Atria Institute of Technology Page 16

the target is the delayed version of the transmitted signal (measure delay to determine the

distance of the target).

3) The ordering of the subscripts xy specifies that x[n] is the reference sequence That

remains fixed in time, whereas the sequence y[n] is shifted w.r.t x[n]. If y[n] is the reference

sequence then r yx [l]=r xy [−l] . Hence ryx[l] is obtained by time reversing the sequence

rxy[l].

Procedure:-

1. Read the input sequence

2. Cross correlate the signal

3. Display the cross correlate result in suitable axis

4. Verify the correlation property : Rxx(0)=energy(x)

5. Verify the property : Rxx is an even function

MATLAB code

clear all %removes all variables from the workspace
clc %clears the command window

close all %closes all open figure windows

x=[2 -1 3 7 1 2 -3] %read the input sequences

y=[1 -1 2 -2 4 1 -2 5]

n1=-4:1:2; %define the axis

n2=-4:1:3;

subplot(3,1,1); %plot the signal

stem(n1,x);

title('sequence-x');

grid on;

subplot(3,1,2);

stem(n2,y);

title('sequence-y');

grid on;

r=conv(x,fliplr(y)) %crosscorrelate the sequences using convolution

nr=-8:1:5

subplot(3,1,3)

stem(nr,r)

title('cross correlation sequence')

grid on;

c=xcorr(x,y) %verification by correlation function

Result : Output will be displayed on the command window and figure window.

PROGRAM 4

Dept of ECE, Atria Institute of Technology Page 17

Aim: Part A: Solving the given difference Equation

Procedure:-

1. Rewrite the given difference equation to have only the output terms on the LHS and

input terms to be on RHS

2. Create a Matrix of Y coefficients, a

3. Create a Matrix of X coefficients, b

4. Generate the input sequence x(n)

5. Find the output of the system for the input sequence x(n)

6. Plot the input and the output

The Difference Equation is y(n)-0.9y(n-1)=x(n).

The Input Sequence is x(n)=U(N)-U(n-10).

To Find The Impulse Response h(n) and The Output y(n) And Find The Transfer Function of

The Given Difference Equation H(Z)=𝑋(𝑍) . Numerator Polynomial is 'A' and Denominator
𝑌(𝑍)

Polynomial is 'B'. For In this Example B=[1] AND A=[1 -0.9]

MATLAB CODE:

Clear all %removes all variables from the workspace
clc %clears the command window

close all %closes all open figure windows

b=[1];

a=[1 -0.9];

%find the impulse response h(n) generate impulse sequence

n=[-5:50]; %time index

x=[(n==0)]; %x is the impulse sequence

h=filter(b,a,x) ; %find the output of the system(impulse response) figure(1)

%plot the input and the output

subplot(2,1,1);

stem(n,x);

xlabel('n-->');

ylabel('x-->');

title('impulse sequence');

grid on;

subplot(2,1,2);

stem(n,h);

xlabel('n-->');

ylabel('h-->');

title('Impulse response');

grid on;

x1=[(n>=0)]; %generate the input sequence x(n)

x2=(-1)*[(n-10)>=0];

x=x1+x2;

y=filter(b,a,x); %find the output of the system for the input sequence x(n)

figure(2) %plot the input and the output

subplot(2,2,1);

stem(n,x1);

Dept of ECE, Atria Institute of Technology Page 18

)

xlabel('n-->');

ylabel('x-->');

title('Input sequence x1(n)');

grid on;

subplot(2,2,2);

stem(n,x2);

xlabel('n-->');

ylabel('x-->');

title('output sequence y(n)');

subplot(2,2,3);

stem(n,y)

Result : Output will be displayed on the command window and figure window .

PROGRAM 4B

Part B: Solve The Given Difference Equation with initial conditions

%y(n)-1.5y(n-1)+0.5y(n-2)=x(n),n>=0, x(n)= (
1 𝑛 *u(n) subject to y(-1)= 4 and y(-2)=10
4

Calculate and Plot The Output Of The System And Find The Transfer Function of The Given

Difference Equation H(Z)=𝑋(𝑍)Numerator Polynomial is B And Denominator Polynomial is
𝑌(𝑍)

A For The Above Example %b=[1] AND a=[1 -1.5 0.5]

Clear all %removes all variables from the workspace

clc %clears the command window

close all %closes all open figure windows

b=[1];

a=[1 -1.5 0.5];

yic=[4 10]; %initial conditions for y are obtained

xic=filtic(b,a,yic); %find the initial conditions for the input x

n=0:5; %generate the discrete time index

x=(1/4).^n; %generate the given input x

y=filter(b,a,x,xic); %find the output of the system for the input sequence x

figure(1) %plot the input and the output

subplot(2,1,1);

stem(n,x);

grid on;

xlabel('n-->');

ylabel('x-->');

title('Input Sequence');

subplot(2,1,2);

stem(n,y);

xlabel('n-->');

ylabel('y-->');

title('Output sequence');

grid on;

Result :Output will be displayed on the command window and figure window.

PROGRAM 5

Dept of ECE, Atria Institute of Technology Page 19

Aim: Computation of N point DFT of a given sequence and to plot magnitude and phase

spectrum(using DFT Equation and verify it by built-in routine).

Procedure:-

1) Enter the number of points, N

2) Enter the input sequence elements, x[n]

3) Create a vector for the sample index, ’n’

4) Initialize loop variable, ‘k’ for the DFT samples X(k)

5) Calculate the twiddle factor for each ‘k’

6) Multiply x[n] and the twiddle factors , elements-by-element

7) Sum all the products, assign to X(k)

8) Plot the magnitude and phase spectrum

9) Verify the results with built in function

COMPUTATION OF DFT

Note:-

N
x(n)< --------> x(k)

DFT

N-1
x(k) = Σ x(n)w n k k = 0,1, --- N-1

N

n=0

where, wN = e-j 2 π / N

N-1

x(k) = Σ x(n)e-j 2 π k n / N k= 0,1, ----- N-1
n=0

Calculations:-

3

x(n) = [2 3 4 5] N = 4

x(k) = Σ x(n)e-j 2 π k n / 4 k = 0,1,2,3

n=0

x(k) = x(0)e-j2 π k * 0 / 4 + x(1) e-j 2 π k *1 / 4 + x(2) e-j 2 π k *2 / 4 + x(3) e-j 2 π k*3 / 4

x(k) = 2 + 3e-j π k/ 2 + 4e-j π k + 5e-j 3 π k/ 2

x(0) = 2 + 3 + 4 +5 = 14

x(1) = 2 + 3e-j π / 2 + 4e-j π + 5e-j3 π /2 {ejθ = cosθ + jsinθ}

= 2 + 3 [cos π /2 – j sin π /2] +4[cos π – j sin π] + 5[(0) 3 π /2 – jsin 3 π /2] x(1) = -2 +2j

{e-jθ = cosθ - jsinθ}

x(2) = 2 + 3e-j π / 2 + 4e-j2 π + 5e-j3*2 π / 2

= 2 + 3[e-j π + 4e-j2 π + 5e-j3 π]

= 2 + 3 [cos π /2 – j sin π /2] +4[cos π – j sin π] + 5[(0) 3 π /2 – jsin 3 π /2]

Dept of ECE, Atria Institute of Technology Page 20

= 2 +3 [-1-0] + 4 [1-0] + 5[-1-0]

= 2 -3 + 4 -5

x(2) = -2

x(3) = 2 + 3e-j π / 2 + 4e-j 3 π + 5e-j3 *3 π / 2

= 2 + 3j -4-5j

x(3) = -2-2j

x(k) = [14, -2+2j, -2, -2-2j] % rectangular form

x(k) = [14, 2.82∟1350, 2 ∟-1800, 2.82∟-1350] % polar form

| x(k)| = [14, 2.82, 2, 2.82]

<x(k) = [0, 2.35, 3.143, -2.35] % in radians

MATLAB Code
Clear all %removes all variables from the workspace
clc %clears the command window

close all %closes all open figure windows

N=8 ; %enter the number of points

x=[1 2 3 4 5 6 7 8]; %enter the sequence is x with time index n

n=0:n-1; %compute dft

for k=0:n-1

w=exp(-j*2*pi*k*n/N);

dotprod=x.*w;

x(k+1) = sum(dotprod);

end

ceil(x)

subplot(2,1,1); %plot the magnitude spectrum

stem(n,abs(x));

xlabel('n-->');

ylabel('magnitude-->');

grid on;

subplot(2,1,2); %plot the magnitude spectrum

stem(n,angle(X));

xlabel('n-->');

ylabel('angle-->');

grid on;

verify=fft(x,N) %verification of the implementation

figure %plot the magnitude spectrum

subplot(2,1,1);

stem(n,abs(verify));

xlabel('n-->');

ylabel('magnitude-->');

Dept of ECE, Atria Institute of Technology Page 21

grid on;

subplot(2,1,2); %plot the phase spectrum

stem(n,angle(verify));

xlabel('n-->');

ylabel('angle-->');

grid on;

Result : Output will be displayed on the command window and figure window .

PROGRAM 6

Aim:

(i) Verification of DFT properties (Like Linearity and Parsevals Theorem,etc.)

(ii)DFT computation of Square Pulse and Sinc function etc.

Part B: Parsevals Theorem: ∑𝑁−1{𝑥(𝑛)2} =
1
∑𝑁−1{𝑋(𝐾)2}

Part A: Linearity Property:

𝑛=0 𝑁 𝐾=0

If x(n)------> X(K) Then DFT{ax1(n)+bx2(n)} -----------> a×DFT{x1(n)}+ b×DFT{x2(n)}

MATLAB Code

Clear all %removes all variables from the workspace

clc %clears the command window

close all %closes all open figure windows

x1=[2 1 2 1]; %first sequence x1

nx1=0:length(x1)-1; %time index for first sequence

n1=length(x1); %length of first sequence

subplot(3,1,1); %plot first sequence

stem(nx1,x1);

xlabel('n-->');

ylabel('x1-->');

title('First Sequence');

grid on;

x2=[1 2 3 4]; %second sequence x2

nx2=0:length(x2)-1; %time index for second sequence

n2=length(x2); %length of second sequence

subplot(3,1,2); %plot second sequence

stem(nx2,x2);

xlabel('n-->');

ylabel('x2-->');

title('Second sequence');

grid on;

%Linearity Property

N=max(length(x1),length(x2));
newx1=[x1,zeros(1,N-n1)]; %IF N >length((x1) or length(x2)zero pad

Dept of ECE, Atria Institute of Technology Page 22

newx2=[x2,zeros(1,N-n2)];

x1dft=fft(newx1); %take dft of first sequence

x2dft=fft(newx2); %take dft of second sequence

a=6; b=4;

LHS= a.*x1+b.*x2;

LHSDFT=fft(LHS);

RHS=a.*(fft(x1))+b.*(fft(x2));

LHSDFT

RHS

Disp(‘Linearity Property is Proved’)

Result : Output will be displayed on the command window and figure window .

