

 Atria Institute of Technology
 Department of Information Science and Engineering

Bengaluru-560024

ACADEMIC YEAR: 2021-2022

ODD SEMESTER NOTES

Semester : 5th Semester

Subject Name

: Computer Science and Engineering

Subject Code

: 18CS52

Faculty Name

: Ms. Uzma Sulthana

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 1

Module-1 Application Layer

➢ Numerous useful and entertaining applications have indeed been created due to the

Internet’s inception.

➢ The applications have been the driving force behind the Internet’s success, motivating

people in homes, schools, governments and businesses to make the Internet an integral

part of their daily activities.

➢ Internet applications include the classic text-based applications that became popular in

the 1970s and 1980s.

➢ Some of the applications are: text email, remote access to computers, file transfers

and newsgroups.

➢ The World Wide Web (mid of 1990), encompassing Web surfing, search, and electronic

commerce are popular applications.

➢ Instant messaging and P2P file sharing, the two applications were introduced at the end

of the millennium.

➢ Since 2000, popular voice and video applications, including voice-over-IP (VoIP) and

video conferencing over IP such as Skype, user-generated video distribution such as

YouTube and movies on demand such as Netflix are developed.

➢ Most recently, a new generation of social networking applications, such as Facebook and

Twitter have been emerged which have created engaging human networks on top of the

Internet’s network of routers and communication links.

1. Principles of Network Applications:

a. The core of network application development is writing programs that run on

different end systems and communicate with each other over the network.

b. For example, in the Web application there are two distinct programs that

communicate with each other: the browser program running in the user’s host

(desktop, laptop, smartphone etc.) and the Web server program running in the Web

server host.

c. As another example, in a P2P file-sharing system there is a program in each host

that participates in the file-sharing community. Here, the programs in the various

hosts may be similar or identical.

d. Thus, when developing new application, we need to write software that will run on

multiple end systems.

e. This software could be written, for example, in C, Java, or Python.

f. No need to write software that runs on network core devices, such as routers or link-

layer switches.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 2

g. Basic design—namely, confining application software to the end systems—as

shown in Figure 2.1, has facilitated the rapid development and deployment of a vast

array of network applications.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 3

1.1 Network Application Architecture:

The application architecture is designed by the application developer and describes the

structure of application over the various end systems.

There are two different network application architecture, they are

1. The client-server architecture.

2. The peer-to-peer (P2P) architecture.

The client-server architecture.

➢ In client-server architecture, there is an always-on host, called the server, which

provides services when it receives requests from many other hosts, called clients.

➢ Example: In Web application Web server services requests from browsers running

on client hosts. When a Web server receives a request for an object from a client

host, it responds by sending the requested object to the client host.

Characteristics of Client Server architecture:

➢ In client-server architecture, clients do not directly communicate with each

other. For example, in the Web application, two browsers do not directly

communicate.

➢ The server has a fixed, well-known address, called an IP address. Because

the server has a fixed, well-known address, and because the server is always

on, a client can always contact the server by sending a packet to the server’s

IP address.

Some of the better-known applications with a client-server architecture

include the Web, FTP, Telnet, and e-mail.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 4

The client-server architecture is shown in Figure (a) Above.

➢ In a client-server application, a single-server host is incapable of keeping up with

all the requests from clients. For example, a popular social-networking site can

quickly become overwhelmed if it has only one server handling all of its requests.

➢ For this reason, a data center, housing a large number of hosts, is often used to

create a powerful virtual server.

➢ The most popular Internet services—such as search engines (e.g., Google and

Bing), Internet commerce (e.g., Amazon and e-Bay), Web-based email (e.g.,

Gmail and Yahoo Mail), social networking (e.g., Facebook and Twitter)—

employ one or more data centers.

➢ Eg. Google has 30 to 50 data centers distributed around the world, which

collectively handle search, YouTube, Gmail, and other services.

➢ A data center can have hundreds of thousands of servers, which must be powered

and maintained.

Peer-to-Peer Architecture:

➢ In a P2P architecture, there is minimal dependence on dedicated servers in

data centers.

➢ The application employs direct communication between pairs of intermittently

connected hosts, called peers.

