

B.E Electronics & Communication Engineering / Telecommunication Engineering (Common to Electronics & Communication and Telecommunication Engineering)

VII	SEMESTER	र							
S1.	Subject		Teaching I	Hours e k		Exami	nation		15EC
No	Code	Title	Theory	al/Dra wing	Duration	I.A. Marks	Practical Marks	Total Marks	
1	15EC71	Microwave and Antennas	04		03	20	80	100	4
2	15EC72	Digital Image Processing	04		03	20	80	100	4
3	15EC73	Power Electronics	04		03	20	80	100	4
4	15XX74X	Professional Elective-3	03		03	20	80	100	3
5	15EC75X	Professional Elective-4	03		03	20	80	100	3
6	15ECL76	Advanced Communication Lab		1I+2P	03	20	80	100	2
7	15ECL77	VLSI Lab		1I+2P	03	20	80	100	2
8	15ECP78	Project Work Phase–I + Project work Seminar		03		100	-	100	2
		TOTAL	18	09	21	240	560	800	24

Profession	nal Elective-3	Professional	Elective-4
15EC741	Multimedia Communication	15EC751	DSP Algorithms and Architecture
15EC742	Biomedical Signal Processing	15EC752	IoT and Wireless Sensor Networks
15EC743	Real Time Systems	15EC753	Pattern Recognition
15EC744	Cryptography	15EC754	Advanced Computer Architecture
15EC745	CAD for VLSI	15EC755	Satellite Communication

1. Project Phase –I + Project Work Seminar: Literature Survey, Problem Identification, Objectives and Methodology. Submission of Synopsis and Seminar.

SCHEME OF TEACHING AND EXAMINATION B.E.: Electronics & Communication Engineering

VIII SEMESTER

S1 Subject			Teach: /\	Teaching Hours /Week		Examination			
No	Code	Title	Theory	Practical/ Drawing	Duration	I.A. Marks	Theory/ Practical Marks	Total Marks	
1	15EC81	Wireless Cellular and LTE 4G Broadband	4	-	3	20	80	100	4
2	15EC82	Fiber Optics & Networks	4	-	3	20	80	100	4
3	15EC83X	Professional Elective-5	3	-	3	20	80	100	3
4	15EC84	Internship/Professional Practice	Industry	Oriented	3	50	50	100	2
5	15ECP85	Project Work	-	6	3	100	100	200	6
6	15ECS86	Seminar	-	4	-	100	-	100	1
		TOTAL	11	10	15	310	390	700	20

Profession	nal Elective -5
15EC831	Micro Electro Mechanical Systems
15EC832	Speech Processing
15EC833	Radar Engineering
15EC834	Machine learning
15EC835	Network and Cyber Security

1. Internship / Professional Practice: To be carried between the (6th and 7th Semester) or (7th and 8th) Semester Vacation period.

MICROWAVES AND ANTENNAS

B.E., VII Semester, Electronics & Communication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Course Code	15EC71	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50 (10 Hours / Module)	Exam Hours	03
CI	REDITS – 04		

Course objectives: This course will enable students to:

- Describe the microwave properties and its transmission media
- Describe microwave devices for several applications
- Understand the basics of antenna theory
- Select antennas for specific applications

Module-1

Microwave Tubes: Introduction, Reflex Klystron Oscillator, Mechanism of Oscillations, Modes of Oscillations, Mode Curve (Qualitative Analysis only). (Text 1: 9.1, 9.2.2) Microwave Transmission Lines: Microwave Frequencies, Microwave devices, Microwave Systems, Transmission Line equations and solutions, Reflection Coefficient and Transmission Coefficient, Standing Wave and Standing Wave Ratio, Smith Chart, Single Stub matching. (Text 2: 0.1, 0.2, 0.3, 3.1, 3.2, 3.3, 3.5, 3.6 Except Double stub matching) L1, L2

Module-2

Microwave Network theory: Symmetrical Z and Y-Parameters for Reciprocal Networks, S matrix representation of Multi-Port Networks. (Text 1: 6.1, 6.2, 6.3) Microwave Passive Devices: Coaxial Connectors and Adapters, Attenuators, Phase Shifters, Waveguide Tees, Magic tees. (Text 1: 6.4.2, 6.4.14, 6.4.15, 6.4.16) L1, L2

Module-3

Strip Lines: Introduction, Micro Strip lines, Parallel Strip lines, Coplanar Strip lines, Shielded Strip Lines. (Text 2: Chapter 11)

Antenna Basics: Introduction, Basic Antenna Parameters, Patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity and Gain, Antenna Apertures, Effective Height, Bandwidth, Radio Communication Link, Antenna Field Zones & Polarization. (Text 3: 2.1- 2.11, 2.13,2.15) **L1, L2, L3**

Module-4

Point Sources and Arrays: Introduction, Point Sources, Power Patterns, Power Theorem, Radiation Intensity, Field Patterns, Phase Patterns, Arrays of Two Isotropic Point Sources, Pattern Multiplication, Linear Arrays of n Isotropic Point Sources of equal Amplitude and Spacing.(Text 3: 5.1 – 5.10,5.13) **Electric Dipoles:** Introduction, Short Electric Dipole, Fields of a Short Dipole (General and Far Field Analyses), Radiation Resistance of a Short Dipole, Thin Linear Antenna (Field Analyses), Radiation Resistances of Lambda/2 Antenna. (Text 3: 6.1 -6.6)

L1, L2, L3, L4

Module-5

Loop and Horn Antenna: Introduction, Small loop, Comparison of Far fields of Small Loop and Short Dipole, The Loop Antenna General Case, Far field Patterns of Circular Loop Antenna with Uniform Current, Radiation Resistance of Loops, Directivity of Circular Loop Antennas with Uniform Current, Horn antennas Rectangular Horn Antennas.(Text 3: 7.1-7.8, 7.19, 7.20)

Antenna Types: Helical Antenna, Helical Geometry, Practical Design Considerations of Helical Antenna, Yagi-Uda array, Parabola General Properties, Log Periodic Antenna. (Text 3: 8.3, 8.5, 8.8, 9.5, 11.7) **L1, L2, L3**

Course Outcomes: At the end of the course, students will be able to:

- Describe the use and advantages of microwave transmission
- Analyze various parameters related to microwave transmission lines and waveguides
- Identify microwave devices for several applications
- Analyze various antenna parameters necessary for building an RF system
- Recommend various antenna configurations according to the applications

Text Books:

- 1. **Microwave Engineering** Annapurna Das, Sisir K Das TMH Publication, 2nd, 2010.
- 2. Microwave Devices and circuits- Liao, Pearson Education.
- 3. **Antennas and Wave Propagation,** John D. Krauss, Ronald J Marhefka and Ahmad S Khan,4th Special Indian Edition , McGraw- Hill Education Pvt. Ltd., 2010.

Reference Books:

- 1. **Microwave Engineering** David M Pozar, John Wiley India Pvt. Ltd. 3rdEdn, 2008.
- Microwave Engineering Sushrut Das, Oxford Higher Education, 2ndEdn, 2015.
- 3. **Antennas and Wave Propagation** Harish and Sachidananda: Oxford University Press, 2007.

DIGITAL IMAGE PROCESSING

B.E., VII Semester, Electronics & Communication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	155070	IA Mortro	20			
Number of Lecture	13EC72	From Morleo	20			
Hours /Woolz	04	Exam Marks	80			
Total Number of	50 (10 Hours /	Evon Uouro	03			
Locture Hours	Module)	Exam nours	03			
CPEDITS - 04						
Course Obiectiness'	<u>CKED</u>	$\frac{115 - 04}{115 - 04}$				
Course Objectives:	The objectives of this (course are to:				
Understand the	fundamentals of digit	tal image processi	ng			
Understand the	e image transform use	d in digital image	processing			
Understand the	image enhancement	techniques used i	n digital image			
processing		teeninquee useu i	in angitar innage			
Understand the	e image restoration teo	chniques and met	hods used in dig	rital		
image processi	1g					
• Understand the	e Morphological Opera	tions and Segmen	tation used in d	igital		
image processi	ng			-8		
	Module-1	L		RBT Level		
Digital Image Fun	damentals [.] What is D	jigital Image Proce	ssing? Origins	L1 L2		
of Digital Image Pro	cessing. Examples of	fields that use DI	P. Fundamental	51, 52		
Steps in Digital Ima	age Processing, Compo	onents of an Image	e Processing			
System. Elements of	of Visual Perception. In	mage Sensing and	Acquisition.			
Image Sampling an	d Ouantization. Some	Basic Relationshi	ips Between			
Pixels, Linear and M	Vonlinear Operations.		1			
[Text: Chapter 1 an	d Chapter 2: Sections	2.1 to 2.5, 2.6.2]				
	 Module-2	2				
Spatial Domain:	Some Basic Intensity	7 Transformation	Functions,	L1, L2,		
Histogram Process	ing, Fundamentals o	of Spatial Filterin	g, Smoothing	L3		
Spatial Filters, Sha	rpening Spatial Filters	3				
Frequency Domai	n: Preliminary Conce	epts, The Discret	e Fourier			
Transform (DFT) of	Two Variables, Proper	rties of the 2-D DI	FT, Filtering in			
the Frequency Dom	ain, Image Smoothing	g and Image Sharp	pening Using			
Frequency Domain	Filters, Selective Filte	ring.				
[Text: Chapter 3: Se	ections 3.2 to 3.6 and	Chapter 4: Sectio	ns 4.2, 4.5 to			
4.10]						
		3				
Restoration: Noise	models, Restoration i	n the Presence of	Noise Only	L1, L2,		
using Spatial Filter	ing and Frequency Do	main Filtering, Li	near, Position-	L3		
Invariant Degradati	ons, Estimating the D	Degradation Funct	ion, Inverse			
Filtering, Minimum	Mean Square Error (V	Wiener) Filtering, (Constrained			
Least Squares Filte	ring.					
[Text: Chapter 5: Se	ections 5.2, to 5.9]					
	Module-4	4				

 Color Image Processing: Color Fundamentals, Color Models, Pseudocolor Image Processing. Wavelets: Background, Multiresolution Expansions. Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-Miss Transforms, Some Basic Morphological Algorithms. [Text: Chapter 6: Sections 6.1 to 6.3, Chapter 7: Sections 7.1 and 7.2, Chapter 9: Sections 9.1 to 9.5] 	L1, L2, L3
Module-5	
Segmentation : Point, Line, and Edge Detection, Thresholding, Region- Based Segmentation, Segmentation Using Morphological Watersheds. Representation and Description: Representation, Boundary descriptors. [Text: Chapter 10: Sections 10.2, to 10.5 and Chapter 11: Sections 11.1 and 11.2]	L1, L2, L3
Course Outcomes: At the end of the course students should be able to:	
 Understand image formation and the role human visual system plays in perception of gray and color image data. Apply image processing techniques in both the spatial and frequency (Fourier) domains 	
 Design image analysis techniques in the form of image segmentation and to evaluate the Methodologies for segmentation. Conduct independent study and analysis of Image Enhancement tech 	niques.
Question paper pattern:	-
• The question paper will have ten questions.	
 Each tull question consists of 16 marks. There will be 2 full questions (with a maximum of Three sub questions) each module. 	from
• Each full question will have sub questions covering all the topics under module. The students will have to answer 5 full questions, selecting or question from each module.	a ne full
Digital Image Processing - Rafel C Gonzalez and Richard E. Woods, PH 3rd Edition 2010.	I
Reference Books:	
 Digital Image Processing- S.Jayaraman, S.Esakkirajan, T.Veerakumar Tata McGraw Hill 2014. Fundamentals of Digital Image Processing A. K. Jain, Pearson 2004. 	,
2. Fundamentals of Digital image Processing-A. K. Jam, Pearson 2004.	