Parsevals Theorem

x1=[2 1 2 1]; %first sequence x1

N=4

Y1=fft(x1)

Left= energy=sum(x1.^2);

Right= (1/N)*(sum(Y1.^2);

Disp(‘Energy of signal in time domain’); Left

Disp(‘Energy of signal in time domain’); Right

if(Left==Right)

disp(‘Parsevals Property is proved’)

end

Program 6B

(i) DFT computation of Square Pulse and Sinc function

Procedure:

1. Define sampling frequency, number of cycles, plot function.

2. Compute DFT, Plot the function in frequency domain

clear all

close all

Fs = 40;

Ts = 1/Fs;

t = -1: Ts : 1;

f = 5;

y = sinc(pi*t*f);

figure, plot(t,y), xlabel('time'), ylabel('magnitude'), title(‘Sinc Function’);

N = size(t);

Dept of ECE, Atria Institute of Technology Page 23

Ydft = fft(y,N);

ff = (0:N-1)*Fs/N;

figure, plot(ff, fftshift(abs(Ydft)));

%width = pi*f

(i) DFT computation of Square function

clear all

close all

Fs = 40;

Ts = 1/Fs;

t = -1:Ts:1;

width = 1;

x = rectpuls(t, width);

figure, plot(t,x), xlabel('time'), ylabel('magnitude');

[M N] = size(t);

F = fft(x,N);

ff = (0:N-1)*Fs/N;

figure, plot(ff,fftshift(abs(F)));

Result

Alternate code:

t = 0:.0001:.0625;
y = square(2*pi*30*t);

figure, plot(t,y), xlabel('time'), ylabel('magnitude');

[M N] = size(t);

F = fft(x,N);

ff = (0:N-1)*Fs/N;

figure, plot(ff,fftshift(abs(F)));

Result:

Dept of ECE, Atria Institute of Technology Page 24

45
1

0.8
40

0.6 35

0.4 30

0.2

25

0
20

-0.2

15

-0.4

10
-0.6

-0.8 5

-1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

time

0

0 5 10 15 20 25 30 35 40

PROGRAM 7
Aim: Design and implementation of FIR filter to meet given specifications(using different

Window techniques)

Procedure:-

1) Get the sampling frequency

2) Get the pass band frequency

3) Get the stop band frequency or transition width

4) Get the pass band ripple and stop band attenuation

5) Select the window suitable for the stop band attenuation

6) Calculate the order ,N, based on the Transition width

7) Find the N window coefficients

8) Find truncated impulse response of h[n]

9) Verify the frequency response of h[n]

Clear all %removes all variables from the workspace

Clc %clears the command window

close all %closes all open figure windows

fp=input('enter the pass band frequency:');

fs=input('enter the stop band frequency:');

rp=input('enter the pass band ripple:');

rs=input('enter the stop band ripple:');

Fs=input('enter the sampling frequency:');

FN=Fs/2;

wp=2*fp/Fs;

ws=2*fs/Fs;

numa=-20*(log10(sqrt(rp*rs))-13);

dena=14.6*(fs-fp)/Fs;

N=ceil(numa/dena);

N1=N+1;

if(rem(N,2)~=0)

N1=N;

N=N-1;

m
a

g
n

itu
d
e

Dept of ECE, Atria Institute of Technology Page 25

end;

%Rectangular Window

y=boxcar(N1);

b=fir1(N,wp,y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,1);plot(o/pi,m);xlabel('normalized frequency-->');ylabel('gain in db-);title('LPF');

% Low Pass Filter

b=fir1(N,wp,'low',y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,2);plot(o/pi,m);xlabel('normalized frequency->');ylabel('gain in db-');title(‘HPF');

grid on;

% High Pass Filter

b=fir1(N,wp,'high',y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,2),plot(o/pi,m);xlabel('normalized frequency->');ylabel('gain in db-');title(‘HPF’);

grid on;

% Band Pass Filter

wn=[wp ws];

b=fir1(N,wn,y);

[h,o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,3);plot(o/pi,m);xlabel('normalized frequency->');ylabel('gain in db-');title(‘BPF’);

grid on;

% Band Stop filter

b=fir1(N,wn,'stop',y);

[h, o]=freqz(b,1,256);

m=20*log10(abs(h));

subplot(2,2,4)

plot(o/pi,m);xlabel('normalized frequency->');ylabel('gain in db->');title('bandstop filter');

Input:
Fp=200; fs =500; Sampling frequency=2000;passband ripple=0.001, stop band Ripple=0.005

Result : Output will be displayed on the command window and figure window .

PROGRAM 8
Aim: Design and implementation of IIR filter to meet given specifications.

Procedure:-

1) Get the pass band and stop band edge frequencies

Dept of ECE, Atria Institute of Technology Page 26

2) Get the pass band and stop band ripples

3) Get the sampling frequency

4) Get the order of the filter

5) Find the filter coefficients

6) Plot the magnitude response

MATLAB Code

Clear all %removes all variables from the workspace

Clc %clears the command window

close all %closes all open figure windows

fp = input('enter the pass band frequency:');

fs = input('enter the stop band frequency:');

rp = input('enter the pass band ripple:');

rs = input('enter the stop band ripple:');

Fs=input('enter the sampling frequency:');

fs=Fs/2;

wp =2*fp/Fs;

ws =2*fs/Fs;

[n,wc]=buttord(wp,ws,rp,rs);

[b,a]=butter(n,wc);

disp(‘Numerator Coefficients’); b

disp(‘Denominator Coefficients’); a

[y,t]=impz(b,a,60);

Figure;stem(t,y); xlabel(Time index n');ylabel(Amplitude->');title('Impulse Response of

Butter worth Low Pass Filter');

Pole Zero Plot+++++++++++++++++++++++++++++++++

w=0:0.01:pi;

[h,om]=freqz(b,a,w);

m=20*log(abs(h));

an=angle(h);

subplot(4,2,1);plot(om/pi,m);xlabel('normalized frequency->');ylabel('gain in db-

>');subplot(4,2,2)

plot(om/pi,an)

xlabel('normalized angle--->');

ylabel('gain in db--->');

% High Pass Filter

[b,a]=butter(n,wc,'high');

w=0:0.01:pi;

[h,om]=freqz(b,a,w);

m=20*log(abs(h));

an=angle(h);

Dept of ECE, Atria Institute of Technology Page 27

subplot(4,2,3)

plot(om/pi,m)

xlabel('normalized frequency--->');

ylabel('gain in db--->');

subplot(4,2,4)

plot(om/pi,an)

xlabel('normalized angle--->');

ylabel('gain in db--->');

% Band Pass filter

wc=[0.4426,0.1];

[b,a]=butter(n,wc,'bandpass');

w=0:0.01:pi;

[h,om]=freqz(b,a,w);

m=20*log(abs(h));

an=angle(h);

subplot(4,2,5)

plot(om/pi,m)

xlabel('normalized frequency--->');

ylabel('gain in db--->');

subplot(4,2,6)

plot(om/pi,an)

xlabel('normalized angle--->');

ylabel('gain in db--->');

%Band Stop filter

wc=[0.4426,0.1];

[b,a]=butter(n,wc,'stop');

w=0:0.01:pi;

[h,om]=freqz(b,a,w);

m=20*log(abs(h));

an=angle(h);

subplot(4,2,7)

plot(om/pi,m)

xlabel('normalized frequency--->');

ylabel('gain in db--->');

subplot(4,2,8)

plot(om/pi,an)

xlabel('normalized angle--->');

ylabel('gain in db--->');

Result : Output will be displayed on the command window and figure window .

Dept of ECE, Atria Institute of Technology Page 28

Part B: Introduction To Code Composer Studio(CCS)

Dept of ECE, Atria Institute of Technology Page 29

TMS320C6713 DSK BOARD FEATURES

Package Contents

The C6713™ DSK builds on TI's industry-leading line of low cost, easy-to-use DSP

Starter Kit (DSK) development boards. The high-performance board features the

TMS320C6713 floating-point DSP. Capable of performing 1350 million floating-point

operations per second (MFLOPS), the C6713 DSP makes the C6713 DSK the most powerful

DSK development board.

The DSK is USB port interfaced platform that allows to efficiently develop and test

applications for the C6713. The DSK consists of a C6713-based printed circuit board that will

serve as a hardware reference design for TI’s customers’ products. With extensive host PC and

target DSP software support, including bundled TI tools, the DSK provides ease-of-use and

capabilities that are attractive to DSP engineers.

The following checklist details items that are shipped with the C6713 DSK.

 TMS320C6713 DSK TMS320C6713 DSK development board

 Other hardware External 5VDC power supply

IEEE 1284 compliant male-to-female cable

 CD-ROM Code Composer Studio DSK tools

 Technical reference manual

The C6713 DSK has a TMS320C6713 DSP onboard that allows full-speed verification of code

with Code Composer Studio. The C6713 DSK provides:

 A USB Interface

Dept of ECE, Atria Institute of Technology Page 30

 SDRAM and Flash ROM

 An analog interface circuit for Data conversion (AIC)

 An I/O port

 Embedded JTAG emulation support

Connectors on the C6713 DSK provide DSP external memory interface (EMIF) and peripheral

signals that enable its functionality to be expanded with custom or third party daughter boards.

The DSK provides a C6713 hardware reference design that can assist you in the development

of your own C6713-based products. In addition to providing a reference for interfacing the

DSP to various types of memories and peripherals, the design also addresses power, clock,

JTAG, and parallel peripheral interfaces. The C6713 DSK includes a stereo

codec. This analog interface circuit (AIC) has the following characteristics:

High-Performance Stereo Codec

 90-dB SNR Multibit Sigma-Delta ADC (A-weighted at 48 kHz)

 100-dB SNR Multibit Sigma-Delta DAC (A-weighted at 48 kHz)

 1.42 V – 3.6 V Core Digital Supply: Compatible With TI C54x DSP Core

Voltages

 2.7 V – 3.6 V Buffer and Analog Supply: Compatible Both TI C54x DSP Buffer

Voltages

 8-kHz – 96-kHz Sampling-Frequency Support

Software Control Via TI McBSP-Compatible Multiprotocol Serial Port

 I 2 C-Compatible and SPI-Compatible Serial-Port Protocols

 Glueless Interface to TI McBSPs

Audio-Data Input/Output Via TI McBSP-Compatible Programmable Audio Interface

 I 2 S-Compatible Interface Requiring Only One McBSP for both ADC and DAC

 Standard I 2 S, MSB, or LSB Justified-Data Transfers

 16/20/24/32-Bit Word Lengths

The TMS320C6713™ DSP compose the floating-point DSP generation in the

TMS320C6000™ DSP platform. The C6713 device is based on the high-performance,

advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments

(TI), making this DSP an excellent choice for multichannel and multifunction applications.