➢ The peers are not owned by the service provider, but are instead desktops and

laptops controlled by users, with most of the peers residing in homes,

universities, and offices.

➢ Because the peers communicate without passing through a dedicated server,

the architecture is called peer-to-peer.

➢ Most popular and traffic-intensive applications are based on P2P architectures.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 5

➢ These applications include file sharing (e.g., BitTorrent), Internet Telephony

(e.g., Skype), and IPTV (e.g., Kankan and PPstream).

Features:

➢ Self-scalability:

o For example, in a P2P file-sharing application, although each

peer generates workload by requesting files, each peer also

adds service capacity to the system by distributing files to other

peers.

➢ Cost effective:

o P2P architectures are also cost effective, since they normally

don’t require significant server infrastructure and server

bandwidth

The P2P architecture is illustrated in Figure (b) below

Future P2P applications face three major challenges:

1. ISP Friendly:

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 6

➢ Most residential ISPs have been dimensioned for

“asymmetrical” bandwidth usage, that is, for much more

downstream than upstream traffic.

➢ But P2P video streaming and file distribution applications shift

upstream traffic from servers to residential ISPs, thereby

putting significant stress on the ISPs.

➢ Future P2P applications need to be designed so that they are

friendly to ISPs

2. Security.

Because of their highly distributed and open nature, P2P applications can

be a challenge to secure.

3. Incentives.

The success of future P2P applications also depends on convincing users

to volunteer bandwidth, storage, and computation resources to the

applications, which is the challenge of incentive design.

1.2 Processes Communicating:

Process:
➢ A Process is a program or application under execution within a host system.

➢ When processes are running on the 1. same or 2. different end system, they can

communicate with each other with inter process communication, using rules that

are governed by the end system’s operating system.

➢ Processes on two different end systems communicate with each other by

exchanging messages across the computer network.

o A sending process creates and sends messages into the network;

o A receiving process receives these messages and possibly responds by

sending messages back.

1. Client and Server Process:

➢ A network-application consists of pairs of processes that send messages to

other over a network.

1) The process that initiates the communication is labelled as the client.

2) The process that waits to be contacted to begin the session is labelled as

the server.

For example:

1) In Web application, a client-browser process communicates

with a Web-server-process.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 7

2) In P2P file system, a file is transferred from a process in one

peer to a process in another peer.

3) In the Web, a browser process initializes contact with a Web

server process; hence the browser process is the client and the Web

server process is the server.

4) In P2P file sharing, when Peer A asks Peer B to send a specific

file, Peer A is the client and Peer B is the server in the context of

this specific communication session.

2. Interface between the Process and the Computer Network Socket:

➢ Any message sent from one process to another must go through the

underlying-network.

➢ A process sends messages into, and receives messages from, the network
through a software interface called a socket.

➢ Figure 2.3 illustrates socket communication between two processes that
communicate over the Internet.

➢ As shown in this figure, a socket is the interface between the application
layer and the transport layer within a host.

➢ It is also referred to as the Application Programming Interface (API)
between the application and the network, since the socket is the
programming interface with which network applications are built.

➢ The application developer has control of everything on the application-
layer side of the socket but has little control of the transport-layer side of
the socket.

➢ For ex: The application-developer can control:
1) The choice of transport-protocol: TCP or UDP. (API Application

Programming Interface)

2) The ability to fix a few transport-layer parameters such as maximum-

buffer & maximum-segment-sizes.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 8

Figure 2.3: Application processes, sockets, and transport-protocol

3. Addressing Process:

For a process running on one host to send packets to a process running on another

host, the receiving process needs to have an address.

➢ To identify the receiving process, two pieces of information need to be

specified:

(1) The address of the host

(2) An identifier that specifies the receiving process in the destination host.

➢ In the Internet, the host is identified by its IP address.

➢ An IP address is a 32-bit that uniquely identify the host.

➢ In addition to knowing the address of the host to which a message is

destined, the sending process must also identify the receiving process

running in the host.

➢ A destination port number serves this purpose.

➢ Popular applications have been assigned specific port numbers.