POWER ELECTRONICS

B.E., VII Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) scheme]

Course Code	15EC73	IA Marks	20
Number of Lecture	04	Exam Marks	80
Hours/Week			
Total Number of	50 (10 Hours / Module)	Exam Hours	03
Lecture Hours			
	CREDITS - 04		

Course Objectives: This course will enable students to:

- Understand the construction and working of various power devices.
- Study and analysis of thyristor circuits with different triggering conditions.
- Learn the applications of power devices in controlled rectifiers, converters and inverters.
- Study of power electronics circuits under various load conditions.

Module-1

Introduction - Applications of Power Electronics, Power Semiconductor Devices, Control Characteristics of Power Devices, types of Power Electronic Circuits, Peripheral Effects. Power Transistors: Power BJTs: Steady state characteristics. Power MOSFETs: device operation, switching characteristics, IGBTs: device operation, output and transfer characteristics, di/dt and dv/dt limitations. (Text 1) **L1, L2**

Module-2

Thyristors - Introduction, Principle of Operation of SCR, Static Anode-Cathode Characteristics of SCR, Two transisitor model of SCR, Gate Characteristics of SCR, Turn-ON Methods, Turn-OFF Mechanism, Turn-OFF Methods: Natural and Forced Commutation – Class A and Class B types, Gate Trigger Circuit: Resistance Firing Circuit, Resistance capacitance firing circuit, UJT Firing Circuit. (Text 2) **L1, L2, L3**

Module-3

Controlled Rectifiers - Introduction, Principle of Phase-Controlled Converter Operation, Single-Phase Full Converter with RL Load, Single-Phase Dual Converters, Single-Phase Semi Converter with RL load.

AC Voltage Controllers - Introduction, Principles of ON-OFF Control, Principle of Phase Control, Single phase controllers with resistive and inductive loads. (Text 1) **L1, L2,L3**

Module-4

DC-DC Converters - Introduction, principle of step-down operation and it's analysis with RL load, principle of step-up operation, Step-up converter with a resistive load, Performance parameters, Converter classification, Switching mode regulators: Buck regulator, Boost regulator, Buck-Boost Regulators, Chopper circuit design. (Text 1)**L1, L2**

Module-5

Pulse Width Modulated Inverters- Introduction, principle of operation, performance parameters, Single phase bridge inverters, voltage control of single phase inverters,

current source inverters, Variable DC-link inverter, Boost inverter, Inverter circuit design.

Static Switches: Introduction, Single phase AC switches, DC Switches, Solid state relays, Microelectronic relays. (Text 1) **L1, L2**

Course Outcomes: At the end of the course students should be able to:

• Describe the characteristics of different power devices and identify the various applications associated with it.

- Illustrate the working of power circuit as DC-DC converter.
- Illustrate the operation of inverter circuit and static switches.
- Determine the output response of a thyristor circuit with various triggering options.
- Determine the response of controlled rectifier with resistive and inductive loads.

Evaluation of Internal Assessment Marks:

It is suggested that at least 4 experiments of Power Electronics to be conducted by the students. This activity can be considered for the evaluation of 05 marks out of 20 Internal Assessment (IA) Marks, reserved for the other activities.

Text Books:

1. Mohammad H Rashid, Power Electronics, Circuits, Devices and Applications,

3rd/4th Edition, Pearson Education Inc, 2014, ISBN: 978-93-325-1844-5.

2. M.D Singh and K B Khanchandani, Power Electronics, 2nd Edition, Tata Mc-Graw Hill, 2009, ISBN: 0070583897

Reference Books:

1. L. Umanand, Power Electronics, Essentials and Applications, John Wiley India Pvt. Ltd, 2009.

2. Dr. P. S. Bimbhra, "Power Electronics", Khanna Publishers, Delhi, 2012.

3. P.C. Sen, "Modern Power Electronics", S Chand & Co New Delhi, 2005.

4. Earl Gose, Richard Johnsonbaugh, Steve Jost, Pattern Recognition and Image Analysis, ePub eBook.

MULTIMEDIA COMMUNICATION

B.E., VII Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based credit System (CBCS) Scheme

Subject Code	15EC741	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (08 Hours /	Exam Hours	03
Lecture Hours	Module)		
	CREDIT	<u>S</u> – 03	

Course objectives: This course will enable students to:

- Gain fundamental knowledge in understanding the basics of different multimedia networks and applications.
- Understand digitization principle techniques required to analyze different media types.
- Analyze compression techniques required to compress text and image and gain knowledge of DMS.
- Analyze compression techniques required to compress audio and video.
- Gain fundamental knowledge about multimedia communication across different networks.

Module-1	RBT Level
Multimedia Communications : Introduction, Multimedia information representation, multimedia networks, multimedia applications, Application	L1,L2
and networking terminology. (Chap 1 of Text 1)	
Module-2	
Information Representation : Introduction, Digitization principles, Text, Images, Audio and Video (Chap 2 of Text 1)	L1, L2
Module-3	
Text and image compression: Introduction, Compression principles, text compression, image Compression. (Chap 3 of Text 1)	L1,L2,L3
Distributed multimedia systems: Introduction, main Features of a DMS, Resource management of DMS, Networking, Multimedia operating systems (Chap. 4 - Sections 4.1 to 4.5 of Text 2).	
Module-4	
Audio and video compression: Introduction, Audio compression, video compression, video compression principles, video compression. (Chap. 4 of Text 1).	L1,L2,L3
Module-5	
 Multimedia Transport across ATM Networks (Chap. 6 - Sections 6.1, 6.2, 6.3 of Text 2). Course Outcomes: After studying this course, students will be able to: Understand basics of different multimedia networks and applications. Understand different compression techniques to compress audio and vieworks in the compression techniques to compress audio and vieworks. 	ideo.
 Analyse different media types to represent them in digital form. Compress different types of text and images using different compression techniques and analyse DMS. 	
Question paper pattern:	
 The question paper will have ten questions. Each full question consists of 16 marks. There will be 2 full questions (with a maximum of Three sub questions) each module. Each full question will have sub questions covering all the topics under The students will have to answer 5 full questions, selecting one full que from each module. 	from a module. estion
 Text Books: 1. Fred Halsall, "Multimedia Communications", Pearson education, 2001 - 9788131709948. 2. K. R. Rao, Zoran S. Bojkovic, Dragorad A. Milovanovic, "Multimedia Communication Systems", Pearson education, 2004. ISBN -9788120321 	1 ISBN 458

Reference Book:

Raifsteinmetz, Klara Nahrstedt, "Multimedia: Computing, Communications and Applications", Pearson education, 2002. ISBN -9788177584417

BIOMEDICAL SIGNAL PROCESSING

B.E., VII Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC742	IA Marks	20			
Number of Lecture	03	Exam Marks	80			
Hours/Week						
Total Number of	40 (8 Hours / Module)	Exam Hours	03			
Lecture Hours						
	CREDII	<u>S</u> – 03				
Course Objectives: '	The objectives of this co	ourse are to:				
 Describe the orig signals such as I Introduce studen biological signals 	 Describe the origin, properties and suitable models of important biological signals such as ECG and EEG. Introduce students to basic signal processing techniques in analysing 					
 Develop the stud of biomedical sig 	ents mathematical and nal processing.	computational s	kills relevant to	the field		
Develop a thorou compression algo	gh understanding on ba	asics of ECG sig	nal			
Increase the study phenomena and biomedical engin	 Increase the student's awareness of the complexity of various biological phenomena and cultivate an understanding of the promises, challenges of the biomedical engineering. 					
	Module-1			RBT Level		
Introduction to Bid Examples of Biomed analysis. Electrocardiograph signal characteristic Signal Conversion requirements for bid	medical Signals: The filical Signals, Objectives y: Basic electrocardiogram :Simple signal conver- medical signals, Signal	nature of Biomed and difficulties raphy, ECG lead rsion systems, conversion circu	lical Signals, in Biomedical systems, ECG Conversion aits (Text-1)	L1, L2		
	Module-2					
Signal Averaging: If filter, a typical averaging.	Basics of signal averaging ager, software for signal	ng, signal averagi averaging, limita	ng as a digital ations of signal	L1, L2, L3		
Adaptive Noise Ca Hzadaptive cancellin	ancelling: Principal no	oise canceller m odel, other applic	odel, 60- ations of			
adaptive filtering (Te	ext-1)					
	Module-3					
Data Compression algorithm, Fan algor Fourier transform, C Frequency domain a	Techniques: Turning rithm, Huffman coding, Correlation, Convolution analysis of the ECG (Tex	g point algorithm data reduction a n, Power spectrum rt-1)	m, AZTEC llgorithms The m estimation,	L1, L2, L3		

Module-4		
Cardiological signal processing: Basic Electrocardiography, ECG data acquisition, ECG lead system, ECG signal characteristics (parameters and their estimation), Analog filters, ECG amplifier, and QRS detector, Power spectrum of the ECG, Bandpass filtering techniques, Differentiation techniques, Template matching techniques, A QRS detection algorithm, Realtime ECG processing algorithm, ECG interpretation, ST segment analyzer, Portable arrhythmia monitor. (Text -2)	L1, L3	L2,
Module-5		
Neurological signal processing: The brain and its potentials, The electrophysiological origin of brain waves, The EEG signal and its characteristics (EEG rhythms, waves, and transients), Correlation.	L1, L3	L2,
Analysis of EEG channels: Detection of EEG rhythms, Template matching for EEG, spike and wave detection (Text-2).		
Course outcomes: At the end of the course, students will be able to:		
 Possess the basic mathematical, scientific and computational skills n to analyse ECG and EEG signals. Apply classical and modern filtering and compression techniques for and EEG signals. 	iecessa ECG	ary
 Develop a thorough understanding on basics of ECG and EEG feature ex 	xtractio	on.
Ouestion paper pattern:		
 The question paper will have ten questions. Each full question consists of 16 marks. There will be 2 full questions (with a maximum of Three sub questions) each module. 	from	
 Each full question will have sub questions covering all the topics under module. The students will have to answer 5 full questions, selecting o 	[.] a ne full	
question from each module.		
Text Books:		
 Biomedical Digital Signal Processing- Willis J. Tompkins, PHI 2001. Biomedical Signal Processing Principles and Techniques- D C Reddy 	у,	
McGraw-Hill publications 2005		
Reference Book:		
Biomedical Signal Analysis-Rangaraj M. Rangayyan, John Wiley & Sor	ns 200	2

REAL TIME SYSTEMS

B.E., VII Semester, Electronics & Communication Engineering

/Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC743	IA Marks	20	
Number of Lecture	03	Exam marks	80	
Hours/Week				
Total Number of	40 (08 Hours per Module)	Exam Hours	03	
Lecture Hours				
Credits – 03				

Course Objectives: This Course will enable students to:

- Discuss the historical background of Real-time systems and its classifications.
- Describe the concepts of computer control and hardware components for Real-Time Application.
- Discuss the languages to develop software for Real-Time Applications.
- Explain the concepts of operating system and RTS development methodologies.