The 6713 DSK is a low-cost standalone development platform that enables customers

to evaluate and develop applications for the TI C67XX DSP family. The DSK also serves as

a hardware reference design for the TMS320C6713 DSP. Schematics, logic equations and

application notes are available to ease hardware development and reduce time to market.

Dept of ECE, Atria Institute of Technology Page 31

Operating at 225 MHz, the C6713 delivers up to 1350 million floating-point operations

per second (MFLOPS), 1800 million instructions per second (MIPS), and with dual fixed-

/floating-point multipliers up to 450 million multiply-accumulate operations per second

(MMACS).The DSK uses the 32-bit EMIF for the SDRAM (CE0) and daughter card expansion

interface (CE2 and CE3). The Flash is attached to CE1 of the EMIF in 8-bit mode.

An on-board AIC23 codec allows the DSP to transmit and receive analog signals.

McBSP0 is used for the codec control interface and McBSP1 is used for data. Analog audio

I/O is done through four 3.5mm audio jacks that correspond to microphone input, line input,

line output and headphone output. The codec can select the microphone or the line input as the

active input. The analog output is driven to both the line out (fixed gain) and headphone

(adjustable gain) connectors. McBSP1 can be re-routed to the expansion connectors in

software.

A programmable logic device called a CPLD is used to implement glue logic that ties

the board components together. The CPLD has a register based user interface that lets the user

configure the board by reading and writing to the CPLD registers. The registers reside at the

midpoint of CE1.

The DSK includes 4 LEDs and 4 DIP switches as a simple way to provide the user

with interactive feedback. Both are accessed by reading and writing to the CPLD registers. An

included 5V external power supply is used to power the board. On-board voltage regulators

provide the 1.26V DSP core voltage, 3.3V digital and 3.3V analog voltages.

A voltage supervisor monitors the internally generated voltage, and will hold the boards

in reset until the supplies are within operating specifications and the reset button is released. If

desired, JP1 and JP2 can be used as power test points for the core and I/O power supplies.

Code Composer communicates with the DSK through an embedded JTAG emulator with

a USB host interface. The DSK can also be used with an external emulator through the external

JTAG connector.

TMS320C6713 DSP Features

 Highest-Performance Floating-Point Digital Signal Processor (DSP):

 Eight 32-Bit Instructions/Cycle

 32/64-Bit Data Word

 300-, 225-, 200-MHz (GDP), and 225-, 200-, 167-MHz (PYP) Clock Rates

 3.3-, 4.4-, 5-, 6-Instruction Cycle Times

 2400/1800, 1800/1350, 1600/1200, and 1336/1000 MIPS /MFLOPS

 Rich Peripheral Set, Optimized for Audio

 Highly Optimized C/C++ Compiler

 Extended Temperature Devices Available

 Advanced Very Long Instruction Word (VLIW) TMS320C67x™ DSP Core

 Eight Independent Functional Units:

 Two ALUs (Fixed-Point)

 Four ALUs (Floating- and Fixed-Point)

 Two Multipliers (Floating- and Fixed-Point)

 Load-Store Architecture With 32 32-Bit General-Purpose Registers

Dept of ECE, Atria Institute of Technology Page 32

 Instruction Packing Reduces Code Size

 All Instructions Conditional

 Instruction Set Features

 Native Instructions for IEEE 754

 Single- and Double-Precision

 Byte-Addressable (8-, 16-, 32-Bit Data)

 8-Bit Overflow Protection

 Saturation; Bit-Field Extract, Set, Clear; Bit-Counting; Normalization

 L1/L2 Memory Architecture

 4K-Byte L1P Program Cache (Direct-Mapped)

 4K-Byte L1D Data Cache (2-Way)

 256K-Byte L2 Memory Total: 64K-Byte L2 Unified Cache/Mapped RAM, and 192K-

Byte Additional L2 Mapped RAM

 Device Configuration

 Boot Mode: HPI, 8-, 16-, 32-Bit ROM Boot

 Endianness: Little Endian/Big Endian

 32-Bit External Memory Interface (EMIF)

 Glueless Interface to SRAM, EPROM, Flash, SBSRAM, and SDRAM

 512M-Byte Total Addressable External Memory Space

 Enhanced Direct-Memory-Access (EDMA) Controller (16 Independent Channels)

 16-Bit Host-Port Interface (HPI)

 Two Multichannel Buffered Serial Ports (McBSPs)

 Two Independent Clock Zones Each (1 TX and 1 RX)

Eight Serial Data Pins Per Port: Individually Assignable to any of the Clock Zones

 Each Clock Zone Includes:

 Programmable Clock Generator

 Programmable Frame Sync Generator

 TDM Streams From 2-32 Time Slots

 Support for Slot Bits Size8, 12, 16, 20, 24, 28, 32:

 Data Formatter for Bit Manipulation

 Wide Variety of I2S and Similar Bit Stream Formats

 Integrated Digital Audio Interface Transmitter (DIT) Supports:

 S/PDIF, IEC60958-1, AES-3, CP-430 Formats

 Up to 16 transmit pins

 Enhanced Channel Status/User Data

 Extensive Error Checking and Recovery

 Two Inter-Integrated Circuit Bus (I2C Bus™) Multi-Master and Slave Interfaces
 Two 32-Bit General-Purpose Timers

 Dedicated GPIO Module With 16 pins (External Interrupt Capable)

 Flexible Phase-Locked-Loop (PLL) Based Clock Generator Module

 IEEE-1149.1 (JTAG) Boundary-Scan-Compatible

 Package Options:

 208-Pin Power PAD™ Plastic (Low-Profile) Quad Flat pack (PYP)

 272-BGA Packages (GDP and ZDP)

 0.13-µm/6-Level Copper Metal Process

 CMOS Technology
 3.3-V I/Os, 1.2-V Internal (GDP & PYP)

Dept of ECE, Atria Institute of Technology Page 33

 3.3-V I/Os, 1.4-V Internal (GDP)(300 MHz only)

TMS320C6713 DSK Overview Block Diagram

INTRODUCTION TO CODE COMPOSER STUDIO

Code Composer Studio (CCS) is the first fully industrially development environment (IDE)

with DSP specific functionalities. This led us to edit, build, debug profile and manages projects

from a single unified environment. Other features are

Graphical signal analysis

Injection and extraction of data signals by a file IO

Multiprocessor debugging

Automatic testing

Customization via 'C' interpretive scripting language.

TMS Processor: This is TI industry leading line of low cost easy to use. DSP start kit

development boards with Floating point DSP, Capable of performing 1350 million floating

point operations ina second.

CODE COMPOSER FEATURES INCLUDE:

 IDE

 Debug IDE

 Advanced watch windows

 Integrated editor

 File I/O, Probe Points, and graphical algorithm scope probes

 Advanced graphical signal analysis

 Interactive profiling

 Automated testing and customization via scripting

 Visual project management system

 Compile in the background while editing and debugging

Dept of ECE, Atria Institute of Technology Page 34

 Multi-processor debugging

 Help on the target DSP

Note:-

Launch the DSK help file by opening the following file using Windows Explorer.

C:\CCStudio_v3.1\docs\hlp\c6713dsk.hlp

Documents for Reference:

spru509 Code Composer Studio getting started guide.

spru189 TMS320C6000 CPU & Instruction set guide

spru190 TMS320C6000 Peripherals guide

slws106d Codec(TLV320AIC23) Data Manual.

spru402 Programmer’s Reference Guide.

sprs186j TMS320C6713 DSP

Soft Copy of datasheets are available at : C:\CCStudio_v3.1\docs\pdf.

Procedure for Simulation of the C Programs with CCS

To Create New Project:

Project--->New Project Name : Proj

Location : C:\Ccs

Project Type : Executable

Target : Tms32067xx

& Then Click Finish

To Create New Source File:

File -----> New --- >Source File
And Then Type C Program And Save The File In Your Project With '.C' Extension

To Add Source File To The Project:

Project----> Add Files To The Project -- >Open Your Respective File & Then Click Open

To Add Command & Linkage Files:

Project----> Add Files To The Project -- >C:\Ccstudio-V3.1\Tutorials\Dsk6713\Hello1\Select
File Type As Linker Command File

To Add Library Files:

Project----> Add Files To The Project -- >C:\Ccstudio-V3.1\C6000\Cgtools\Lib\Rts6700.Lib

To Compile:

Project --->Compile File

To Build A Link:

Project---- > Build

Dept of ECE, Atria Institute of Technology Page 35

Procedure To Load:

File--->Load Programs--->Project Name.Out From Debug Folder

To Execute The Project:

Debug ---- > Run

PROGRAM 1

/* Program to implement linear convolution */

#include<stdio.h>

main()

{ int m=6; /*Length of i/p samples sequence*/

int n=6; /*Length of impulse response Co-efficients */

inti=0,j;

int x[15]={1,2,3,4,5,6,0,0,0,0,0,0}; /*Input Signal Samples*/

int h[15]={1,2,3,4,5,6,0,0,0,0,0,0}; /*Impulse Response Co-efficients*/

int y[20];

for(i=0;i<m+n-1;i++)

{

y[i]=0;

for(j=0;j<=i;j++)

y[i]+=x[j]*h[i-j];

}

for(i=0;i<m+n-1;i++)

printf("%d\n",y[i]);

}

PROGRAM 2 /* Program to implement circular convolution */
#include<stdio.h>

void main()

{

int m,n, x[30],h[30],y[30],i,j, temp[30],k,x2[30],a[30];

printf(" enter the length of the first sequence\n");

scanf("%d", &m);

printf(" enter the length of the second sequence\n");

scanf("%d", &n);

printf(" enter the first sequence\n");

for(i=0;<m;i++)

scanf("%d",&x[i]);

printf(" enter the second sequence\n");

for(j=0;j<n;j++)

scanf("%d",&h[j]);

if(m-n!=0)

Dept of ECE, Atria Institute of Technology Page 36

{

if(m>n)

{

for(i=n;i<m;i++)

h[i]=0;

n=m;

}

for(i=m;i<n;i++)

x[i]=0;

m=n;

}

y[0]=0;

a[0]=h[0];

for(j=1;j<n;j++)

a[j]=h[n-j];

for(i=0;i<n;i++)

y[0]+=x[i]*a[i];

/* convolution*/

for(k=1;k<n;k++)

{

y[k]=0;