➢ For example,

o A Web server is identified by port number 80.

o A mail server process (using the SMTP protocol) is identified by

port number 25.

1.3 Transport Services Available to Applications

➢ Many Networks, including the Internet, provide more than one transport-layer protocols
for different applications.

➢ An application-developer should choose certain protocol according to the type of

applications.

➢ Different protocols may provide different services.

1. Reliable Data Transfer:

➢ Packets can get lost within a computer network.

➢ For example, a packet can overflow a buffer in a router, or can be discarded

by a host or router after having some of its bits corrupted.

➢ For many applications—such as electronic mail, file transfer, remote host

access, Web document transfers, and financial applications—data loss can

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 9

have devastating consequences.

➢ Thus, to support these applications, something has to be done to guarantee

that the data sent by one end of the application is delivered correctly and

completely to the other end of the application.

➢ Reliable means guaranteeing the data from the sender to the receiver is

delivered correctly. For example: TCP provides reliable service to an

application.

➢ Unreliable means the data from the sender to the receiver may never

arrive. For example: UDP provides unreliable service to an application.

➢ This may be acceptable for loss-tolerant applications, most notably

multimedia applications such as conversational audio/video that can tolerate

some amount of data loss.

2. Throughput

➢ Throughput is the rate at which the sending-process can deliver r bits/sec, to
the receiving-process.

➢ Since other hosts are using the network, the throughput can fluctuate with
time.

➢ Two types of applications:
1. Bandwidth Sensitive Applications

➢ These applications need a guarantee throughput.
o For Example: Multimedia Applications.

➢ Some transport-protocol provides guaranteed throughput at
some specified rate (r bits/sec)

2. Elastic Applications

➢ These applications may not need a guarantee throughput.
o For Example: Electronic mail, File transfer & Web transfers.

3. Timinig

➢ A transport-layer protocol can also provide timing guarantees.

➢ For ex: guaranteeing every bit arrives at the receiver in less than 100

msec.

➢ Timing constraints are useful for real-time applications such as
o Internet telephony
o Virtual environments
o Teleconferencing and
o Multiplayer games

4. Security

➢ A transport-protocol can provide one or more security services.
➢
➢ For example,

 1) In the sending host, a transport-protocol can encrypt all the transmitted-data.

2) In the receiving host, the transport-protocol can decrypt the received-data.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 10

➢ A transport protocol can provide security services like confidentiality, data
integrity and endpoint authentication.

1.4 Transport Services Provided by the Internet:

➢ The Internet makes two transport-protocols available to applications, UDP and

TCP.
➢ An application-developer who creates a new network-application must use

either: UDP or TCP.
➢ Both UDP & TCP offers a different set of services to the invoking

applications.
➢ Figure 2.4 shows the service requirements for some selected applications.

1. TCP Services

➢ An application using transport-protocol TCP, receives following 2 services.
1) Connection-Oriented Service

➢ Before the start of communication, client & server need to exchange control-

information.

➢ This phase is called handshaking phase.
➢ Then, the two processes can send messages to each other over the

connection.
➢ After the end of communication, the applications must tear down the

connection.
2) Reliable Data Transfer Service

➢ The communicating processes must deliver all data sent without error & in
the proper order.

➢ TCP also includes a congestion-control.

Application Data Loss Throughput Time Sensitive

File transfer/download No loss Elastic No

E-mail No loss Elastic No

Web documents No loss Elastic (few kbps) No

Internet-

telephony/

Video-

conferencing

Loss-tolerant Audio: few kbps–1

Mbps Video: 10 kbps–

5 Mbps

Yes: 100s of ms

Streaming stored audio/video Loss-tolerant Same as above Yes: few seconds

Interactive games Loss-tolerant Few kbps–10 kbps Yes: 100s of ms

Instant messaging No loss Elastic Yes and no

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 11

➢ The congestion-control throttles a sending-process when the network is congested.

2. UDP Services

➢ UDP is a lightweight transport-protocol, providing minimal services.

➢ UDP is connectionless, so there is no handshaking before the 2 processes start to

communicate.

➢ UDP provides an unreliable data transfer service.