Modules	RBT
	Level
Module-1	
Introduction to Real-Time Systems: Historical background, Elements of a Computer Control System, RTS- Definition, Classification of Real-time Systems, Time Constraints, Classification of Programs.	L1. L2
Concepts of Computer Control: Introduction, Sequence Control, Loop Control, Supervisory Control, Centralized Computer Control, Hierarchical Systems. (Text Book: 1.1 to 1.6 and 2.1 to 2.6)	
Module-2	
Computer Hardware Requirements for Real-Time Applications: Introduction, General Purpose Computer, Single Chip Microcomputers and Microcontrollers, Specialized Processors, Process-Related Interfaces, Data Transfer Techniques, Communications, Standard Interface.(Text Book: 3.1 to	L1, L2
3.8)	
Module-3	
Languages for Real-Time Applications: Introduction, Syntax Layout and Readability, Declaration and Initialization of Variables and Constants, Modularity and Variables, Compilation of Modular Programs, Data types, Control Structures, Exception Handling, Low-level facilities, Co-routines, Interrupts and Device Handling, Concurrency, Real-Time Support, Overview of Real-Time Languages. (Text Book: 5.1 to 5.14)	L1, L2, L3
Module-4	
Operating Systems: Introduction, Real-Time Multi-Tasking OS, Scheduling Strategies, Priority Structures, Task Management, Scheduler and Real-Time Clock Interrupt Handler, Memory Management, Code Sharing, Resource Control, Task Co-Operation and Communication, Mutual Exclusion.(Text Book: 6.1 to 6.11)	L1, L2

Module-5	
Design of RTS – General Introduction: Introduction, Specification Document, Preliminary Design, Single-Program Approach, Foreground/Background System.	L1, L2, L3
Ward and Mellor Method, Hately and Pirbhai Method. (Text Book: 7.1 to 7.5 and 8.1, 8.2, 8.4,8.5)	
Course Outcomes: At the end of the course, students should be able to:	
 Understand the fundamentals of Real time systems and its classification Understand the concepts of computer control, operating system and the suitable computer hardware requirements for real-time applications. Develop the software languages to meet Real time applications. Apply suitable methodologies to design and develop Real-Time Systems. 	IS.
Question Paper Pattern:	
 The question paper will have ten questions. Each full Question consisting of 16 marks There will be 2 full questions (with a maximum of Three sub questions) f each module. 	rom
• Each full question will have sub questions covering all the topics under a module	a
 The students will have to answer 5 full questions, selecting one full ques from each module. 	tion
Text Book:	
Real-Time Computer Control, by Stuart Bennet, 2nd Edn. Pearson Education	. 2008.
 Reference Books: 1. C.M. Krishna, Kang G. Shin, "Real –Time Systems", McGraw –Hill International Editions, 1997. 2. Real-Time Systems Design and Analysis, Phillip. A. Laplante, second edition, PHI, 2005. 2. Embedded Systems Desi Kengel Teta McGraw Hill India third edition (Compared Web Processing) 	2005
3. Embedded Systems, kaj kamal, lata McGraw Hill, India, third edition, 2	2005.

Cryptography

B.E., VII Semester, Electronics & Communication Engineering

[As per Choice Based Credit System (CBCS) scheme]				
Subject Code	15EC744	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (08 Hours /	Exam Hours	03	
Lecture Hours	Module)			
CREDITS – 03				

[As per Choice Based Credit System (CBCS) scheme

Course Objectives: This Course will enable students to:

- Enable students to understand the basics of symmetric key and public key cryptography.
- Equip students with some basic mathematical concepts and pseudorandom number generators required for cryptography.
- Enable students to authenticate and protect the encrypted data.
- Enrich knowledge about Email, IP and Web security.

Modules	
Module-1	RBT Level
Basic Concepts of Number Theory and Finite Fields: Divisibility and the divisibility algorithm, Euclidean algorithm, Modular arithmetic, Groups, Rings and Fields, Finite fields of the form GF(p), Polynomial	L1, L2
arithmetic, Finite fields of the form GF(2 ⁿ)(Text 1: Chapter 3)	
Module-2	
Classical Encryption Techniques: Symmetric cipher model, Substitution techniques, Transposition techniques, Steganography (Text 1: Chapter 1) SYMMETRIC CIPHERS: Traditional Block Cipher structure, Data Encryption Standard (DES) (Text 1: Chapter 2: Section1, 2)	L1, L2
Module-3	
SYMMETRIC CIPHERS: The AES Cipher(Text1: Chapter 4: Section2,3,4)	L1, L2, L3
Pseudo-Random-Sequence Generators and Stream Ciphers: Linear Congruential Generators, Linear Feedback Shift Registers, Design and analysis of stream ciphers, Stream ciphers using LFSRs (Text 2: Chapter 16: Section 1, 2, 3, 4)	
Module-4	
More number theory : Prime Numbers, Fermat's and Euler's theorem, Primality testing, Chinese Remainder theorem, discrete logarithm. (Text 1: Chapter 7)	L1, L2, L3
Principles of Public-Key Cryptosystems: The RSA algorithm, Diffie -	
Hellman Key Exchange, Elliptic Curve Arithmetic, Elliptic Curve	
Cryptography (Text 1: Chapter 8, Chapter 9: Section 1, 3, 4)	
Module-5	
One-Way Hash Functions: Background, Snefru, N-Hash, MD4, MD5, Secure Hash Algorithm [SHA],One way hash functions using symmetric block algorithms, Using public key algorithms, Choosing a one-way hash functions, Message Authentication Codes. Digital Signature Algorithm, Discrete Logarithm Signature Scheme (Text 2: Chapter 18: Section 18.1 to	L1, L2, L3

Cour	se Outcomes: After studying this course, students will be able to:
	 Use basic cryptographic algorithms to encrypt the data.
	Generate some pseudorandom numbers required for cryptographic applications.
	Provide authentication and protection for encrypted data.
Ques	stion paper pattern:
•	The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions. There will be 2 full questions from each module covering all the topics of the module The students will have to answer 5 full questions, selecting one full question from each module.
Text	Books:
1.	William Stallings , "Cryptography and Network Security Principles and Practice", Pearson Education Inc., 6 th Edition, 2014, ISBN: 978-93-325-1877-3
2.	Bruce Schneier, "Applied Cryptography Protocols, Algorithms, and Source
	and in C" Wiley Dublications and Edition JSDN: 0071 51 249 Y

- Cryptography and Network Security, Behrouz A. Forouzan, TMH, 2007.
 Cryptography and Network Security, Atul Kahate, TMH, 2003.

CAD for VLSI

B.E., VII Semester, Electronics & Communication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC745	IA Marks	20	
Number of Lecture	03	Exam	80	
Hours/Week		marks		
Total Number of	40	Exam	03	
Lecture Hours	(8 Hours per Module)	Hours		
	CREDITS – 03			
Course Objective	s: This course will enable s	tudents to:		
Understand	various stages of Physical d	esign of VLS	SI circuits	3
Know about :	mapping a design problem	to a realizat	ole algorit	hm
Become awar	re of graph theoretic, heuris	stic and gen	etic algor	ithms
Compare per	formance of different algori	thms		
	Modules			RBT
				Level
	Module 1			
Data Structures and Basic Algorithms:				L1, L2
Basic terminology, Complexity issues and NP-Hardness.				
Examples - Expon	Examples - Exponential, heuristic, approximation and special			
cases. Basic Algorithms. Graph Algorithms for Search, spanning				
tree, shortest path	h, min-cut and max-cut,	Steiner tre	e.	
Computational Geo	ometry Algorithms: Line sw	eep and exte	ended	
line sweep method	s.			
Module 2				
Basic Data Struct	ures . Atomic operations fo	r layout edi	tors,	L1, L2
Linked list of blo	cks, Bin-based method, N	Veighbor po	inters,	
corner-stitching, Multi-layer operations, Limitations of existing				
data structures. Layout specification languages.				
Graph algorithms for physical design: Classes of graphs in				
physical design, Relationship between graph classes, Graph				
problems in physical design, Algorithms for Interval graphs,				
permutation graphs and circle graphs.				
Module 3				