/*circular shift*/

for(j=1;j<n;j++)

x2[j]=a[j-1];

x2[0]=a[n-1];

for(i=0;i<n;i++)

{

a[i]=x2[i];

y[k]+=x[i]*x2[i];

}

}

/*displaying the result*/

printf(" the circular convolution is\n");

for(i=0;i<n;i++)

printf("%d \t",y[i]);

}

PROGRAM 3 % N- DFT USING CCS

#include<stdio.h>

#include<math.h>

short x[8];

void dft(short *x, short k, int *out);

#define N 8

float pi=3.1416;

int sumre, sumim;

short x[N]={1,2,3,4,5,6,7,8};

int out[2]={0,0};

int real[8],imag[8],k=0;

void dft(short *x, short k, int *out)

Dept of ECE, Atria Institute of Technology Page 37

{

int sumre=0,sumim=0,i=0;

float cs=0,sn=0;

for(i=0;i<N;i++)

{

cs=cos(2*pi*k*i/N);

sn=sin(2*pi*k*i/N);

sumre = sumre +x[i]*cs;

sumim = sumim -x[i]*sn;

}

out[0]=sumre;

out[1]=sumim;

real[k]=sumre;

imag[k]=sumim;

k++;

if(k>N)

k=0;

printf("\n%d",out[0]);

}

void main()

{

int j;

for(j=0;j<N;j++)

{

dft(x,j,out);

}

}

PROGRAM 4: IMPULSE RESPONSE USING Code Composer Studio

#include<stdio.h>

#define order 2

#define len 10

float y[len]={0,0,0},sum;

void main()

{

int k;

float a[order+1]={0.1311,0.2622,0.1311};

float b[order+1]={1,-0.7478,0.2722};

for(i=0;i<len;i++)

{

sum=0;

for(k=1;k<=order;k++)

{

Dept of ECE, Atria Institute of Technology Page 38

if((i-k)>0)

sum=sum+(b[k]*y[i-k]);

}

if(i<=order)

{

y[i]=a[i]-sum;

}

else y[i]=-sum;

printf("response[%d]=%f\n",i,y[i]);

}

}

PROCEDURE:

STEPS FOR INTERFACING:

1. Connect the kit to USB(metal pin). power(black pin) supply,line in, line out.

2. Go to setup icon select family 67xx, platform DSK and all, save and quit, don't open CCS

studio

3. Run diagnostics--->start --->if everything is correct you will get "pass".

4. Open CCS studio ,go to debug---->connect -- >check for green color.

5. Projet---> new--->type project name-->select TMS320067XX,executable file .out---- >

finish.

6. File --->new--->DSP/BIOS configuration--->select DSK67XX---->select DSK6713.cdb---

>ok.

7. file---->save as---->file name.cdb in your project folder.

8. Project--->add files to the project---->select files of type .cdb with icon DSK6713.c--- >

double click on.

9. To create new source file: file--->new--->source file--->type FIR program --- >save as

filename.c.

10. Right click on source--->add files to the project -- >select filename.c and open.

11. Open file with path CCSstudio v 3.1--->c6000--->DSK6713--->include--->file type *.*---

>

we get a set of files. In that select DSK6713_aic 23,DSK6713 files-->copy both. Gotoyour

project folder, paste these two files and close it.

12. Right click on libraries--->add files to the project-->ccstudio v 3.1-->c6000-->

DSK6713-->lib--->DSK6713bsl in *.o or *.l -- >select and open.

13. Go to generated files folder -- >open .c file copy the first line

#include<"configuration.h">

Go to source file paste it as first line of your c program remove the line
#include"XYZCGG.h".

14. Save the source program.

15.Compile,build and check for zero errors.

16. Switch on CRO and signal generator set the signal generator output up to 2V and less than

10KHz (around 5KHz) connect right channel, left channel and neutral properly.

17. Run the program.

PROGRAM 18

Dept of ECE, Atria Institute of Technology Page 39

%FIR FILTER RESPONSE USING DSK KIT(INTERFACING PROGRAM)

#include"stdio.h"

#include"dsk6713.h"

#include"dsk6713_aic23.h"

float filter_coeff[]={0.000000,-0.001591,-0.002423,0.000000,0.005728,0.011139,0.010502,

-0.000000,-0.018003,-0.033416,-

0.031505,0.000000,0.063010,0.144802,0.220534,0.26448,0.220534,

0.144802,0.063010,0.000000,-0.031505,-0.033416,-0.018003,-

0.000000,0.010502,0.011139,0.005728,

0.000000,-0.002423,-0.001591,0.000000};

static shortin_buffer[100];

DSK6713_AIC23_Config

config={0x0017,0x0017,0x00d8,0x00d8,0x0011,0x0000,0x0000,0x0043,0x0081,0x0001};

void main()

{

DSK6713_AIC23_CodecHandle hCodec;

Unit32l_input,r_input,l_output,r_output;

DSK6713_init();

hCodec=DSK6713_AIC23_openCodec(0,&config);

DSK6713_AIC23_setFreq(hCodec,1);

while(1)

{

while(!DSK6713_AIC23_read(hCodec,&l_input));

while(!DSK6713_AIC23_read(hCodec,&r_input));

l_output=(int16)FIR_FILTER(&filter_coeff,l_input);

r_output=l_output;

while(!DSK6713_AIC23_write(hCodec,&l_output));

while(!DSK6713_AIC23_write(hCodec,&r_output));

}

DSK6713_AIC23_closeCodec(hCodec);

}

signedint FIR_FILTER(float *h,signed int x)

{

inti=0;

signed long output=0;

in_buffer[0]=x;

for(i=51;i>0;i--)

in_buffer[i]=in_buffer[i-1];

for(i=0;i<51;i++)

output=output+h[i]*in_buffer[i];

return(output);

}

Dept of ECE, Atria Institute of Technology Page 40

VTU Question Bank

1. Write a Mat lab program to sample a band limited continuous signal band limited to

fm= --------Hz under the following conditions (i)Nyquist rate (ii)TWICE THE

NYQUIST RATE and to find the effect in each of the above case.

2. Obtain Impulse and step response of the given X(n),Y(n) using Matlab.The difference

equation is --------------- --.

3. Write and verify the Mat lab code to find the linear convolution of the two discrete

sequences. X(n)= --------------- Y(n)= ----------------

4. Write and verify the Mat lab code to find the circular convolution of the two discrete

sequences. X(n)= --------------- Y(n)= ----------------

5. Using Mat lab find the autocorrelation of the given discrete sequence and verify its

properities. X(n)= ---------------- Y(n)= ------------------

6. Using Mat lab find the cross correlation of the given discrete sequence and verify its

properities. X(n)= ---------------- Y(n)= ------------------

7. Given a difference equation, calcu;late h(n) and obtain the response to input sequence

x(n) -------- using Mat lab.(Without intial conditions)

8. Given a difference equation, calcu;late h(n) and obtain the response to input sequence

x(n) -------- using Mat lab.(With intial conditions)

9. Using Mat lab compute N-point DFT of a given sequence --------------- and plot

magnitude and phase spectrum.

10. Using Mat lab find the Linear convolution of the two finite length sequences using

DFT and IDFT.

11. Using Mat lab find the Circular convolution of the two finite length sequences using

DFT and IDFT.

12. Design and implement Analog FIR filter to meet the given specification Filter Type --

Pass Band Edge frequency ------------ Stop Band Edge frequency ---------- --.

PassBand ripple ---------- StopBand ripple -------- Sampling frequency ------------------

-.

13. Design and implement Analog IIR filter to meet the given specification using Mat lab.

Pass Band Edge frequency ------------ Stop Band Edge frequency ---------- --.PassBand

ripple ---------- StopBand ripple -------- Sampling frequency ----------------- --.

14. Realize a Digital IIR filter with the given specification using bilinear

transformation.Use Chebyshev –I prototype design Pass Band Edge frequency ---------

--- Stop Band Edge frequency ------------.PassBand ripple ---------- StopBand ripple ---

----- Sampling frequency ----------------- --.

15. Using CCS find the Linear convolution of the two discrete sequences. X(n)= -------

Y(n)= -------

16. Using CCS find the Circular convolution of the two discrete sequences. X(n)= -------

Y(n)= -------

17. Using CCS Computation of N-point DFT of a given sequence. Using CCS find the

impulse response of the first order and second order system

18. Realize a FIR filter (ant type) to meet the following specifications. The input can be a

signal generator/speech emulate the FIR filter using DSK 6713 kit.

Dept of ECE, Atria Institute of Technology Page 41

DSP Lab viva Questions

1. What are the commonly used computer architecture explain?

2. What are the advantages of DSP?

3. What is the difference between fixed point and floating point devices?

4. What do you mean by time domain and frequency domain ?

5. What do you understand by Real signals, Bandwidth, Spectrum ?

6. What is Sampling?

7. What is the effect of Sampling at 1)Very high frequency,

2)Sampling at the Nyquist rate

3)Sampling below the Nyquist rate ?

8. What do you mean by Quantizing?

9. What do you mean by Quantization error?

10. What is the way by which Quantization error can be reduced?

11. What do you mean by filtering?

12. What are the Different types of filters?

13. Explain about i) High pass

ii) Low pass

iii) Bandpass and Bandstop filters.

14. What do you understand by Phase spectrum and Frequency spectrum?

15. What is Impulse?

16. What is impulse response of the filter?

17. What do you understand by FIR filter?

18. What do you understand by IIR filter?

19. What are the advantages of digital filter?

20. What do you mean by decimation?

21. Why do we need to use ADC & DAC with DSP’s?

22. Linear phase response means?

23. Two sine waves have the amplitude ‘A’ and frequency’f’.They are out of phase by

180. If these two signals are added, the resultant waveform will be ?

24. What do you mean by aliasing?

25. What type of filter should be used in front of the ADC?

26. On what Factors does the anti aliasing filter depend on?

27. What do you mean by sampling theorem?

28. What is the MATLAB?What arethe applications of MATLAB?

29. State sampling theorem?

30. What is meant by Nyquist rate and nyquist criteria?

31. Explain scaling and superposition properities of a system.

32. What is meant by linearity of a system and how it is related to scaling and

superposition?

33. What is impulse function ?

34. What is meant by impulse response?

35. What is energy signal?How to calculateenergy of signal?

36. What is power signal? How to calculatepower of signal?

37. Differentiate between even and odd signals/

Dept of ECE, Atria Institute of Technology Page 42

38. Explain time invariance property of a system with an example.

39. What is memory less system?

40. When a system is said to have memory?

41. What is meant by causality?

42. Explain linear convolution and circular convolution.

43. What is the length of linear and circular convolutions if the two sequences are having

the length n1 and n2?

44. What are the Fourier series and Fourier transform.

45. What are the advantages and special applications of Fourier series, Fourier transform,

Z transform and Laplace transform?