➢ Unreliable means providing no guarantee that the message will reach the

receiving-process.

➢ Furthermore, messages that do arrive at the receiving-process may arrive out-of-

order.

➢ UDP does not include a congestion-control.

➢ UDP can pump data into the network-layer at any rate.

3. Services Not Provided by Internet Transport Protocols

➢ Services not provided by today’s Internet transport protocols.
➢ Does this mean that time sensitive applications such as Internet

telephony cannot run in today’s Internet?
➢ The answer is clearly no—the Internet has been hosting time-sensitive

applications for many years.
➢ These applications often work fairly well because they have been

designed to cope, to the greatest extent possible, with this lack of
guarantee.

➢ Figure 2.5 indicates the transport protocols used by some popular
Internet applications.

Application Application-Layer
Protocol

Underlying Transport
Protocol

Electronic mail SMTP [RFC 5321] TCP

Remote terminal access Telnet [RFC 854] TCP

Web HTTP [RFC 2616] TCP

File transfer FTP [RFC 959] TCP

Streaming multimedia HTTP (e.g.,
YouTube)

TCP

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 12

Figure 2.5 Popular Internet applications, their application-layer protocols, and
their underlying transport protocols.

➢ The e-mail, remote terminal access, the Web, and file transfer all use TCP.
➢ These applications have chosen TCP primarily because TCP provides reliable

data transfer, guaranteeing that all data will eventually get to its destination.
➢ Because Internet telephony applications (such as Skype) can often tolerate some

loss but require a minimal rate to be effective, developers of Internet telephony
applications usually prefer to run their applications over UDP, thereby
circumventing TCP’s congestion control mechanism and packet overheads.

➢ But because many firewalls are configured to block (most types of) UDP traffic,
Internet telephony applications often are designed to use TCP as a backup if UDP
communication fails

1.5 Application-Layer Protocols

 An application-layer protocol defines:

➢ The types of messages exchanged, for example, request messages and response
messages

➢ The syntax of the various message types, such as the fields in the message and
how the fields are delineated

➢ The semantics of the fields, that is, the meaning of the information in the fields
➢ Rules for determining when and how a process sends messages and responds to

messages.

2. Web and HTTP

➢ The appearance of Web dramatically changed the Internet.
➢ Web has many advantages for a lot of applications.
➢ It operates on demand so that the users receive what they want when they want it.
➢ It provides an easy way for everyone make information available over the world.
➢ Hyperlinks and search engines help us navigate through an ocean of Web-sites.
➢ Forms, JavaScript, Java applets, and many other devices enable us to interact with

pages and sites.

Internet-telephony SIP [RFC 3261],
RTP [RFC 3550], or
proprietary (e.g.,
Skype)

UDP or TCP

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 13

➢ The Web serves as a platform for many killer applications including YouTube,

Gmail, and Facebook.

1. Overview of HTTP:

 1. Web
➢ A web-page consists of objects (HTML -Hyper Text Markup Language).
➢ An object is a file such as an HTML file, a JPEG image, a Java applet, a video

chip.
➢ The object is addressable by a single URL (URL- Uniform Resource Locator).
➢ Most Web-pages consist of a base HTML file & several referenced objects.
➢ For example:

If a Web-page contains HTML text and five JPEG images; then the Web-

page has six objects:
1) Base HTML file and
2) Five images.

➢ The base HTML file references the other objects in the page with the object's
URLs.

➢ URL has 2 components:

1) The hostname of the server that houses the object and
2) The object’s path name.

➢ For example:

“http://www.someSchool.edu/someDepartment/picture.gif”
In above URL,

1) Hostname = “www.someSchool.edu ”
2) Path name = “/someDepartment/picture.gif”.

➢ The web browsers implement the client-side of HTTP. For ex: Google Chrome,
Internet Explorer

➢ The web-servers implement the server-side of HTTP. For ex: Apache

 2. HTTP

➢ HTTP is Web’s application-layer protocol (Figure 1.3) (HTTP -HyperText
Transfer Protocol) is at the heart of Web.

➢ HTTP defines
→ how clients request Web-pages from servers and
→ how servers transfer Web-pages to clients.