partitioning problems, Classification of Partitioning Algorithms. L2,L3 Group migration algorithms: Kernighan-Lin algorithm, Fiduccia-Mattheyses Algorithm, Simulated Annealing, Simulated Evolution. Flour Planning: Problem formulation, Constraint based floor planning, Rectangular dualization, Simulated evolution algorithms. Floor Planning: Problem formulation, Classification of pin assignment: Problem formulation. Classification of placement algorithms. Simulated evolution, force directed placement: Simulated annealing, simulated evolution, force directed placement. Partitioning based algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement. L1,L2,L3 Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. L1,L2,L3 Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. L1,L2,L3 General river routing problem, Single row routing problems. L1,L2,L3 Woodule 5 Course Outcomes: After studying this course, students will be able to: Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms Know various approaches to write generalized algorithms Know various approaches to write generalized algorithms Know various approaches to write gener	Partitioning: Problem formulation, Design style specific	L1,		
Group migration algorithms: Kernighan-Lin algorithm, Fiduccia- Mattheyses Algorithm, Simulated Annealing, Simulated Evolution. Floor Planning: Problem formulation, Constraint based floor planning, Rectangular dualization, Simulated evolution algorithms. <u>Module 4</u> Pin Assignment: Problem formulation. Classification of pin assignment problems, General pin assignment problem. Placement: Problem formulation, Classification of placement algorithms. Simulation based placement: Simulated annealing, simulated evolution, force directed placement. Partitioning based algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement. Module 5 Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: • Appreciate the problems related to physical design of VLSI • Use genralized graph theoretic approach to VLSI problems • Design Simulated Annealing and Evolutionary algorithms • Know various approaches to write generalized algorithms • Know various approaches to write generalized algorithms • Know various approaches to write generalized algorithms • Know various approaches to 16 marks with a maximum of Three sub questions.	partitioning problems, Classification of Partitioning Algorithms.	L2,L3		
Mattheyses Algorithm, Simulated Annealing, Simulated Evolution. Floor Planning: Problem formulation, Constraint based floor planning, Rectangular dualization, Simulated evolution algorithms. Module 4 Pin Assignment: Problem formulation. Classification of pin assignment problems, General pin assignment problem. Placement: Problem formulation, Classification of placement algorithms. Simulation based placement: Simulated annealing, simulated evolution, force directed placement. Partitioning based algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement. Module 5 Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: • Appreciate the problems related to physical design of VLSI • Use genralized graph theoretic approach to VLSI problems • Design Simulated Annealing and Evolutionary algorithms • Know various approaches to write generalized algorithms • Know various approaches to write generalized algorithms • Know various approaches to write generalized algorithms • The question paper will have 10 full questions carrying equal marks. • Each full question consists of 16 marks with a maximum of Three sub questions.	Group migration algorithms: Kernighan-Lin algorithm, Fiduccia-			
Floor Planning: Problem formulation, Constraint based floor planning, Rectangular dualization, Simulated evolution algorithms. Image: Network Simulation algorithms. Module 4 Pin Assignment: Problem formulation. Classification of pin assignment problems, General pin assignment problem. L1,L2,L3 Placement: Problem formulation, Classification of placement algorithms. Simulated evolution, force directed placement. Simulated annealing, simulated evolution, force directed placement. Partitioning based algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement. L1,L2,L3 Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. L1,L2,L3 Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. L1,L2,L3 Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: • Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems • Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms • The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions.	Mattheyses Algorithm, Simulated Annealing, Simulated Evolution.			
planning, Rectangular dualization, Simulated evolution algorithms. Module 4 Pin Assignment: Problem formulation. Classification of pin assignment problems, General pin assignment problem. L1,L2,L3 Placement: Problem formulation, Classification of placement algorithms. Simulation based placement: Simulated annealing, simulated evolution, force directed placement. Partitioning based algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement. L1,L2,L3 Blobal Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. L1,L2,L3 Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. L1,L2,L3 Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: • Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems • Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms • The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions.	Floor Planning: Problem formulation, Constraint based floor			
algorithms. Module 4 Pin Assignment: Problem formulation. Classification of pin assignment problems, General pin assignment problem. L1,L2,L3 Placement: Problem formulation, Classification of placement algorithms. Simulation based placement: Simulated annealing, simulated evolution, force directed placement. Partitioning based algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement. L1,L2,L3 Bio Module 5 Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. L1,L2,L3 Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. L1,L2,L3 Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: • Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems • Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms • The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions.	planning, Rectangular dualization, Simulated evolution			
Module 4 Pin Assignment: Problem formulation. Classification of pin assignment problems, General pin assignment problem. L1,L2,L3 Placement: Problem formulation, Classification of placement algorithms. Simulation based placement: Simulated annealing, simulated evolution, force directed placement. Partitioning based algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement. L1,L2,L3 Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. L1,L2,L3 Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. L1,L2,L3 Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms Know various approaches to write generalized algorithms Each full question consists of 16 marks with a maximum of Three sub questions. 	algorithms.			
Pin Assignment: Problem formulation. Classification of pin assignment problems, General pin assignment problem. L1,L2,L3 Placement: Problem formulation, Classification of placement algorithms. Simulation based placement: Simulated annealing, simulated evolution, force directed placement. Partitioning based algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement. L1,L2,L3 Module 5 Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. L1,L2,L3 Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. L1,L2,L3 Guore algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: • Appreciate the problems related to physical design of VLSI • Use genralized graph theoretic approach to VLSI problems • Design Simulated Annealing and Evolutionary algorithms • Know various approaches to write generalized algorithms Question paper pattern: • The question paper will have 10 full questions carrying equal marks. • Each full question consists of 16 marks with a maximum of Three sub questions.	Module 4			
assignment problems, General pin assignment problem. Placement: Problem formulation, Classification of placement algorithms. Simulation based placement: Simulated annealing, simulated evolution, force directed placement. Partitioning based algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement. Module 5 Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms Know various approaches to full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions.	Pin Assignment : Problem formulation. Classification of pin	L1,L2,L3		
Placement: Problem formulation, Classification of placement algorithms. Simulation based placement: Simulated annealing, simulated evolution, force directed placement. Partitioning based algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement. Module 5 Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. L1,L2,L3 Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. L1,L2,L3 General river routing problem, Single row routing problem. Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Eduse to: • Appreciate the problems related to physical design of VLSI • Use genralized graph theoretic approach to VLSI problems • Design Simulated Annealing and Evolutionary algorithms • Know various approaches to write generalized algorithms • Know various approaches to write generalized algorithms • The question paper will have 10 full questions carrying equal marks. • Each full question consists of 16 marks with a maximum of Three sub questions.	assignment problems, General pin assignment problem.			
algorithms. Simulation based placement: Simulated annealing, simulated evolution, force directed placement. Partitioning based algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement. Module 5 Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: • Appreciate the problems related to physical design of VLSI • Use genralized graph theoretic approach to VLSI problems • Design Simulated Annealing and Evolutionary algorithms • Know various approaches to write generalized algorithms Question paper pattern: • The question paper will have 10 full questions carrying equal marks. • Each full question consists of 16 marks with a maximum of Three sub questions.	Placement: Problem formulation, Classification of placement			
simulated evolution, force directed placement. Partitioning based algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement. Module 5 Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms Know various approaches to write generalized algorithms Know various approaches to routing equal marks. Each full question consists of 16 marks with a maximum of Three sub questions.	algorithms. Simulation based placement: Simulated annealing,			
algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement. Module 5 Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: • Appreciate the problems related to physical design of VLSI • Use genralized graph theoretic approach to VLSI problems • Design Simulated Annealing and Evolutionary algorithms • Know various approaches to write generalized algorithms • Know various approaches to write generalized algorithms • The question paper will have 10 full questions carrying equal marks. • Each full question consists of 16 marks with a maximum of Three sub questions.	simulated evolution, force directed placement. Partitioning based			
Module 5 Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. L1,L2,L3 Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: • Appreciate the problems related to physical design of VLSI • Use genralized graph theoretic approach to VLSI problems • Design Simulated Annealing and Evolutionary algorithms • Know various approaches to write generalized algorithms • Know various approaches to write generalized algorithms • The question paper will have 10 full questions carrying equal marks. • Each full question consists of 16 marks with a maximum of Three sub questions.	algorithms: Breur's Algorithm, Terminal propagation algorithm,			
Module 5 Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. L1,L2,L3 Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms We question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions.	Other algorithms for placement.			
Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms.L1,L2,L3Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem.L1,L2,L3Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2.Course Outcomes: After studying this course, students will be able to: Appreciate the problems related to physical design of VLSIUse genralized graph theoretic approach to VLSI problemsDesign Simulated Annealing and Evolutionary algorithmsKnow various approaches to write generalized algorithms Question paper pattern:The question paper will have 10 full questions carrying equal marks.Each full question consists of 16 marks with a maximum of Three sub questions.	Module 5	1		
routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: • Appreciate the problems related to physical design of VLSI • Use genralized graph theoretic approach to VLSI problems • Design Simulated Annealing and Evolutionary algorithms • Know various approaches to write generalized algorithms Question paper pattern: • The question paper will have 10 full questions carrying equal marks. • Each full question consists of 16 marks with a maximum of Three sub questions.	Global Routing: Problem formulation, Classification of Global	L1,L2,L3		
Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms. Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: • Appreciate the problems related to physical design of VLSI • Use genralized graph theoretic approach to VLSI problems • Design Simulated Annealing and Evolutionary algorithms • Know various approaches to write generalized algorithms Question paper pattern: • The question paper will have 10 full questions carrying equal marks. • Each full question consists of 16 marks with a maximum of Three sub questions.	routing algorithms, Maze routing algorithms: Lee's algorithm,			
 algorithms. Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions. 	Soukup's algorithm and Hadlock's Algorithm, Line probe			
 Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions. 	algorithms.			
 models, channel routing and switch box routing problems. General river routing problem, Single row routing problem. Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions. 	Detailed Routing: Problem formulation, Routing considerations,			
 General river routing problem, Single row routing problem. Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions. 	models, channel routing and switch box routing problems.			
 Two-layer channel routing algorithms: Basic Left Edge Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions. 	General river routing problem, Single row routing problem.			
 Algorithm, Dogleg router, Symbolic router-YACR2. Course Outcomes: After studying this course, students will be able to: Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions. 	Two-layer channel routing algorithms: Basic Left Edge			
 Course Outcomes: After studying this course, students will be able to: Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions. There will be 0 full questions from each mediate covering of the paper will the paper pattern. 	Algorithm, Dogleg router, Symbolic router-YACR2.			
 Appreciate the problems related to physical design of VLSI Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions. There will be 0 full questions from each methods are still the 	Course Outcomes: After studying this course, students will be ab	ole to:		
 Use genralized graph theoretic approach to VLSI problems Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions. There will be 0 full questions from each medule covering off the 	• Appreciate the problems related to physical design of VLS	SI		
 Design Simulated Annealing and Evolutionary algorithms Know various approaches to write generalized algorithms Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions. There will be 0 full questions from each medule covering off the 	• Use genralized graph theoretic approach to VLSI problem	IS		
 Know various approaches to write generalized algorithms Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions. There will be 0 full questions from each medule covering off the 	Design Simulated Annealing and Evolutionary algorithms	8		
 Question paper pattern: The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions. There will be 0 full questions from each medule covering all the 	Know various approaches to write generalized algorithms	5		
 The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions. There will be 0 full questions from each medule covering all the 	Question paper pattern:			
 Each full question consists of 16 marks with a maximum of Three sub questions. There will be 0 full questions from each medule covering all the 	• The question paper will have 10 full questions carrying equa	al marks.		
sub questions.	• Each full question consists of 16 marks with a maximum of Three			
There will be 0 full expections from a sale medials comming a 11 the	sub questions.			
• There will be 2 full questions from each module covering all the topics of the module				
• The students will have to answer 5 full questions, selecting one full question from each module.				

Text Book:

Algorithms for VLSI Physical Design Automation, 3rd Ed, Naveed Sherwani, 1999 Kluwer Academic Publishers, Reprint 2009 Springer (India) Private Ltd. ISBN 978-81-8128-317-7.

DSP Algorithms and Architecture

B.E., VII Semester, Electronics & Communication Engineering /Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC751	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CREDITS	<u>- 03</u>		
Course Objectives:	I his course will enable	e students to:		
 Figure out the knowledge and concepts of digital signal processing techniques. Understand the computational building blocks of DSP processors and its speed issues. Understand the various addressing modes, peripherals, interrupts and pipelining structure of TMS320C54xx processor. Learn how to interface the external devices to TMS320C54xx processor in various modes. 				chniques. d its nd or in
• Understand ba	sic DSP algorithms with	in their implement		
Module-1				RBT Level
 Introduction, A Digital Signal – Processing System, The Sampling Process, Discrete Time Sequences, Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), Linear Time-Invariant Systems, Digital Filters, Decimation and Interpolation. Computational Accuracy in DSP Implementations: Number Formats for Signals and Coefficients in DSP Systems, Dynamic Range and Precision, Sources of Error in DSP Implementation. 				
	Module-2			
Architectures for Programmable Digital Signal – Processing Devices: Introduction, Basic Architectural Features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation Unit, Programmability and Program Execution, Speed Issues, Features for External Interfacing.			L1, L2, L3	
Module-3				
Programmable Digi Introduction, Comm Addressing Modes of Processors, Program Instructions and Pr TMS32OC54XX Pro Processor.	tal Signal Processors: nercial Digital Signal-p f TMS32OC54XX, Memo n Control. Detail Stud rogramming, On – Ch pcessors, Pipeline Ope	processing Devic ory Space of TMS ly of TMS320CS ip Peripherals, eration of TMS	ees, Data 532OC54xx 54X & 54xx Interrupts of 32OC54xx	L1, L2, L3
	Module-4			

Implementation of Basic DSP Algorithms:	111213
Introduction The O – notation FIP Filters IIP Filters Internalation and	
$r_{\rm rel}$ $r_{ $	
Decimation Filters (one example in each case).	
Implementation of FFT Algorithms:	
Introduction An FFT Algorithm for DFT Computation Overflow and	
Scaling Bit - Reversed Index Generation & Implementation on the	
TMS200054	
1M5520C54xx.	
Module-5	
DSP Devices	L1, L2, L3
DSF Devices:	
Simple Memory Interface Devellet I/O Interface Drammand I/O	
Signals. Memory interface, Parallel 1/O interface, Programmed 1/O,	
Interrupts and I/O Direct Memory Access (DMA).	
Interfacing and Applications of DSP Processors:	
Introduction Synchronous Serial Interface A CODEC Interface Circuit	
DSP Based Bio-telemetry Receiver A Speech Processing System An Image	
Dor Dased Dio telemetry Receiver, A Specch Processing System, An Image	
Course Outcomes: At the end of this course, students would be able to	
• Comprehend the knowledge and concepts of digital signal processing	
techniques.	
• Apply the knowledge of DSP computational building blocks to achieve	
speed in DSP architecture or processor.	
• Apply knowledge of various types of addressing modes, interrupts,	
peripherals and pipelining structure of TMS320C54xx processor.	
• Develop basic DSP algorithms using DSP processors.	
• Discuss about synchronous serial interface and multichannel	
buffered serial port (McBSP) of DSP device.	
• Demonstrate the programming of CODEC interfacing.	
Question paper pattern:	
• The question paper will have 10 full questions carrying equal marks.	
• Each full question consists of 16 marks with a maximum of Three sub c	uestions.
• There will be 2 full questions from each module covering all the topic	es of
the module	
• The students will have to answer 5 full questions, selecting one full of	luestion
from each module.	
Text Book:	
"Digital Signal Processing", Avatar Singh and S. Srinivasan, Thomson Lear	ning, 2004.
Reference Books:	
1. "Digital Signal Processing: A practical approach", Ifeachor E. C., Jervis	В.
W Pearson-Education, PHI, 2002.	
2. "Digital Signal Processors", B Venkataramani and M Bhaskar, TMH, 2r	nd, 2010
3. "Architectures for Digital Signal Processing", Peter Pirsch John Weily, 2	2008