46. Differentiate between DTFT and DFT. Why it is advantageous to use DFT in

computers rather than DTFT?

47. How to perform linear convolution using circular convolution?

48. What is meant by correlation?

49. What is auto correlation?

50. What is cross correlation?

51. What are the advantages of using autocorrelation and cross correlation properities in

signal processing fields?

52. How autocorrelation can be used to detect the presence of noise?

53. Differentiate between IIR filters and FIR filters?

54. What is the procedure to design a digital Butterworth filter?

55. What are the difference equations and differential equations?

56. What is non real time processing?

57. What is meant by real time processing?

58. What is Digital signal processor(DSP)?

59. Differentiate between RISC and CISC architectures.

60. Differentiate between General purpose MPU(Micro Processor Unit) and DSP

Processor.

61. What is pipelining?

62. What is parallel processing?

63. What is MAC?

64. What is Barrel shifter? Why it is advantageous to use it in DSP processor?

65. Differentiate between floating point DSP and fixed point DSP.

66. Explain Fixed point/Floating point?

67. What is code composer studio?

68. Explain Von-Neumann and Harvard architectures.

69. What are Line-in,line-out,Mic-in,Mic-out?

VIVA QUESTION AND ANSWERS FOR DSP LAB[15ECL 57]

1. Features of TMS320C6713 Starter kit :-

 TMS320C6713 DSP operating at 225MHz device delivering up to 1800 million

instructions per

second (MIPs) and 1350 MFLOPS.

 Embedded USB JTAG controller with plug and play drivers, USB cable included

 TI TLV320AIC23 codec This IC is used to transmit and receive analog signals.

Dept of ECE, Atria Institute of Technology Page 43

 16MB SDRAM I.C No. 48LC4M32B2

4MEGX32(1MEGX32X4banks)

 512K bytes of on board Flash ROM I.C No. M29W400T

 Expansion connectors (Memory Interface, Peripheral Interface, and Host Port

Interface)

 On board IEEE 1149.1 JTAG connection for optional emulator debug

 +5V universal power supply

 High-quality 24-bit stereo codec

 user definable LEDs

 position dip switch, user definable

 Size: 8.25" x 4.5" (210 x 115 mm), 0.062" thick, 6 layers

 Compatible with Spectrum Digital's DSK Wire Wrap Prototype Card

 RoHS Compliant

 CPLD I.C.No. MAX EPM3128A TC100-10N

{MAX3000A, 128 macro cells, 100TQFP, 8logic array blocks, 96 I/O pins and
10ns.}

 FPGA I.C.No. ACTEL A54SX08A-TQG100

{FPGA SX-A Family, 8K gates, 512 cells, 238MHz,0.25um/0.22um(CMOS)

tech.,2.5v and

100 pin TQFP}

2. Expansion of TMS320C6713 DSK ?

T
MS

TEXAS INSTRUMENTS
MIXED SIGNALS

32 It’s a 32 bit processor

0 Floating point

Dept of ECE, Atria Institute of Technology Page 44

C CMOS Technology

6713 The series of the processor kit.

DSK Digital Starter Kit.

3. Difference between DSP processor and microprocessor ?

Functions of DSP:-

DSPs are designed specifically to perform large numbers of complex arithmetic calculations

as quickly as possible, usually in applications such as image processing, speech recognition

and telecommunications. DSPs are more efficient than general-purpose microprocessors at

performing basic arithmetic operations, especially multiplication. They are found in devices

that require rapid processing of audio or video data in real time, such as cell phones, DVD

players and digital cameras.

Functions of microprocessor:-

In the computing world, faster is always better. However, microprocessors are general-

purpose devices. They are designed to run software applications such as word processors,

spreadsheets and web browsers. These are applications where speed is important but not

critical. Microprocessors are at the core of desktops, laptops, netbooks and tablet PCs.

4. Difference between fixed point and floating point ?

Digital signal processing can be separated into two categories - fixed point and
floating point. These designations refer to the format used to store and manipulate numeric
representations of data. Fixed-point DSPs are designed to represent and manipulate integers –

positive and negative whole numbers – via a minimum of 16 bits, yielding up to 65,536 possible

bit patterns (216). Floating-point DSPs represent and manipulate rational numbers via a
minimum of 32 bits in a manner similar to scientific notation, where a number is represented

with a mantissa and an exponent (e.g., A x 2B, where 'A' is the mantissa and ‘B’ is the exponent),

yielding up to 4,294,967,296 possible bit patterns (232).

The term ‘fixed point’ refers to the corresponding manner in which numbers are represented,

with a fixed number of digits after, and sometimes before, the decimal point. With floating-

point representation, the placement of the decimal point can ‘float’ relative to the significant

digits of the number. For example, a fixed-point representation with a uniform decimal point

placement convention can represent the numbers 123.45, 1234.56, 12345.67, etc, whereas a

floating-point representation could in addition represent 1.234567, 123456.7, 0.00001234567,

1234567000000000, etc. As such, floating point can support a much wider range of values than

fixed point, with the ability to represent very small numbers and very large numbers.

5. What is the use of FPFA and CPLD in TMS320C6713 PROCESSOR?

DSPs often have to interface with external memory, typically shared with host processors

or with other DSPs. The two main mechanisms available to implement the memory interfacing

are to use hardware interfaces already existing on the DSP chip or to provide external hardware

that carries out the memory interfacing. These two methods are briefly mentioned below.

Hardware interfaces are often available on TI as well as on ADI DSPs. An example is TI

External Memory Interface (EMIF) [38], which is a glue less interface to memories such as

SRAM,EPROM, Flash, Synchronous Burst SRAM (SBSRAM) and Synchronous DRAM

(SDRAM). On theTMS320C6713 DSP, for instance, the EMIF provides 512 Mbytes of

addressable external memory space. Additionally, the EMIF supports memory width of 8 bits,

12 bits and 32 bits, including read/write of both big- and little-endian devices.

Dept of ECE, Atria Institute of Technology Page 45

When no dedicated on-chip hardware is available, the most common solution for interfacing a

DSP to an external memory is to add external hardware between memory and DSP, as shown

in below block diagram. Typically this is done by using a CPLD or an FPGA which implements

address decoding and access arbitration. Care must be taken when programming the access

priority and/or interleaved memory access in the CPLD/FPGA. This is essential to preserve the

data integrity. Synchronous mechanisms should be preferred over asynchronous ones to carry

out the data interfacing.

6. Which software is used to run TMS320C6713 processor and note about its features ?

The software used is Code Composer Studio V3.1

CCS provides an IDE to incorporate the software tools. CCS includes tools for code

generation, such as a C compiler, an assembler, and a linker. It has graphical capabilities and

supports real-time debugging. It provides an easy-to-use software tool to build and debug

programs.

The C compiler compiles a C source program with extension .c to produce an assembly

source file with extension.asm. The assembler assembles an.asm source file to produce a

machine language object file with extension.obj. The linker combines object files and object

libraries as input to produce an executable file with extension .out.

7. What is compiler ?

A program that translates a high level language into machine level language program is

called compiler.

8. What is an assembler ?

Assembler is a software that translates assembly language program to a machine

language program.

9. What is linker ?

Linker is a software that joins together several object files and library functions into one

large executable file.

10. What is the function of linker command file in TMS320C6713?

The function of linker command file is that it maps sections to memory.

11. What is debugger?

Debugger is a program that allows the execution of a program in single step mode under

control of user.

12. What does the building process does in TMS320C6713?

The building process causes all the dependent files to be included.

13. What is convolution and mention it’s properties?

Convolution is a mathematical way of combining two signals to form a third signal. It is

the single most important technique in digital signal processing. Using the strategy of impulse

decomposition, systems are described by a signal called the impulse response. Convolution is

important because it relates the three signals of interests : the input signals, the output signals

and the impulse response.

Dept of ECE, Atria Institute of Technology Page 46

The three basic properties of convolution as an algebraic operation are that it is

commutative, associative, and distributive over addition. The commutative property means

simply that x convolved with h is identical with h convolved with x. The consequence of this

property for LTI systems is that for a system with a specified input and impulse response, the

output will be the same if the roles of the input and impulse response are interchanged. The

associative property specifies that while convolution is an operation combining two signals,

we can refer unambiguously to the convolution of three signals without concern about how

they are grouped pair wise.

The associative property combined with the commutative property leads to an extremely

important property of LTI systems. Specifically, if we have several LTI systems cascaded

together, the output generated by an input to the overall cascade combination does not depend

on the order in which the systems are cascaded. This property of LTI systems plays an

extremely important role in system design, implementation, and analysis. It is generally not

true for arbitrary systems that are not linear and time-invariant, and it represents one very

important consequence of exploiting the properties of linearity and time invariance.

The distributive property states that a signal convolved with the sum of two signals is

identical to the result of carrying out the convolution with each signal in the sum individually

and then summing the result.

14. What is the function of ‘clc’ in matlab /octave tool ?

CLC clears the command window and homes the cursor.

15. What is the function of ‘clear all’ in matlab /octave tool?

CLEAR removes all variables from the workspace.

16. What is the function of ‘close all’ in matlab /octave tool?

CLOSE ALL closes all the open figure windows.

17. What is the function of ‘figure’ in matlab /octave tool?

FIGURE, by itself, creates a new figure window, and returns its handle.

18. What is the function of ‘subplot’ in matlab /octave tool?

Subplot divides the figure window into rows, columns and position

For example subplot(3,1,1) means the figure window divides into 3 rows, 1column and

1st position.

19. What is the function of ‘plot’ in matlab /octave tool?

PLOT Linear plot.
PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix, then the vector is

plotted versus the rows or columns of the matrix, which ever line up. If X is a scalar and

Y is a vector, length(Y) disconnected points are plotted.

20. What is the function of ‘stem’ in matlab /octave tool?

STEM Discrete sequence or "stem" plot.

Dept of ECE, Atria Institute of Technology Page 47

STEM(Y) plots the data sequence Y as stems from the x axis terminated with circles for

the data

value.

STEM(X,Y) plots the data sequence Y at the values specified in X.

21. What is the function of ‘xlabel’ in matlab /octave tool?

XLABEL X-axis label. XLABEL('text') adds text beside the X-axis on the current

axis.

22. What is the function of ‘ylabel’ in matlab /octave tool?

YLABEL Y-axis label. YLABEL('text') adds text beside the Y-axis on the current
axis.

23. What is the function of ‘title’ in matlab /octave tool?

TITLE Graph title. TITLE('text') adds text at the top of the current axis.

24. What is the function of ‘conv’ in matlab /octave tool?

CONV Convolution and polynomial multiplication.
C = CONV(A, B) convolves vectors A and B. The resulting vector is

LENGTH(A)+LENGTH(B)-1. If A and B are vectors of polynomial coefficients,

convolving them is equivalent to multiplying the two polynomials.