➢ HTTP is implemented in two programs:
a. client program and

b. server program.

➢ The client program and server program, executing on different end systems, talk

to each other by exchanging HTTP messages.
➢ HTTP defines the structure of these messages and how the client and server

exchange the messages.
➢ The interaction between client and server in detail later, but the general idea is

illustrated in Figure 2.6.
➢ When a user requests a Web-page, the browser sends HTTP request to the server.
➢ Then, the server responds with HTTP response that contains the requested-

objects.
➢ HTTP uses TCP as its underlying transport-protocol.
➢ The HTTP client first initiates a TCP connection with the server.

http://www.vtu.ac.in/BE/CSE.gif
http://www.someschool.edu/

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 14

➢ After connection setup, the browser and the server-processes access TCP through
their sockets

➢ HTTP is a stateless protocol.
➢ Stateless means the server sends requested-object to client w/o storing state-info

about the client.
➢ HTTP uses the client-server architecture:

1) Client
➢ Browser that requests receive and displays Web objects.

2) Server
➢ Web-server sends objects in response to requests.

2. Non-Persistent and Persistent Connections:

➢ In many internet applications, the client and server communicate for an

extended period of time.
➢ When this client-server interaction takes place over TCP, a decision should be

made:
1) Should each request/response pair be sent over a separate TCP connection
or
2) Should all requests and their corresponding responses be sent over same
TCP connection?

➢ These different connections are called non-persistent connections (1) or
persistent connections (2).

➢ Default mode: HTTP uses persistent connections

1. HTTP with Non-Persistent Connections:

➢ A non-persistent connection is closed after the server sends the

requested-object to the client.
➢ In other words, the connection is used exactly for one request and one

response.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 15

➢ For downloading multiple objects, multiple connections must be used.
➢ Suppose user enters URL:

"http://www.someSchool.edu/someDepartment/home.index" • Assume
above link contains text and references to 10 jpeg images.

 Here is what happens:

1. The HTTP client process initiates a TCP connection to the server
www.someSchool.edu on port number 80, which is the default port
number for HTTP. Associated with the TCP connection, there will be
a socket at the client and a socket at the server.

2. The HTTP client sends an HTTP request message to the server via its
socket. The request message includes the path name
/someDepartment/home.index. (We will discuss HTTP messages in
some detail below.)

3. The HTTP server process receives the request message via its socket,
retrieves the object /someDepartment/home.index from its storage
(RAM or disk), encapsulates the object in an HTTP response message,
and sends the response message to the client via its socket.

4. The HTTP server process tells TCP to close the TCP connection. (But
TCP doesn’t actually terminate the connection until it knows for sure
that the client has received the response message intact.)

5. The HTTP client receives the response message. The TCP connection
terminates. The message indicates that the encapsulated object is an
HTML file. The client extracts the file from the response message,
examines the HTML file, and finds references to the 10 JPEG objects.

6. The first four steps are then repeated for each of the referenced JPEG
objects

Pictorial Representation of above steps:

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 16

➢ As shown in Figure 2.7, this causes the browser to initiate a TCP

connection between the browser and the Web server; this involves a

“three-way handshake”—the client sends a small TCP segment to the

server, the server acknowledges and responds with a small TCP segment,

and, finally, the client acknowledges back to the server.

➢ RTT(Round Trip Time) is the time taken for a packet to travel from

client to server and then back to the client.

➢ The first two parts of the three-way handshake take one RTT.

➢ After completing the first two parts of the handshake, the client sends the

HTTP request message combined with the third part of the three-way

handshake (the acknowledgment) into the TCP connection.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 17

➢ Once the request message arrives at the server, the server sends the HTML

file into the TCP connection.

➢ This HTTP request/response eats up another RTT. Thus, roughly, the total

response time is two RTTs plus the transmission time at the server of the

HTML file.

➢ The total response time is sum of following (Figure 2.7):

i) One RTT to initiate TCP connection (RTT -> Round Trip Time).

ii) One RTT for HTTP request and first few bytes of HTTP response

to return

iii) File transmission time.