IoT & WIRELESS SENSOR NETWORKS

B.E., VII Semester, Electronics & Communication Engineering /Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC752	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CREDITS	- 03		
Course Objectives:	This course will enable	students to:		
Understand va	rious sources of IoT & N	M2M communica	tion protocols.	
Describe Cloud	l computing and design	principles of Io7	•	
Become aware	of MOTT clients. MOTT	server and its p	rogramming.	
 Understand th 	e architecture and desig	on principles of V	VSNs	
• Understand the arcmitecture and design principles of works.				
• Enrich the knowledge about MAC and fouring protocols				
	Module-1			RBT Level
Overview of Inter	net of Things: IoT C	onceptual Fram	ework, IoT	L1, L2
Architectural View,	Technology Behind Ic	oT, Sources of I	oT,M2M	
communication, Examples of IoT. Modified OSI Model for the IoT/M2M				
Systems, data enrichment, data consolidation and device management at				
IoT/M2M Gateway, web communication protocols used by connected				
IoT/M2M devices, Message communication protocols (CoAP-SMS, CoAP-				
MQ, MQTT, XMPP) for	or IoT/M2M devices.			
	-			

Module-2	
Architecture and Design Principles for IoT: Internet connectivity,	L1, L2
Internet-based communication, IPv4, IPv6, 6LoWPAN protocol, IP Addressing	
in the IoT, Application layer protocols: HTTP, HTTPS, FTP, TELNET and	
ports.	

Data Collection, Storage and Computing using a Cloud Platform: Introduction, Cloud computing paradigm for data collection, storage and computing, Cloud service models, IoT Cloud- based data collection, storage and computing services using Nimbits.

Module-3

 Prototyping and Designing Software for IoT Applications: Introduction, Prototyping Embedded device software, Programming Embedded Device Arduino Platform using IDE, Reading data from sensors and devices, Devices, Gateways, Internet and Web/Cloud services software development. Programming MQTT clients and MQTT server. Introduction to IoT privacy and security. Vulnerabilities, security requirements and threat analysis, IoT Security Tomography and layered attacker model. 	L1, L2, L3
Module-4	
Overview of Wireless Sensor Networks:	L1 L2 L3
Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks.	
Architectures : Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture-Sensor Network Scenarios, Optimization Goals and Figures of Merit, Design principles for WSNs, Service interfaces of WSNs Gateway Concepts.	
Module-5	
Communication Protocols: Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts - S-MAC , The Mediation Device Protocol, Wakeup Radio Concepts, Contention based protocols(CSMA,PAMAS), Schedule based protocols (LEACH, SMACS, TRAMA) Address and Name Management in WSNs, Assignment of MAC Addresses, Routing Protocols- Energy-Efficient Routing, Geographic Routing, Hierarchical networks by clustering.	L1, L2, L3
 Course Outcomes: At the end of the course, students will be able to: Describe the OSI Model for the IoT/M2M Systems. Understand the architecture and design principles for IoT. Learn the programming for IoT Applications. Identify the communication protocols which best suits the WSNs. 	
Question paper pattern:	
• The question paper will have ten questions.	

Text Books:

- 1. Raj Kamal, "Internet of Things-Architecture and design principles", McGraw Hill Education.
- 2. Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005.
- 3. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.

Reference Books:

- 1. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks-Technology, Protocols, And Applications", John Wiley, 2007.
- 2. Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003.

PATTERN RECOGNITION

B.E., VII Semester, Electronics & Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC753	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CREDITS	- 03		
Course Objectives: '	The objectives of this co	ourse are to:		
 Introduce mathematical 	natical tools needed for	Pattern Recogni	ition	
 Impart knowledge 	e about the fundamenta	ls of Pattern Red	cognition.	
 Provide knowledg 	e of recognition, decisio	n making and s	tatistical learning	
problems				
 Introduce parame 	etric and non-parametri	c techniques, su	pervised learning	and
clustering concepts	s of pattern recognition			
	Mod	ules		
	Module	-1		RBT
		-		Level
Introduction:	Importance of pattern	recognition.	Features. Feature	L1. L2
Vectors, and Classif	iers, Supervised, Unsu	pervised, and Se	emi-supervised	,
learning, Introducti	ion to Bayes Decision T	heory, Discrimi	nant Functions	
and Decision Surfaces, Gaussian PDF and Bayesian Classification for				
Normal Distributions.				
Module-2				
Data Transformation and Dimensionality Reduction: Introduction,			L1, L2	
Basis Vectors, The H	Karhunen Loeve (KL) Tra	ansformation, S	ingular Value	
Decomposition, Independent Component Analysis (Introduction only).				
Nonlinear Dimensionality Reduction, Kernel PCA.				
	Module	-3		
Estimation of Uni	known Probability De	ensity Function	ns: Maximum	L1,L2,
Likelihood Parameter Estimation, Maximum a Posteriori Probability			L3	
estimation, Bayesian Interference, Maximum Entropy Estimation, Mixture				
Models, Naive-Bayes Classifier, The Nearest Neighbor Rule.				
	Module	<u>-4</u>		T 1 2
Linear Classifiers:	Introduction, Linear	Discriminant F	unctions and	L1,2
Decision Hyperplanes, The Perceptron Algorithm, Mean Square Error			L3	
Estimate, Stochastic Approximation of LMS Algorithm, Sum of Error				
Estimate.	B.R 4 4	F		ļ
Noulinear Olars' Co		• 5	T1	11010
Lover Dercontron	rs: The AUK Problem, I Pools proposition Alas	mithm Dasia C	erceptron, Inree	L1,2,L3
Chartening Later 1	back propagation Algo			
Clustering, Introduc	cuon to Clustering, Pro	xunity Measures	3.	

Course outcomes: At the end of the course, students will be able to:

- Identify areas where Pattern Recognition and Machine Learning can offer a solution.
- Describe the strength and limitations of some techniques used in computational Machine Learning for classification, regression and density estimation problems
- Describe genetic algorithms, validation methods and sampling techniques
- Describe and model data to solve problems in regression and classification
- Implement learning algorithms for supervised tasks

Question paper pattern:

The question paper will have ten questions.

- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Pattern Recognition: Sergios Theodoridis, Konstantinos Koutroumbas, Elsevier India Pvt. Ltd (Paper Back), 4th edition.

Reference Books:

- 1. The Elements of Statistical Learning: Trevor Hastie, Springer-Verlag New York, LLC (Paper Back), 2009.
- **2. Pattern Classification:** Richard O. Duda, Peter E. Hart, David G. Stork. John Wiley & Sons, 2012.
- **3.** Pattern Recognition and Image Analysis Earl Gose: Richard Johnsonbaugh, Steve Jost, ePub eBook.

ADVANCED COMPUTER ARCHITECTURE

B.E., VII Semester, Electronics & Communication Engineering / Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC754	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CREDITS	- 03		
• Understand th	o vorious porallal comp	utor models and	anditions of r	orolloliom
Fyplain the control of the cont	e various parallel collip	demond driven	machines	aranensin
• Explain the col	ISC superscalar VIIW	and multiproces	machines	200
 Understand th 	e concept of pipelining	and memory hie	rarchy design	0.5
 Explain cache 	coherence protocols		laterily design	
	Module-1			RBT Level
Parallel Computer	Models: The state of c	omputing, Class	ification of	L1, L2
SIMD computers,	Multiprocessors and mu	alticomputer, Mi	altivectors and	
Program and Netwo	rk Properties. Conditi	ons of narallelis	n Data and	
resource Dependent	ces. Hardware and so	ftware parallelis	m. Program	
partitioning and sch	eduling. Grain Size and	l latency.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Module-2			
Program flow mech	anisms: Control flow v	ersus data flow,	Data flow	L1, L2,L3
Architecture, Demar	nd driven mechanisms,	Comparisons of	flow	
mechanisms.				
Measures Darallel I	Processing Applications	Speedup Perfo	menics and	
Scalability Analysis	and Approaches	, speedup reno	mance Laws,	
	Module-3			
Speedup Performar	ice Laws: Amdhal's law	, Gustafson's la	w, Memory	L1,L2,L3
bounded speed up n	nodel, Scalability Analys	sis and Approacl	nes.	
Advanced Processors: Advanced processor technology, Instruction-set				
Architectures, CIS	C Scalar Processors	, RISC Scalar	Processors,	
Superscalar Process	ors, vLiw Architectures	5.		
		• 1.		
Pipelining: Linear p	Design Machaniama fo	near pipeline pro	ocessor,	L1,L2,L3
Dynamic instruction scheduling, Branch Handling techniques, branch				
prediction Arithmet	ic Pipeline Design	andning teeninge	ies, branen	
Memory Hierarchy	v Design: Cache ba	sics & cache	performance.	
reducing miss rate	and miss penalty, mult	ilevel cache hier	archies, main	
memory organization	ns, design of memory hi	ierarchies.	·	
-	-			26

Module-5
Multiprocessor Architectures: Symmetric shared memory architectures, L1, L2, L3 distributed shared memory architectures, models of memory consistency, cache coherence protocols (MSI, MESI, MOESI), scalable cache coherence, overview of directory based approaches, design challenges of directory protocols, memory based directory protocols, cache based directory protocols.
Course Outcomes: At the end of the course, the students will be able to:
• Explain parallel computer models and conditions of parallelism
Differentiate control flow, dataflow, demand driven mechanisms
• Explain the principle of scalable performance
 Discuss advanced processors architectures like CISC, RISC, superscalar and VLIW
• Understand the basics of instruction pipelining and memory technologies
• Explain the issues in multiprocessor architectures
Question paper pattern:
The question paper will have ten questions.
Each full question consists of 16 marks.
• There will be 2 full questions (with a maximum of Three sub questions) from each module.
• Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.
Text Book:
Kai Hwang, "Advanced computer architecture"; TMH.
Reference Books:
 Kai Hwang and Zu, "Scalable Parallel Computers Architecture"; MGH. M.J Flynn, "Computer Architecture, Pipelined and Parallel Processor Design"; Narosa Publishing.
3. D.A.Patterson, J.L.Hennessy, "Computer Architecture :A quantitative approach"; Morgan Kauffmann Feb, 2002.

SATELLITE COMMUNICATION

B.E., VII Semester, Electronics & Communication Engineering

[As per Choice Based Credit System (CBCS)]

Subject Code	15EC755	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (8 Hours / Module)	Exam Hours	03
Lecture Hours			
CREDITS – 03			

Course Objectives: This course will enable students to

• Understand the basic principle of satellite orbits and trajectories.

- Study of electronic systems associated with a satellite and the earth station.
- Understand the various technologies associated with the satellite communication.
- Focus on a communication satellite and the national satellite system.
- Study of satellite applications focusing various domains services such as remote sensing, weather forecasting and navigation.