25. What is the function of ‘FFT’ in matlab /octave tool ?

FFT Discrete Fourier transform.
FFT(X) is the discrete Fourier transform (DFT) of vector X. For matrices, the FFT

operation is

applied to each column. For N-D arrays, the FFT operation operates on the first non-

singleton

dimension.

FFT(X,N) is the N-point FFT, padded with zeros if X has less than N points and

truncated if it

has more.

26. What is the function of ‘IFFT’ in matlab /octave tool?

IFFT Inverse discrete Fourier transform.

IFFT(X) is the inverse discrete Fourier transform of X.

IFFT(X,N) is the N-point inverse transform.

27. What is the function of ‘xcorr’ in matlab /octave tool?

XCORR Cross-correlation function estimates.
C = XCORR(A,B), where A and B are length M vectors (M>1), returns the length 2*M-

1 cross-

correlation sequence C. If A and B are of different length, the shortest one is zero-

padded. C

will be a row vector if A is a row vector, and a column vector if A is a column vector.

XCORR(A), when A is a vector, is the auto-correlation sequence.

28. What is the function of ‘conj’ in matlab /octave tool?

CONJ Complex conjugate. CONJ(X) is the complex conjugate of X.

For a complex X, CONJ(X) = REAL(X) - i*IMAG(X).

Dept of ECE, Atria Institute of Technology Page 48

29. What is the function of ‘ceil’ in matlab /octave tool ?

CEIL Round towards plus infinity. CEIL(X) rounds the elements of X to the nearest

integers

towards infinity. For example: ceil([-2.7, 2.7]) => -2 3

30. What is the function of ‘filter’ in matlab /octave tool?

FILTER One-dimensional digital filter.
Y = FILTER(B,A,X) filters the data in vector X with the filter described by vectors A

and B to

create the filtered data Y. The filter is a "Direct Form II Transposed" implementation

of the

standard difference equation:

a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)

- a(2)*y(n-1) - ... - a(na+1)*y(n-na)

If a(1) is not equal to 1, FILTER normalizes the filter coefficients by a(1).

31. What is the function of ‘filtic’ in matlab /octave tool?

FILTIC Make initial conditions for 'filter' function.
Z = filtic(B, A, Y, X) converts past input X and output Y into initial conditions for the

state variables

Z needed in the TRANSPOSED DIRECT FORM II filter structure.

Z = filtic(B, A, Y) assumes that X = 0 in the past.

32. What is the function of ‘fliplr’ in matlab /octave tool?

FLIPLR Flip matrix in left/right direction.
FLIPLR(X) returns X with row preserved and columns flipped in the left/right

direction.

Example:

X =[1 2 3 becomes [3 2 1

4 5 6] 6 5 4]

33. What is the function of ‘butter’ in matlab /octave tool?

BUTTER Butterworth digital and analog filter design.

[B,A] = BUTTER(N,Wn) designs an Nth order lowpass digital Butterworth filter and

returns the filter coefficients in length N+1 vectors B (numerator) and A (denominator). The

coefficients are listed in descending powers of z. The cutoff frequency Wn must be 0.0 < Wn

< 1.0, with 1.0 corresponding to half the sample rate.

34. What is the function of ‘buttord’ in matlab /octave tool?

BUTTORD Butterworth filter order selection.

[N, Wn] = BUTTORD(Wp, Ws, Rp, Rs) returns the order N of the lowest order digital

Butterworth filter that loses no more than Rp dB in the passband and has at least Rs dB of

attenuation in the stopband.

Wp and Ws are the passband and stopband edge frequencies, normalized from 0 to 1

(where 1 corresponds to pi radians/sample). For example,

Lowpass: Wp = .1, Ws = .2

Highpass: Wp = .2, Ws = .1

Bandpass: Wp = [.2 .7], Ws = [.1 .8]

Dept of ECE, Atria Institute of Technology Page 49

Bandstop: Wp = [.1 .8], Ws = [.2 .7]

35. What is the function of ‘cheby1’ in matlab /octave tool?

CHEBY1 Chebyshev Type I digital and analog filter design.

[B,A] = CHEBY1(N,R,Wn) designs an Nth order lowpass digital Chebyshev filter with R

decibels of peak-to-peak ripple in the passband. CHEBY1 returns the filter coefficients in

length N+1 vectors B (numerator) and A (denominator). The cutoff frequency Wn must be

0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate. Use R=0.5 as a starting point,

if you are unsure about choosing R.

36. What is the function of ‘cheb1ord’ in matlab /octave tool?

CHEB1ORD Chebyshev Type I filter order selection.

[N, Wn] = CHEB1ORD(Wp, Ws, Rp, Rs) returns the order N of the lowest order digital

Chebyshev Type I filter that loses no more than Rp dB in the passband and has at least Rs dB

of attenuation in the stopband. Wp and Ws are the passband and stopband edge frequencies,

normalized from 0 to 1 (where 1 corresponds to pi radians/sample). For example,

Lowpass: Wp = .1, Ws = .2

Highpass: Wp = .2, Ws = .1

Bandpass: Wp = [.2 .7], Ws = [.1 .8]

Bandstop: Wp = [.1 .8], Ws = [.2 .7]

37. What is meant by DFT ?

The discrete Fourier transform (DFT) is the primary transform used for numerical

computation

in digital signal processing. It is very widely used for spectrum analysis, fast

convolution, and

many other applications. The DFT transforms N discrete-time samples to the same

number of

discrete frequency samples, and is defined as:

N-1

X(k) = Σ x(n) e-j2πnk/N

n=0

38. What are the applications of DFT?

1. Spectral analysis

When the DFT is used for spectral analysis, the sequence usually represents a

finite set of uniformly spaced time-samples of some signal , where t represents time.

The conversion from continuous time to samples (discrete-time) changes the underlying fourier

transform of x(t) into a discrete-time Fourier transform (DTFT), which generally entails a type

of distortion called aliasing.

2. Data compression

The field of digital signal processing relies heavily on operations in the frequency

domain (i.e. on the Fourier transform). For example, several lossy image and sound

compression methods employ the discrete Fourier transform: the signal is cut into short

segments, each is transformed, and then the Fourier coefficients of high frequencies, which are

assumed to be unnoticeable, are discarded. The decompressor computes the inverse transform

based on this reduced number of Fourier coefficients. (Compression applications often use a

http://cnx.org/content/m10992/latest/
http://cnx.org/content/m12032/latest/
http://cnx.org/content/m12022/latest/
http://cnx.org/content/m12022/latest/
http://en.wikipedia.org/wiki/Frequency_spectrum#Spectrum_analysis
http://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
http://en.wikipedia.org/wiki/Aliasing
http://en.wikipedia.org/wiki/Lossy

Dept of ECE, Atria Institute of Technology Page 50

specialized form of the DFT, the discrete cosine transform or sometimes the modified discrete

cosine transform.)

3. Partial differential equations

Discrete Fourier transforms are often used to solve partial differential equations, where again
the DFT is used as an approximation for the Fourier series (which is recovered in the limit of
infinite N). The advantage of this approach is that it expands the signal in complex

exponentials einx, which are Eigen functions of differentiation: d/dx einx = in einx.

39. What is meant by FFT ?

Fast Fourier Transform is an algorithm used to compute DFTs.

40. What is meant by IDFT ?

The inverse DFT (IDFT) transforms N discrete-frequency samples to the same

number of discrete- time samples. The IDFT has a form very similar to the DFT,

N-1

x(n) =1/N Σ X(k) ej2πnk/N

k=0

41. What is meant by IFFT ?

The IFFT block computes the inverse fast Fourier transform (IFFT) of each row of a

sample-based 1-by-P input vector, or across the first dimension (P) of an N-D input array.

42. Difference between analog filter and digital filters ?

Digital Filters:

1. It operates on the digital samples of the signals.

2. These kinds of filters are defined using linear difference equations.

3. While implementing the digital filters in hardware or software (for simulation),

we need adders, subtractors, delays, etc which are classified under digital logic

components.

4. In this filter, the filter coefficients are designed to meet the desired or expected

frequency response.

5. Mathematically the transfer function H(z) is required to be a rational function

of z,where the coefficients of z are real to meet the stability and causality requirement.

6. In order to be stable and causal, the poles of the transfer function should lie

inside the unit circle in z-plane.

Analog Filters:

1. Unlike digital, analog filters works on analog signals or the so called actual

signals.

2. It is defined by linear differential equations.

3. While implementing the analog filters in hardware or software

simulation, electrical components like resistors, capacitors and inductors are used.

4. To achieve the required frequency response, approximation problem is solved.

5. To be stable and causal, the transfer function H(s) must be a rational function

of s, whose coefficients are real.

http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://en.wikipedia.org/wiki/Modified_discrete_cosine_transform
http://en.wikipedia.org/wiki/Modified_discrete_cosine_transform
http://en.wikipedia.org/wiki/Partial_differential_equations
http://en.wikipedia.org/wiki/Fourier_series
http://amitbiswal.blogspot.com/2011/08/most-popular-open-source-softwares-list.html
http://amitbiswal.blogspot.com/2012/01/matlab-program-to-create-transfer.html
http://amitbiswal.blogspot.com/2012/02/reason-why-transformers-are-rated-in.html

Dept of ECE, Atria Institute of Technology Page 51

6. For stability and causality, the poles should lie on the left half of s-plane.

43. How do you convert analog filter prototype to a digital filter?

There are five methods to convert analog filter prototype to a digital filter, they are:
1. Impulse-invariant method

2. Frequency mapping method

3. Bilinear transformation method

4. Matched Z transform

5. Backward difference method

44. What are the steps to be taken while designing a digital filter ?

When designing a digital filter using an analog approximation and the bilinear

transform, we follow these steps:

b. Prewarp the cutoff frequencies

c. Design the necessary analog filter

d. apply the bilinear transform to the transfer function

e. Normalize the resultant transfer function to be monotonic and have a unity passband gain

(0dB).

Alternatively, if we have an inverse bilinear transform, we can follow these steps:

a. use the inverse bilinear transform on the filter specifications in the digital domain to

produce equivalent specifications in the analog domain.

b. Construct the analog filter transfer functions to meet those specifications.

c. use the bilinear transform to convert the resultant analog filter into a digital filter.

45. What is prewarping ?

Frequency warping follows a known pattern, and there is a known relationship

between the warped frequency and the known frequency. We can use a technique

called prewarping to account for the nonlinearity, and produce a more faithful mapping.

The p subscript denotes the prewarped version of the same frequency.