Module-1	RBT Level
Satellite Orbits and Trajectories: Definition, Basic Principles, Orbital	L1, L2
parameters, Injection velocity and satellite trajectory, Types of Satellite	
orbits, Orbital perturbations, Satellite stabilization, Orbital effects on	
satellite's performance, Eclipses, Look angles: Azimuth angle, Elevation	
angle.	
Madula 0	
Satellite subsystem: Power supply subsystem, Attitude and Orbit control,	L1, L2
Tracking, Telemetry and command subsystem, Payload.	
Forth Station Trace of conthestation Anchitecture Desire considerations	
Larth Station: Types of earth station, Architecture, Design considerations,	
Testing, Earth station Hardware, Satellite tracking.	
Module-3	
Multiple Access Techniques: Introduction, FDMA (No derivation), SCPC	L1, L2,
Systems, MCPC Systems, TDMA, CDMA, SDMA.	L3
Satellite Link Design Fundamentals: Transmission Equation, Satellite	
Link Parameters, Propagation considerations.	
Module-4	
Communication Satellites: Introduction, Related Applications, Frequency	L1, L2
Bands, Payloads, Satellite Vs. Terrestrial Networks, Satellite Telephony,	
Satellite Television, Satellite radio, Regional satellite Systems, National	
Satellite Systems.	
Module-5	

Remote Sensing Satellites: Classification of remote sensing systems,	L1, L2,
orbits, Payloads, Types of images: Image Classification, Interpretation,	L3
Applications.	
Weather Forecasting Satellites: Fundamentals, Images, Orbits, Payloads,	
Applications.	
Navigation Satellites : Development of Satellite Navigation Systems, GPS	
system, Applications.	

- **Course Outcomes:** At the end of the course, the students will be able to:
- Describe the satellite orbits and its trajectories with the definitions of parameters associated with it.
- Describe the electronic hardware systems associated with the satellite subsystem and earth station.
- Describe the various applications of satellite with the focus on national satellite system.
- Compute the satellite link parameters under various propagation conditions with the illustration of multiple access techniques.

Question Paper pattern:

- The Question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be 2 full Questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The Students will have to answer 5 full Questions, selecting one full Question
- from each module.

Text Book:

Anil K. Maini, Varsha Agrawal, Satellite Communications, Wiley India Pvt. Ltd., 2015, ISBN: 978-81-265-2071-8.

Reference Books :

1. Dennis Roddy, Satellite Communications, 4th Edition, McGraw-Hill International edition, 2006

2.Timothy Pratt, Charles Bostian, Jeremy Allnutt, Satellite Communications, 2nd Edition, Wiley India Pvt. Ltd , 2017, ISBN: 978-81-265-0833-4

ADVANCED COMMUNICATION LAB

B.E., VII Semester, Electronics & Communication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15ECL76	IA Marks	20
Number of Lecture	01Hr Tutorial (Instructions)	Exam Marks	80
Hours/Week	+ 02 Hours Laboratory = 03		
RBT Levels	L1, L2, L3	Exam Hours	03
	CREDITS – 02		

Course objectives: This course will enable students to:

- Design and demonstrate the digital modulation techniques
- Demonstrate and measure the wave propagation in microstrip antennas
- Characteristics of microstrip devices and measurement of its parameters.
- Model an optical communication system and study its characteristics.
- Simulate the digital communication concepts and compute and display various parameters along with plots/figures.

Laboratory Experiments

PART-A: Following Experiments No. 1 to 4 has to be performed using discrete components.

- 1. Time Division Multiplexing and Demultiplexing of two bandlimited signals.
- 2. ASK generation and detection
- 3. FSK generation and detection
- 4. PSK generation and detection
- 5. Measurement of frequency, guide wavelength, power, VSWR and attenuation in microwave test bench.
- 6. Measurement of directivity and gain of microstrip dipole and Yagi antennas.
- 7. Determination of
 - a. Coupling and isolation characteristics of microstrip directional coupler.
 - b. Resonance characteristics of microstrip ring resonator and computation of dielectric constant of the substrate.
 - c. Power division and isolation of microstrip power divider.
- 8. Measurement of propagation loss, bending loss and numerical aperture of an optical fiber.

PART-B: Simulation Experiments using SCILAB/MATLAB/Simulink or LabView

- 1. Simulate NRZ, RZ, half-sinusoid and raised cosine pulses and generate eye diagram for binary polar signaling.
- 2. Simulate the Pulse code modulation and demodulation system and display the waveforms.
- 3. Simulate the QPSK transmitter and receiver. Plot the signals and its constellation diagram.
- **4.** Test the performance of a binary differential phase shift keying system by simulating the non-coherent detection of binary DPSK.

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Determine the characteristics and response of microwave devices and optical waveguide.
- Determine the characteristics of microstrip antennas and devices and compute the parameters associated with it.
- Simulate the digital modulation schemes with the display of waveforms and computation of performance parameters.
- Design and test the digital modulation circuits/systems and display the waveforms.
- All laboratory experiments are to be considered for practical examination.
- For examination one question from **PART-A** and one question from **PART-B or** only one question from **PART-B** experiments based on the complexity, to be set.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

VLSI LAB

B.E., VII Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15ECL77	IA Marks	20
Number of Lecture	01Hr Tutorial (Instructions)	Exam Marks	80
Hours/Week	+ 02 Hours Laboratory = 03		
RBT Levels	L1, L2, L3	Exam Hours	03
	CREDITS – 02		
 Course objectives: This course will enable students to: Explore the CAD tool and understand the flow of the Full Custom IC design cycle. Learn DRC, LVS and Parasitic Extraction of the various designs. Design and simulate the various basic CMOS analog circuits and use them in higher circuits like data converters using design abstraction concepts. Design and simulate the various basic CMOS digital circuits and use them in higher circuits like adders and shift registers using design abstraction concepts. 			
D		•	4
Experiments can b	e conducted using any of the follow	ving or equivalen	it .
design tools: Cadei	ice/Synopsis/Mentor Graphics/Mi	crowind	
	Laboratory Experiments		
	PART - A ASIC-DIGITAL DESIGN		
verification, ob library with giv simulation. i. An inver- ii. A Buffer iii. Transmis iv. Basic/ur v. Flip flop vi. Serial & vii. 4-bit cou viii. Successi	oserve the waveform and synthesize to oserve the waveform and synthesize to zen constraints*. Do the initial timing ter ssion Gate niversal gates -RS, D, JK, MS, T Parallel adder nter [Synchronous and Asynchronou ve approximation register [SAR]	s counter]	nological gate level

PART - B		
ANALOG DESIGN		
 Design an Inverter with given specifications**, completing the design flow mentioned below: a. Draw the schematic and verify the following		
e. Verify & Optimize for Time, Power and Area to the given constraint*		
 2. Design the (i) Common source and Common Drain amplifier and (ii) A Single Stage differential amplifier, with given specifications**, completing the design flow mentioned below: a. Draw the schematic and verify the following i) DC Analysis ii) AC Analysis iii) Transient Analysis b. Draw the Layout and verify the DRC, ERC c. Check for LVS d. Extract RC and back annotate the same and verify the Design. 		
 3. Design an op-amp with given specification** using given differential amplifier Common source and Common Drain amplifier in library*** and completing the design flow mentioned below: a. Draw the schematic and verify the following DC Analysis AC Analysis AC Analysis Transient Analysis b. Draw the Layout and verify the DRC, ERC c. Check for LVS d. Extract RC and back annotate the same and verify the Design. 		
 4. Design a 4 bit R-2R based DAC for the given specification and completing the design flow mentioned using given op-amp in the library***. a. Draw the schematic and verify the following i) DC Analysis ii) AC Analysis iii) Transient Analysis b. Draw the Layout and verify the DRC, ERC 		

5. For the SAR based ADC mentioned in the figure below draw the mixed signal schematic and verify the functionality by completing ASIC Design FLOW. [Specifications to GDS-II]

- * An appropriate constraint should be given.
- ** Appropriate specification should be given.
- *** Applicable Library should be added & information should be given to the Designer.

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Write test bench to simulate various digital circuits.
- Interpret concepts of DC Analysis, AC Analysis and Transient Analysis in analog circuits.
- Design and simulate basic CMOS circuits like inverter, common source amplifier and differential amplifiers.
- Use basic amplifiers and further design higher level circuits like operational amplifier and analog/digital converters to meet desired parameters.
- Use transistors to design gates and further using gates realize shift registers and adders to meet desired parameters.

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- For examination, one question from **PART-A** and one question from **PART-B** to be set.
- Students are allowed to pick one experiment from the lot.
- Change of experiment is allowed only once and Marks allotted to the procedure part to be made zero.

B.E E&C EIGTH SEMESTER SYLLABUS Wireless Cellular and LTE 4G Broadband

B.E., VIII Semester, Electronics & Communication Engineering/ **Telecommunication Engineering** [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC81	IA Marks	20
Number of	04	Exam Marks	80
Lecture			
Total Number	50 (10 Hours / Module)	Exam Hours	03
	CREDITS	- 04	
 Course Objecti Understand Explain the LTE, based Analyze the and release Analyze the speed and the speed	ves: This course will enable the basics of LTE standard system architecture of LTE on the use of OFDMA and S role of LTE radio interface the Radio Bearer, for trans main factors affecting LTE cansmission bandwidth. Module – 1 or LTE features: OFDM, S annel Dependent Multiuser ques, IP based Flat network ec 1.4- 1.5 of Text). mentals: Cellular concept Fading in BWC, Modeling 1 els, Mitigation of Narrow ba Text).	e students to: lization phases and spec and E-UTRAN, the laye SC-FDMA principles. protocols to set up, reco ferring the EPS bearer. performance including r ingle carrier FDMA, Sing Resource Scheduling, N k Architecture, LTE Netw , Broadband wireless BWC – Empirical and nd and Broadband Fadi	cifications. er of mfigure mobile RBT Level gle L1, L2 Multi vork
Multicarrier M	dulation: OFDM basics. (OFDM in LTE. Timing an	d L1. L2
Frequency Synchronization, PAR, SC-FDE (Sec 3.2 – 3.6 of Text). OFDMA and SC-FDMA: OFDM with FDMA,TDMA,CDMA, OFDMA, SC-FDMA, OFDMA and SC-FDMA in LTE (Sec 4.1 – 4.3, 4.5 of Text).			x, it).
Multiple Antenna Transmission and Reception: Spatial Diversity overview, Receive Diversity, Transmit Diversity, Interference cancellation and signal enhancement, Spatial Multiplexing, Choice between Diversity, Interference suppression and Spatial Multiplexing (Sec 5.1 – 5.6 of Text).			
	Module – 3		
Overview and (Channel Structure of LT	E: Introduction to LTE	, L1, L2
Channel Struct	are of LTE, Downlink OFD	MA Radio Resource, Upl	ink

SC-FDMA Radio Resource(Sec 6.1 – 6.4 of Text).		
Downlink Transport Channel Processing: Overview, Downlink shared channels, Downlink Control Channels, Broadcast channels, Multicast channels, Downlink physical channels, H-ARQ on Downlink(Sec 7.1 – 7.7 of Text). Module – 4 Uplink Channel Transport Processing: Overview, Uplink shared channels, Uplink Control Information, Uplink Reference signals, Random Access Channels, H-ARQ on uplink (Sec 8.1 – 8.6 of Text). Physical Laver Procedures: Hybrid – ARQ procedures Channel	L1, L2	
Quality Indicator CQI feedback, Precoder for closed loop MIMO Operations, Uplink channel sounding, Buffer status Reporting in uplink, Scheduling and Resource Allocation, Cell Search, Random Access Procedures, Power Control in uplink(Sec 9.1- 9.6, 9.8, 9.9, 9.10 Text).		
Module – 5		
Radio Resource Management and Mobility Management:PDCP overview, MAC/RLC overview, RRC overview, MobilityManagement, Inter-cell Interference Coordination(Sec 10.1 – 10.5 ofText).	L1, L2	
Course Outcomes: At the end of the course, students will be able to:		
 Understand the system architecture and the functional standard specified in LTE 4G. Analyze the role of LTE radio interface protocols and EPS Data convergence protocols to set up, reconfigure and release data and voice from users. Demonstrate the UTRAN and EPS handling processes from set up to release including mobility management for a variety of data call scenarios. Test and Evaluate the Performance of resource management and packet data processing and transport algorithms. 		
Question Paper pattern:		
 The Question paper will have ten questions. Each full Question consisting of 16 marks There will be 2 full Questions (with a maximum of Three sub questions) from each module. Each full question will have sub questions covering all the topics under a module. The Students will have to answer 5 full Questions, selecting one full Question from each module. 		
Text Book:		
Arunabha Ghosh, Jan Zhang, Jefferey Andrews, Riaz Mohammed, 'Fundamentals of LTE', Prentice Hall, Communications Engg. and Emerging Technologies.		

Reference Books:

- LTE for UMTS Evolution to LTE-Advanced' Harri Holma and Antti Toskala, Second Edition - 2011, John Wiley & Sons, Ltd. Print ISBN: 9780470660003.
- **2.** 'EVOLVED PACKET SYSTEM (EPS) ; THE LTE AND SAE EVOLUTION OF 3G UMTS' by Pierre Lescuyer and Thierry Lucidarme, 2008, John Wiley & Sons, Ltd. Print ISBN:978-0-470-05976-0.
- 3. 'LTE The UMTS Long Term Evolution ; From Theory to Practice' by Stefania Sesia, Issam Toufik, and Matthew Baker, 2009 John Wiley & Sons Ltd, ISBN 978-0-470-69716-0.

FIBER OPTICS and NETWORKS

B.E., VIII Semester, Electronics &Communication Engineering [As per Choice Based Credit System (CBCS)]

Subject Code	15EC82	IA Marks	20	
Number of Lecture Hours/Week	4	Exam Marks	80	
Total Number of Lecture Hours	50(10 Hours / Module)	Exam Hours	03	
	CRED	ITS – 04	I	
Course Objectives	This course will e	nable students to:		
 Learn the basic principle of optical fiber communication with different modes of light propagation. Understand the transmission characteristics and losses in optical fiber. Study of optical components and its applications in optical communication networks. Learn the network standards in optical fiber and understand the network architectures along with its functionalities. 				
	Module -1			RBT Level
 Optical fiber Communications: Historical development, The general system, Advantages of optical fiber communication, Optical fiber waveguides: Ray theory transmission, Modes in planar guide, Phase and group velocity, Cylindrical fiber: Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effective refractive index. Fiber Materials, Photonic crystal fibers. (Text 2) Module -2 Transmission characteristics of optical fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber. Optical Fiber Connectors: Fiber alignment and joint loss, Fiber 			L1, L2	
	Mod	ule -3		L
Optical sources: E Light Emitting diod Quantum Efficiend Diodes: Modes an External Quantum Diode structures a Photodetectors: Photodetector noise Optical Receiver:	Energy Bands, Dire les: LED Structure cy and LED Powe ad Threshold cond n Efficiency, Reso nd Radiation Patter Physical principle e, Detector respons Optical Receiver O	ct and Indirect Band s, Light Source Mate er, Modulation. Las litions, Rate equation nant frequencies, La rns: Single mode lase es of Photodiodes, se time. peration: Error source	gaps, rials, er on, aser ers. ces,	L1, L2

Front End Amplifiers, Receiver sensitivity, Quantum Limit. (Text 1)	
Module -4	
WDM Concepts and Components: Overview of WDM: Operational Principles of WDM, WDM standards, Mach-Zehnder Interferometer Multiplexers, Isolators and Circulators, Fiber grating filters, Dielectric Thin-Film Filters, Diffraction Gratings, Active Optical Components, Tunable light sources,	L1, L2
Optical amplifiers: Basic application and Types, Semiconductor	
optical amplifiers, Erbium Doped Fiber Amplifiers, Raman	
Amplifiers, Wideband Optical Amplifiers. (Text 1)	
Module -5	
Optical Networks: Optical network evolution and concepts: Optical networking terminology, Optical network node and switching elements, Wavelength division multiplexed networks, Public telecommunication network overview. Optical network transmission modes, layers and protocols: Synchronous networks, Asynchronous transfer mode, OSI reference model, Optical transport network, Internet protocol, Wavelength routing networks: Routing and wavelength assignment, Optical switching networks: Optical circuit switched networks, packet switched networks, Multiprotocol Label Switching, Optical burst switching networks, Optical network deployment: Long- haul networks, Metropoliton area networks, Access networks, Local area networks. (Text 2)	L1, L2
Course Outcomes: At the end of the course, students will be able	to:
 Classification and working of optical fiber with different monosignal propagation. Describe the transmission characteristics and losses in optifiber communication. Describe the construction and working principle of optical connectors, multiplexers and amplifiers. Describe the constructional features and the characteristic optical sources and detectors. Illustrate the networking aspects of optical fiber and descrivations standards associated with it. 	odes of ical s of be
Question Paper pattern:	
 The Question paper will have ten questions. Each full Question consisting of 16 marks There will be 2 full Questions (with a maximum of Three su from each module. Each full question will have sub questions covering all the a module. The Students will have to answer 5 full Questions, selecting Question from each module. 	ıb questions) topics under g one full
Text Books:	TT*11
1. Gerd Keiser, Optical Fiber Communication, 5 th Edition, McGr	aw Hill

Education(India) Private Limited, 2015. ISBN:1-25-900687-5.

2. John M Senior, Optical Fiber Communications, Principles and Practice, 3rd Edition, Pearson Education, 2010, ISBN:978-81-317-3266-3

Reference Book:

Joseph C Palais, Fiber Optic Communication , Pearson Education, 2005, ISBN:0130085103

Micro Electro Mechanical Systems

B.E., VIII Semester, Electronics &Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC831	IA Marks	20	
Number of Lecture	03	Exam	80	
Hours/Week		marks		
Total Number of	40	Exam	03	
Lecture Hours	(8 Hours per Module)	Hours		
	CREDITS – 03			
Course Objective	s: This course will enable s	tudents to:		
Understand	overview of microsystems, t	heir fabrica	tion	
and applicati	ion areas.			
Working prin	nciples of several MEMS dev	rices.		
Develop mat	hematical and analytical mo	odels of ME	MS devic	es.
Know metho	ds to fabricate MEMS devic	es.		
Various appl	ication areas where MEMS	devices can	be used.	
	Module 1			RBT
				Level
Overview of MEMS and Microsystems: MEMS and Microsystem,		L1, L2		
Typical MEMS and Microsystems Products, Evolution of				
Microfabrication, Microsystems and Microelectronics,				
Multidisciplinary Nature of Microsystems, Miniaturization.				
Applications and Markets.				
Module 2				
Working Principles of Microsystems: Introduction,			L1, L2	
Microsensors, Mic	roactuation, MEMS with	Microactuat	cors,	
Microacceleromete	rs, Microfluidics.			
Engineering Sci	ience for Microsyster	ns Desi	on and	
Fabrication: Introd	duction, Molecular Theory of	of Matter an	d Inter-	
molecular Forces, I	Plasma Physics, Electroche	mistry.		
	Module 3			
Engineering Mech	nanics for Microsystems D	esign:		L1,L2,L3
Introduction, Stati	c Bending of Thin Plates, M	echanical		
Vibration, Thermor	mechanics, Fracture Mecha	nics, Thin F	Film	
Mechanics, Overvie	ew on Finite Element Stress	Analysis.		
,		5		
	Module 4			

Scaling Laws in Miniaturization: Introduction, Scaling in L1,L2,L3
Geometry, Scaling in Rigid-Body Dynamics, Scaling in
Electrostatic Forces, Scaling in Fluid Mechanics, Scaling in Heat
Transfer.
Module 5
Overview of Micromanufacturing: Introduction, Bulk L1,L2
Micromanufacturing, Surface Micromachining, The LIGA Process,
Summary on Micromanufacturing.
Course Outcomes: After studying this course, students will be able to:
• Appreciate the technologies related to Micro Electro Mechanical Systems.
Understand design and fabrication processes involved with MEMS
devices.
• Analyse the MEMS devices and develop suitable mathematical models
Know various application areas for MEMS device
Question paper pattern:
• The question paper will have 10 full questions carrying equal marks.
• Each full question consists of 16 marks with a maximum of Three sub questions.
• There will be 2 full questions from each module covering all the topics of the module
• The students will have to answer 5 full questions, selecting one full
question from each module.
Text Book : Tai-Ran Hsu, MEMS and Micro systems: Design, Manufacture and Nanoscale Engineering, 2 nd Ed, Wiley.
Reference Books:
 Hans H. Gatzen, Volker Saile, JurgLeuthold, Micro and Nano Fabrication: Tools and Processes, Springer, 2015.
2. Dilip Kumar Bhattacharya, Brajesh Kumar Kaushik,
Microelectromechanical Systems (MEMS), Cenage Learning.

SPEECH PROCESSING

B.E., VIII Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC832	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (8 Hours /	Exam Hours	03
Lecture Hours	Module)		
CREDITS = 0.3			

Course Objectives: This course enables students to:

- Introduce the models for speech production
- Develop time and frequency domain techniques for estimating speech parameters
- Introduce a predictive technique for speech compression
- Provide fundamental knowledge required to understand and analyse speech recognition, synthesis and speaker identification systems.

Modules	
Module-1	RBT Level
Fundamentals of Human Speech Production: The Process of Speech Production, Short-Time Fourier Representation of Speech, The Acoustic Theory of Speech Production, Lossless Tube Models of the Vocal Tract, Digital Models for Sampled Speech Signals	L1, L2
Module-2	
Time-Domain Methods for Speech Processing: Introduction to Short- Time Analysis of Speech, Short-Time Energy and Short-Time Magnitude, Short-Time Zero-Crossing Rate, The Short-Time Autocorrelation Function, The Modified Short-Time Autocorrelation Function, The Short-Time Average Magnitude Difference Function.	L1, L2
Module-3	
Frequency Domain Representations: Discrete-Time Fourier Analysis, Short-Time Fourier Analysis, Spectrographic Displays, Overlap Addition(OLA),Method of Synthesis, Filter Bank Summation(FBS) Method of Synthesis, Time-Decimated Filter Banks, Two-Channel Filter Banks, Implementation of the FBS Method Using the FFT, OLA Revisited, Modifications of the STFT.	L1, L2
Module-4	
The Cepstrum and Homomorphic Speech Processing: Homomorphic Systems for Convolution, Homomorphic Analysis of the Speech Model, Computing the Short-Time Cepstrum and Complex Cepstrum of Speech, Homomorphic Filtering of Natural Speech, Cepstrum Analysis of All-Pole Models, Cepstrum Distance Measures.	L1, L2, L3
Module-5	
Linear Predictive Analysis of Sneech Signals: Basic Principles of Linear	111213

Predictive Analysis, Computation of the Gain for the Model, Frequency Domain Interpretations of Linear Predictive Analysis, Solution of the LPC Equations, The Prediction Error Signal, Some Properties of the LPC Polynomial A(z), Relation of Linear Predictive Analysis to Lossless Tube Models, Alternative Representations of the LP Parameters.