46. What is bilinear transform?

The Bilinear transform is a mathematical relationship which can be used to convert

the transfer function of a particular filter in the complex Laplace domain into the z-domain,

and vice-versa. The resulting filter will have the same characteristics of the original filter, but

can be implemented using different techniques. The Laplace Domain is better suited for

designing analog filter components, while the Z-Transform is better suited for designing

digital filter components.

The bilinear transform is the result of a numerical integration of the analog transfer function

into the digital domain. We can define the bilinear transform as:

47. Differentiate between Butterworth and Chebyshev filter?

Some of the important differences are as follows:
Magnitude response vs frequency curve: The magnitude response |H(jw)| of the

Dept of ECE, Atria Institute of Technology Page 52

butterworth filter decreases with increase in frequency from 0 to infinity, while the magnitude

response of the Chebyshev filter fluctuates or show ripples in the passband and stopband

depending on the type of the filter.

Width of Transition band: The width of the transition band is more in Butterworth filter

compared to the Chebyshev filter.

Location of the poles: The poles of a Butterworth filter lies only on a circle while that of the

Chebyshev filter lies on an ellipse, which can be easily concluded on looking at the poles

formula for both types of filters.

No. of Components required for implementing the filter: The number of poles in

Butterworth filter is more compared to that of the Chebyshev filter of same specifications, this

means that the order of Butterworth filter is more than that of a Chebyshev filter. This fact can

be used for practical implementation, since the number of components required to construct a

filter of same specification can be reduced significantly.

48. What is correlation?

Correlation is a mathematical operation that is very similar to convolution. Just as with

convolution, correlation uses two signals to produce a third signal. This third signal is called

the cross-correlation of the two input signals. If a signal is correlated with itself, the

resulting signal is instead called the autocorrelation.

49. What are the applications of autocorrelation?

a) One application of autocorrelation is the measurement of optical spectra and the

measurement of very-short-duration light pulses produced by lasers, both using optical

autocorrelators.

b) Autocorrelation is used to analyze Dynamic light scattering data, which notably

enables to determine the particle size distributions of nanometer-sized particles

or micelles suspended in a fluid.

c) In signal processing, autocorrelation can give information about repeating events

like musical beats (for example, to determine tempo) or pulsar frequencies, though it cannot

tell the position in time of the beat.

d) In music recording, autocorrelation is used as a pitch detection algorithm prior to vocal

processing, as a distortion effect or to eliminate undesired mistakes and inaccuracies.

50. What are the applications of cross correlation?

The cross-correlation function is used extensively in pattern recognition and signal

detection. We know that projecting one signal onto another is a means of measuring how much

of the second signal is present in the first. This can be used to ``detect'' the presence of known

signals as components of more complicated signals. As a simple example, suppose we

record x(n) which we think consists of a signal s(n) which we are looking for plus some

additive measurement noise e(n). Then the projection of onto is

since the projection of any specific signal onto random, zero-mean noise is close to zero.

Another term for this process is called matched filtering. The impulse response of the

``matched filter'' for a signal is given by Flip(x). By time reversing , we transform the

convolution implemented by filtering into a cross-correlation operation.

http://en.wikipedia.org/wiki/Optical_spectrum
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Laser
http://en.wikipedia.org/wiki/Optical_autocorrelation
http://en.wikipedia.org/wiki/Optical_autocorrelation
http://en.wikipedia.org/wiki/Optical_autocorrelation
http://en.wikipedia.org/wiki/Dynamic_light_scattering
http://en.wikipedia.org/wiki/Particle_size_distribution
http://en.wikipedia.org/wiki/Micelle
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Music
http://en.wikipedia.org/wiki/Music
http://en.wikipedia.org/wiki/Tempo
http://en.wikipedia.org/wiki/Pulsar
http://en.wikipedia.org/wiki/Pulsar
http://en.wikipedia.org/wiki/Music_Recording
http://en.wikipedia.org/wiki/Pitch_detection_algorithm
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_dft_cross_correlation
http://www.treasure-troves.com/physics/noise.php
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_dft_applications_cross_correlat
http://www-ccrma.stanford.edu/~jos/filters/difference_equation.php#2324
http://www-ccrma.stanford.edu/~jos/filters/difference_equation.php
http://www.technick.net/public/code/cp_dpage.php?aiocp_dp=guide_dft_convolution

Dept of ECE, Atria Institute of Technology Page 53

51. What are the properties of autocorrelation?

a. A fundamental property of the autocorrelation is even symmetry,
b. The continuous autocorrelation function reaches its peak at the origin, where it takes a

real value, i.e. for any delay.

c. The autocorrelation of a periodic function is, itself, periodic with the same period.

52. What are the properties of cross correlation?

a. The cross-correlation of functions f(t) and g(t) is equivalent to the convolution of
f*(−t) and g(t).

i.e.:

b. Analogous to the convolution theorem, the cross-correlation satisfies:

53. What is the difference between cross correlation and auto correlation?

Sl

No.

Cross correlation Auto Correlation

01
When two independent signals are
compared, the procedure is known

as cross-correlation

When the same signal is compared to phase
shifted copies of itself, the procedure is

known as auto correlation

02

Cross-correlation is the method

which basically underlies

implementations of the Fourier

transformation: signals of varying

frequency and phase are correlated

with the input signal, and the

degree of correlation in terms of

frequency and phase represents the

frequency and phase spectrums of

the input signal.

Autocorrelation is a method which is

frequently used for the extraction

of fundamental frequency, : if a copy of the

signal is shifted in phase, the distance between

correlation peaks is taken to be the

fundamental period of the signal (directly

related to the fundamental frequency)

54. What is impulse response?

In signal processing, the impulse response, or impulse response function (IRF), of a

dynamic system is its output when presented with a brief input signal, called an impulse. More

generally, an impulse response refers to the reaction of any dynamic system in response to

some external change. In both cases, the impulse response describes the reaction of the system

as a function of time (or possibly as a function of some other independent variable that

parameterizes the dynamic behavior of the system).

55. What is sampling?

Sampling is a process of converting a continuous time signal (analog signal) i.e., x(t) into

a discrete time signal i.e., x[n] which is represented as a sequence of numbers (Analog to

Digital converter).

56. What is quantization?

http://en.wikipedia.org/wiki/Periodic_function
http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Convolution_theorem
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Dynamic_system
http://en.wikipedia.org/wiki/Dirac_delta_function
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Independent_variable

Dept of ECE, Atria Institute of Technology Page 54

Quantization is the process of converting a discrete time continuous amplitude signal

x(n) into a dicrete-time discrete amplitude signal zq(n).

57. What is aliasing ?

aliasing is an effect that causes different signals to become indistinguishable

(or aliases of one another) when sampled. It also refers to the distortion or artifact that results

when the signal reconstructed from samples is different from the original continuous signal.

58. State sampling theorem?

The sampling theorem states that a set of samples of a signal can be reconstructed into the

original signal if and only if the original system is band limited and the sampling frequency is

greater than twice the maximum frequency for non-zero values of the original function.

or

It states that, while taking the samples of a continuous signal, it has to be taken care that

the sampling rate is equal to or greater than twice the cut off frequency and the minimum

sampling rate is known as the Nyquist rate.

59. What is a system?

A system is defined as a physical device that generates a response or an output signal for

a given input signal.

60. What are causal and non-causal system?

A system is said to be causal if the output of the system at any time ‘n’ depends only at

present and past inputs but does not depend on future inputs. If the output of a system

depends on future inputs then the system is called non-causal system.

61. What are linear and non-linear system?

A system that satisfies the superposition principle is said to be linear system. Super

position principle states that the response of the system to a weighted sum of signals should

be equal to the corresponding weighted sum of the output’s of the system to each of the

individual input signals. A relaxed system that does not satisfy the superposition principle is

called non-linear system.

62. What is an FIR system?

If the impulse response of the system is of finite duration then the system is called Finite

Impulse Response.

63. What is a linear phase filter?

"Linear Phase" refers to the condition where the phase response of the filter is a linear

(straight-line) function of frequency (excluding phase wraps at +/- 180 degrees). This results

in the delay through the filter being the same at all frequencies. Therefore, the filter does not

cause "phase distortion" or "delay distortion". The lack of phase/delay distortion can be a

critical advantage of FIR filters over IIR and analog filters in certain systems, for example, in

digital data modems.

64. What is the condition for linear phase?

FIR filters are usually designed to be linear-phase (but they don't have to be.) A FIR filter

is linear-phase if (and only if) its coefficients are symmetrical around the center coefficient,

that is, the first coefficient is the same as the last; the second is the same as the next-to-last, etc.

http://en.wikipedia.org/wiki/Sampling_(signal_processing)
http://en.wikipedia.org/wiki/Distortion
http://en.wikipedia.org/wiki/Artifact_(error)

Dept of ECE, Atria Institute of Technology Page 55

(A linear-phase FIR filter having an odd number of coefficients will have a single coefficient

in the center which has no mate.)

65. What is the delay of a linear-phase FIR?

The formula is simple: given a FIR filter which has N taps, the delay is: (N - 1) / (2 *

Fs), where Fs is the sampling frequency. So, for example, a 21 tap linear-phase FIR filter

operating at a 1 kHz rate has delay: (21 - 1) / (2 * 1 kHz)=10 milliseconds.

66. What is the Z transform of a FIR filter?

For an N-tap FIR filter with coefficients h(k), whose output is described by:

y(n)=h(0)x(n) + h(1)x(n-1) + h(2)x(n-2) + ... h(N-1)x(n-N-1),

The filter's Z transform is: N-1

H(z)=h(0)z-0 + h(1)z-1 + h(2)z-2 + ... h(N-1)z-(N-1) , or H(z) ∑ h(n)z-n

n=0

67. Can I calculate the frequency response of a FIR using the Discrete Fourier

Transform(DFT)?

Yes. For an N-tap FIR, you can get N evenly-spaced points of the frequency

response by doing a DFT on the filter coefficients.

68. How do I scale the gain of FIR filter?

Simply multiply all coefficients by the scale vector.

69. Are FIR filters inherently stable?

Yes. Since they have no feedback elements, any bounded input results in a bounded output.

70. What makes the numerical properties of FIR filters "good"?

The key is the lack of feedback. The numeric errors that occur when implementing

FIR filters in computer arithmetic occur separately with each calculation; the FIR doesn't

"remember" its past numeric errors. In contrast, the feedback aspect of IIR filters can cause

numeric errors to compound with each calculation, as numeric errors are fed back.

71. Why are FIR filters generally preferred over IIR filters in multirate(decimating and

interpolating) systems?

Because only a fraction of the calculations that would be required to implement a

decimating or interpolating FIR in a literal way actually needs to be done.