Course outcomes: Upon completion of the course, students will be able to:

- Model speech production system and describe the fundamentals of speech.
- Extract and compare different speech parameters.
- Choose an appropriate speech model for a given application.
- Analyse speech recognition, synthesis and speaker identification systems

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

1. Theory and Applications of Digital Speech Processing-Rabiner and Schafer, Pearson Education 2011

Reference Books:

- **1 Fundamentals of Speech Recognition-** Lawrence Rabiner and Biing-Hwang Juang, Pearson Education, 2003.
- 2 Speech and Language Processing-An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition- Daniel Jurafsky and James H Martin, Pearson Prentice Hall 2009.

	Radar Engineering	r		
B.E., VIII Semester, Electronics & Communication Engineering/				
Telecommunication Engineering				
[As pe	r Choice Based Credit System	(CBCS) scheniej		
Subject Code	Subject Code 15EC833 IA Marks			
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CREDITS – 03			
Course objectives: Th	is course will enable students t	20:		
• Understand the Rad	lar fundamentals and analyze t	the radar signals.		
Understand various	technologies involved in the de	esign of radar transmitter	rs and	
receivers.		8		
• Learn various radar	s like MTL Doppler and trackir	ng radars and their comp	arison	
		ig radaro ana thon comp		
Modules			RBT	
			Level	
Module-1				
Basics of Radar: Intr	roduction, Maximum Unambi	guous Range, Radar	L1, L2,	
Waveforms, Definitions	with respect to pulse waveform	1 - PRF, PRI, Duty Cycle,	L3	
Peak Transmitter Powe	r, Average transmitter Power.			
Simple form of the Ra	dar Equation, Radar Block Di	agram and Operation,		
Radar Frequencies, Applications of Radar, The Origins of Radar, Illustrative				
Problems. (Chapter 1	of Text)			
Module-2				
The Radar Equation:	Prediction of Range Performance	ce, Detection of signal in	L1, L2,	
Noise, Minimum Detec	table Signal, Receiver Noise, S	SNR, Modified Radar	L3	
Range Equation, Enve	lope Detector — False Alarm Ti	ime and Probability,		
Probability of Detection,				
Radar Cross Section of Targets: simple targets – sphere, cone-sphere,				
Transmitter Power, PRF and Range Ambiguities, System Losses (qualitative				
treatment), Illustrative Problems. (Chapter 2 of Text, Except 2.4, 2.6, 2.8 &				
2.11)				
Module-3				
MTI and Pulse Dopple	r Radar: Introduction, Principl	le, Doppler Frequency	L1, L2,	
Shift, Simple CW Rad	lar, Sweep to Sweep subtrac	tion and Delay Line	L3	
Canceler, MTI Radar wi	th – Power Amplifier Transmitt	er, Delay Line Cancelers		
- Frequency Response	e of Single Delay- Line Canceler	, Blind Speeds, Clutter		
Attenuation, MTI Impro	ovement Factor, N- Pulse Delay	-Line Canceler, Digital		
MTI Processing – Blind	d phases, I and Q Channels, D	igital MTI Doppler		
signal processor, Movir	ng Target Detector- Original MT	D. (Chapter 3: 3.1,		
3.2, 3.5, 3.6 of Text)				
Module-4				
Tracking Radar:			L1, L2,	
Tracking with Radar- T	ypes of Tracking Radar System	ns, Monopulse Tracking-	L3	
Amplitude Compariso	n Monopulse (one-and two-o	coordinates), Phase		
Comparison Monopuls	2.			
Sequential Lobing, Co	nical Scan Tracking, Block Dia	gram of Conical Scan		

Tracking Radar, Tracking in Range, Comparison of Trackers, (Chapter 4)	
4 1 4 2 4 3 of Text)	
The Radar Antenna: Functions of The Radar Antenna, Antenna Parameters, Reflector Antennas and Electronically Steered Phased array Antennas. L3 (Chapter 9: 9.1, 9.2 9.4, 9.5 of Text)	L1, L2,
Radar Receiver: The Radar Receiver, Receiver Noise Figure, Super Heterodyne Receiver, Duplexers and Receivers Protectors, Radar Displays. (Chapter 11 of Text)	
Course outcomes: At the end of the course, students will be able to:	
 Understand the radar fundamentals and radar signals. Explain the working principle of pulse Doppler radars, their applications 	s and
limitations	5 00120
• Describe the working of various radar transmitters and receivers.	
• Analyze the range parameters of pulse radar system which affect the system operformance	stem
Question paper pattern:	
• The question paper will have ten questions.	
 Each full Question consisting of 16 marks 	
• There will be 2 full questions (with a maximum of Three sub questions) from each module.	
• Each full question will have sub questions covering all the topics under a module.	
• The students will have to answer 5 full questions, selecting one full ques from each module.	tion
Text Book:	
Introduction to Radar Systems- Merrill I Skolink, 3e, TMH, 2001.	
Reference Books:	
 Radar Principles, Technology, Applications — Byron Edde, Pearson Edu 2004. 	cation,
2. Radar Principles – Peebles. Jr, P.Z. Wiley. New York, 1998.	
2 Dringinlag of Madam Dadam Dagis Dringinlag Marle A Disharda Jamas	

3. Principles of Modem Radar: Basic Principles – Mark A. Rkhards, James A. Scheer, William A. HoIm. Yesdee, 2013

MACHINE LEARNING

B.E., VIII Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC834	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number	40 (8 Hours /	Exam Hours	03
of Lecture	Module)		
Hours			
CREDITS – 03			
Course Objectioner This course will enable students to:			

Course Objectives: This course will enable students to:

- Introduce some concepts and techniques that are core to Machine Learning.
- Understand learning and decision trees.
- Acquire knowledge of neural networks, Bayesian techniques and instant based learning.
- Understand analytical learning and reinforced learning.

Modules	
Module-1	RBT Level
Learning: Designing Learning systems, Perspectives and Issues, Concept	L1, L2
Learning, Version Spaces and Candidate Elimination Algorithm,	
Inductive bias.	
Module-2	
Decision Tree and ANN: Decision Tree Representation, Hypothesis	L1, L2
Space Search, Inductive bias in decision tree, issues in Decision tree.	
Neural Network Representation, Perceptrons, Multilayer Networks and	
Back Propagation Algorithms.	
Module-3	
Bayesian and Computational Learning: Bayes Theorem, Bayes	L1, L2
Theorem Concept Learning, Maximum Likelihood, Minimum Description	
Length Principle, Bayes Optimal Classifier, Gibbs Algorithm, Naïve Bayes	
Classifier.	
Module-4	
Instant Based Learning and Learning set of rules: K- Nearest	L1, L2
Neighbour Learning, Locally Weighted Regression, Radial Basis	
Functions, Case-Based Reasoning.	
Sequential Covering Algorithms, Learning Rule Sets, Learning First Order	
Rules, Learning Sets of First Order Rules.	
Module-5	
Analytical Learning and Reinforced Learning: Perfect Domain	L1, L2
Theories, Explanation Based Learning, Inductive-Analytical Approaches,	
FOCL Algorithm, Reinforcement Learning.	
Course outcomes: At the end of the course, students should be able to:	

- Understand the core concepts of Machine learning.
- Appreciate the underlying mathematical relationships within and across Machine Learning algorithms.
- Explain paradigms of supervised and un-supervised learning.
- Recognize a real world problem and apply the learned techniques of Machine Learning to solve the problem.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of Three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Machine Learning-Tom M. Mitchell, McGraw-Hill Education, (INDIAN EDITION), 2013.

Reference Books:

- 1. Introduction to Machine Learning- Ethem Alpaydin, 2nd Ed., PHI Learning Pvt. Ltd., 2013.
- 2. **The Elements of Statistical Learning-**T. Hastie, R. Tibshirani, J. H. Friedman, Springer; 1st edition, 2001.

NETWORK AND CYBER SECURITY

B.E., VIII Semester, Electronics & Communication Engineering

[As per Choice Based credit System (CBCS) Scheme

Subject Code	15EC835	IA Marks	20	
Number of Lecture	03	Exam	80	
Hours/Week		marks		
Total Number of	40	Exam	03	
Lecture Hours	(8 Hours per Module)	Hours		
	CREDITS -	- 03		
Course Objectives	: This course will enable	students to:		
Know about	security concerns in Ema	il and Internet	t Protocol	•
Understand	cyber security concepts.			
List the prob	lems that can arise in cyl	per security.		
• Discuss the v	various cyber security fra	me work.		
	Module-1	• 1 . •	0	RBT Level
Transport Level	Security: Web Security C	onsiderations,	Secure	L1, L2
Sockets Layer, Ira	ansport Layer Security, H	TIPS, Secure	Snell	
(SSH) (Text 1: Cha	ipter 15)			
	Module-2		4	
E-mail Security:	Pretty Good Privacy, S/M	IME, Domain	keys	L1, L2
identified mail (Te	xt 1: Chapter 17)			
ID Constitute ID	Module-3			
IP Security: IP	Security Overview, IP S	ecurity Policy	, 	L1, L2
Associations Inter	net Key Exchange Crypt	omonhic Suite	unity s(Text	
1. Chanter 18)	net Key Exchange. Crypt	Seraphic Suite	SIICAL	
Module-4				
Cyber network security concepts: Security Architecture. L1, L2,				
antipattern: sign	ature based malware	detection ver	rsus	L3
polymorphic three	ads, document driven o	ertification ar	nd	-
accreditation, pol	icy driven security cert	ifications. Ref	actored	
solution: reputation	onal, behavioural and ent	ropy based ma	alware	
detection.				
		_		
The problems: c	yber antipatterns conce	pt, forces in	cyber	
antipatterns, cybe	er anti pattern template	es, cyber secu	ırıty	
antipattern catalo	g (Text-2: Chapter1 & 2)			
	Module-5			
Cyber network see	curity concepts contd. :			L1, L2,
Enterprise securit	ty using Zachman frame	ework		L3
Zachman framewor	rk for enterprise architec	ture, primitive	models	
versus composite r	nodels, architectural prol	olem solving pa	atterns,	
enterprise worksho	op, matrix mining, mini p	atterns for pro	blem	
solving meetings.				
Case study: cyber	security hands on - man	aging adminis	trations	

and root accounts, installing hardware, reimaging OS, installing system protection/ antimalware, configuring firewalls (Text-2: Chapter 3 & 4).
Course Outcomes: After studying this course, students will be able to:
 Explain network security protocols Understand the basic concepts of cyber security Discuss the cyber security problems Explain Enterprise Security Framework Apply concept of cyber security framework in computer system administration
Question paper pattern:
 The question paper will have 10 full questions carrying equal marks. Each full question consists of 16 marks with a maximum of Three sub questions. There will be 2 full questions from each module covering all the topics of the module The students will have to answer 5 full questions, selecting one full question from each module.
Text Books:
 William Stallings, "Cryptography and Network Security Principles and Practice", Pearson Education Inc., 6th Edition, 2014, ISBN: 978-93-325-1877-3.
 Thomas J. Mowbray, "Cyber Security – Managing Systems, Conducting Testing, and Investigating Intrusions", Wiley.
Reference Books:
1. Cryptography and Network Security, Behrouz A. Forouzan, TMH, 2007.

2. Cryptography and Network Security, Atul Kahate, TMH, 2003.