Since FIR filters do not use feedback, only those outputs which are actually going to be used

have to be calculated. Therefore, in the case of decimating FIRs (in which only 1 of N outputs

will be used), the other N-1 outputs don't have to be calculated. Similarly, for interpolating

filters (in which zeroes are inserted between the input samples to raise the sampling rate) you

don't actually have to multiply the inserted zeroes with their corresponding FIR coefficients

and sum the result; you just omit the multiplication-additions that are associated with the zeroes

(because they don't change the result anyway.)

In contrast, since IIR filters use feedback, every input must be used, and every input must be

calculated because all inputs and outputs contribute to the feedback in the filter.

72. What is an IIR System?

If the impulse response of the system is of infinite duration then the system is called

Infinite Impulse Response.

Dept of ECE, Atria Institute of Technology Page 56

73. Compare FIR and IIR filters?

Sl.
No.

IIR FIR

01 IIR filters are difficult to control
and have no particular phase,

FIR filters make a linear phase always
possible.

02 IIR can be unstable FIR is always stable.

03 IIR, when compared to FIR, can
have limited cycles,

FIR has no limited cycles.

04 IIR is better for lower-order
tapping

The FIR filter is used for higher-order tapping

74. Explain the properties of circular convolution?

The properties of circular convolution are:

a) Circular convolution (CC) is linear

(a) (b)

(c)

b) Circular Convolution is shift invariant

=

(a) (b)

c) Circular Convolution is commutative

=

75. What is the difference between convolution and correlation?

Correlation is a metric for similarity between two different signals. When normalized,

so that each of the two signals to be correlated have unitary power and null mean value, the

correlation operation shifts to the computation of the correlation coefficient, of the two signals

you are comparing. The correlation coefficient, for a given time lag t between the two signals,

is always between -1 and +1, clearly giving a measure of the similarity of the shapes of the two

signals at that time lag.

Convolution, instead, is the common operation a Linear and Time Invariant system can

perform on a given input signal. It is clear that, in specific cases, correlation anc convolution

are very similar: the matched filter case makes correlation and convolution identical.

convolution is a technique to find the output of a system of impulse response h(n) for an

input x(n) so basically it is used to calculate the output of a system, while correlation is a

process to find the degree of similarity between two signals.

X1(n

X2(n)
Y1(n)

X2(n)

X1(n)
Y2(n)

Dept of ECE, Atria Institute of Technology Page 57

π

76. What is the difference between linear and circular convolution ?

Linear convolution takes two functions of an independent variable, which is called time,

and convolves them using the convolution sum formula. Basically it is a correlation of one

function with the time-reversed version of the other function. I think of it as flip, multiply, and

sum while shifting one function with respect to the other. This holds in continuous time, where

the convolution sum is an integral, or in discrete time using vectors, where the sum is truly a

sum. It also holds for functions defined from -Inf to Inf or for functions with a finite length in

time.

Circular convolution is only defined for finite length functions (usually, maybe always,

equal in length), continuous or discrete in time. In circular convolution, it is as if the finite

length functions repeat in time, periodically. Because the input functions are now periodic, the

convolved output is also periodic and so the convolved output is fully specified by one of its

periods.

77. How to convert degrees into radians and vice-versa?
To convert degrees into radians:

Example- 2000 2000 * π / 1800 => 10 π/9 =>3.49 rad

To convert radians into degrees:

Example- 4 π /9 => 4π * 1800 => 7200 π =>800

9 9 π

78. What are imaginary numbers ?

An imaginary number is a number that can be written as a real number multiplied by the

imaginary unit i, which is defined by its property i2 = −1.
For example, 5i is an imaginary number, and its square is −25.

79. What are complex numbers ?

The values which contain both real and imaginary numbers.

For example, , where and are real numbers and i is the imaginary unit equal

to the square root of , .

http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Imaginary_unit
http://mathworld.wolfram.com/RealNumber.html
http://mathworld.wolfram.com/i.html
http://mathworld.wolfram.com/ImaginaryUnit.html
http://mathworld.wolfram.com/SquareRoot.html

Dept of ECE, Atria Institute of Technology Page 58

	ATRIA INSTITUTE OF TECHNOLOGY
	(Affiliated To Visvesvaraya Technological University, Belgaum)
	Anandanagar, Bangalore-24
	DSP LAB MANUAL
	2020-21
	Introduction to MATLAB
	Introduction to Digital Signal Processing
	Block diagram of Digital Signal Processing system
	COMMAND WINDOW
	GRAPHICS or FIGURE WINDOW
	EDITOR WINDOW
	MATLAB FILE TYPES
	M-files
	MAT-files
	MEX-files

	Part A : MATLAB Programs Program 1:Verification of the Sampling theorem
	Algorithm:
	PROGRAM 2A
	Procedure:-
	Description:-
	y[n] = x[k]h[n-k] where
	= 7
	MATLAB Code
	(1) Commutative Property : A Conv B =B Conv A
	(2) Distributive Property : A×(B conv C) = (A×B) conv (A×C)
	(3) Associative Property : A conv(B +C) = (A conv B) +(A Conv C)
	PROGRAM 2B: CIRCULAR CONVOLUTION OF TWO SEQUENCES.
	Description:- (1)
	MATLAB Code (1)
	Properties
	PROGRAM 3A

	Part A : Auto Correlation-MATLAB Code
	%Verification of the autocorrelation properties Property-1:Rxx(0) gives the energy of the signal
	PROGRAM 3B

	Theory:
	Procedure:-
	MATLAB code

	PROGRAM 4
	Procedure:-
	MATLAB CODE:
	PROGRAM 4B
	PROGRAM 5
	Procedure:- (1)
	COMPUTATION OF DFT
	Calculations:-
	x(n) = [2 3 4 5] N = 4
	{e-jθ = cosθ - jsinθ}
	x(2) = -2
	x(3) = -2-2j
	| x(k)| = [14, 2.82, 2, 2.82]

	MATLAB Code
	PROGRAM 6
	Part A: Linearity Property:
	MATLAB Code
	%Linearity Property
	Parsevals Theorem
	Program 6B
	(i) DFT computation of Square function

	Result
	Alternate code:
	Result:

	PROGRAM 7
	Procedure:-
	Procedure:- (1)
	MATLAB Code

	Part B: Introduction To Code Composer Studio(CCS)
	TMS320C6713 DSP Features
	TMS320C6713 DSK Overview Block Diagram INTRODUCTION TO CODE COMPOSER STUDIO
	CODE COMPOSER FEATURES INCLUDE:
	Note:-
	C:\CCStudio_v3.1\docs\hlp\c6713dsk.hlp
	spru509 Code Composer Studio getting started guide. spru189 TMS320C6000 CPU & Instruction set guide spru190 TMS320C6000 Peripherals guide
	1. Features of TMS320C6713 Starter kit :-
	4MEGX32(1MEGX32X4banks)
	 CPLD I.C.No. MAX EPM3128A TC100-10N
	 FPGA I.C.No. ACTEL A54SX08A-TQG100
	2. Expansion of TMS320C6713 DSK ?
	3. Difference between DSP processor and microprocessor ? Functions of DSP:-
	4. Difference between fixed point and floating point ?
	5. What is the use of FPFA and CPLD in TMS320C6713 PROCESSOR?
	6. Which software is used to run TMS320C6713 processor and note about its features ?
	7. What is compiler ?
	8. What is an assembler ?
	9. What is linker ?
	10. What is the function of linker command file in TMS320C6713?
	11. What is debugger?
	12. What does the building process does in TMS320C6713?
	13. What is convolution and mention it’s properties?
	14. What is the function of ‘clc’ in matlab /octave tool ?
	15. What is the function of ‘clear all’ in matlab /octave tool?
	16. What is the function of ‘close all’ in matlab /octave tool?
	17. What is the function of ‘figure’ in matlab /octave tool?
	18. What is the function of ‘subplot’ in matlab /octave tool?
	19. What is the function of ‘plot’ in matlab /octave tool?
	20. What is the function of ‘stem’ in matlab /octave tool?
	21. What is the function of ‘xlabel’ in matlab /octave tool?
	22. What is the function of ‘ylabel’ in matlab /octave tool?
	23. What is the function of ‘title’ in matlab /octave tool?
	24. What is the function of ‘conv’ in matlab /octave tool?
	25. What is the function of ‘FFT’ in matlab /octave tool ?
	26. What is the function of ‘IFFT’ in matlab /octave tool?
	27. What is the function of ‘xcorr’ in matlab /octave tool?
	28. What is the function of ‘conj’ in matlab /octave tool?
	29. What is the function of ‘ceil’ in matlab /octave tool ?
	30. What is the function of ‘filter’ in matlab /octave tool?
	31. What is the function of ‘filtic’ in matlab /octave tool?
	32. What is the function of ‘fliplr’ in matlab /octave tool?
	33. What is the function of ‘butter’ in matlab /octave tool?
	34. What is the function of ‘buttord’ in matlab /octave tool?
	35. What is the function of ‘cheby1’ in matlab /octave tool?
	36. What is the function of ‘cheb1ord’ in matlab /octave tool?
	37. What is meant by DFT ?
	2. Data compression
	3. Partial differential equations
	39. What is meant by FFT ?
	40. What is meant by IDFT ?
	41. What is meant by IFFT ?
	43. How do you convert analog filter prototype to a digital filter?
	44. What are the steps to be taken while designing a digital filter ?
	45. What is prewarping ?
	46. What is bilinear transform?

	47. Differentiate between Butterworth and Chebyshev filter?
	48. What is correlation?
	49. What are the applications of autocorrelation?
	50. What are the applications of cross correlation?
	51. What are the properties of autocorrelation?
	52. What are the properties of cross correlation?
	53. What is the difference between cross correlation and auto correlation?
	55. What is sampling?
	56. What is quantization?
	57. What is aliasing ?
	58. State sampling theorem?
	or
	59. What is a system?
	60. What are causal and non-causal system?
	61. What are linear and non-linear system?
	62. What is an FIR system?
	64. What is the condition for linear phase?
	65. What is the delay of a linear-phase FIR?
	66. What is the Z transform of a FIR filter?
	67. Can I calculate the frequency response of a FIR using the Discrete Fourier Transform(DFT)?
	68. How do I scale the gain of FIR filter?
	69. Are FIR filters inherently stable?
	70. What makes the numerical properties of FIR filters "good"?
	71. Why are FIR filters generally preferred over IIR filters in multirate(decimating and interpolating) systems?
	72. What is an IIR System?
	73. Compare FIR and IIR filters?
	(a) (b)

	=
	(a) (b)

	= (1)
	75. What is the difference between convolution and correlation?
	76. What is the difference between linear and circular convolution ?
	77. How to convert degrees into radians and vice-versa?

	78. What are imaginary numbers ?
	79. What are complex numbers ?