➢ i.e. Total response time = (i) + (ii) + (iii) = 1 RTT+ 1 RTT+ File

transmission time = 2(RTT) + File transmission time

2. HTTP with Persistent Connections:

➢ Problem with Non-Persistent Connections:

1. A new connection must be established and maintained for each
requested-object.

i) Hence, buffers must be allocated and state info must be
kept in both the client and server.

ii) This results in a significant burden on the server.
2. Each object suffers a delivery delay of two RTTs:

i) One RTT to establish the TCP connection and
ii) One RTT to request and receive an object.

➢ Solution: Use persistent connections.
➢ With persistent connections, the server leaves the TCP connection open

after sending responses.
➢ Hence, subsequent requests & responses b/w same client & server can be

sent over same connection
➢ The server closes the connection only when the connection is not used for

a certain amount of time.
➢ Default mode of HTTP: Persistent connections with pipelining.
➢ Advantages:

1. This method requires only one RTT for all the referenced-objects.
2. The performance is improved by 20%.

3. HTTP Message Format

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 18

 Two types of HTTP messages: 1) Request-message and 2) Response-message.

1. HTTP Request Message:

➢ An example of request-message is as follows:

➢ The request-message contains 3 sections (Figure 2.8)

1. Request-line

2. Header-line and

3. Carriage return.

➢ The first line of message is called the request-line.

➢ The subsequent lines are called the header-lines.

➢ The request-line contains 3 fields. The meaning of the fields is as follows:

1. Method

▪ “GET”: This method is used when the browser requests an

object from the server.

2. URL

▪ “/somedir/page.html”: This is the object requested by the

browser.

3. Version

▪ “HTTP/1.1”: This is version used by the browser.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 19

➢ The request-message contains 4 header-lines. The meaning of the header-lines

is as follows:

1. “Host: www.someschool.edu” specifies the host on which the object

resides.

2. “Connection: close” means requesting a non-persistent connection.

3. “User-agent:Mozilla/5.0” means the browser used is the Firefox.

4. “Accept-language:eng” means English is the preferred language.

➢ The method field can take following values: GET, POST, HEAD, PUT and

DELETE.

1. GET is used when the browser requests an object from the server.

2. POST is used when the user fills out a form & sends to the server.

3. HEAD is identical to GET except the server must not return a

message-body in the response.

4. PUT is used to upload objects to servers.

5. DELETE allows an application to delete an object on a Web server.

2. HTTP Response Message:

➢ An example of response-message is as follows:

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 20

➢ The response-message contains 3 sections (Figure 2.9):

1. Status line

2. Header-lines and

3. Data (Entity body).

➢ The status line contains 3 fields:

1. Protocol version

2. Status-code and

3. Status message.

➢ Some common status-codes and associated messages include:

1. 200 OK: Standard response for successful HTTP requests.

2. 400 Bad Request: The server cannot process the request due to

a client error.

3. 404 Not Found: The requested resource cannot be found.

4. 505 HTTP Version Not Supported: The requested HTTP

protocol version is not supported by the server.

➢ The meaning of the Status line is as follows:

“HTTP/1.1 200 OK”: This line indicates the server is using

HTTP/1.1 & that everything is OK.

➢ The response-message contains 6 header-lines. The meaning of the

header-lines is as follows:

1. Connection: This line indicates browser requesting a non-

persistent connection.

2. Date: This line indicates the time & date when the response

was sent by the server.

3. Server: This line indicates that the message was generated by

an Apache Web-server.

4. Last-Modified: This line indicates the time & date when the

object was last modified.

5. Content-Length: This line indicates the number of bytes in the

sent-object.

6. Content-Type: This line indicates that the object in the entity

body is HTML text.

3. User-Server Interaction: Cookies

➢ It is often desirable for a Web site to identify users, either because the
server wishes to restrict user access or because it wants to serve
content as a function of the user identity.

➢ For these purposes, HTTP uses cookies.
➢ Cookies refer to a small text file created by a Web-site that is stored in

the user's computer.
➢ Cookies are stored either temporarily for that session only or

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 21

permanently on the hard disk.
➢ Cookies allow Web-sites to keep track of users.

➢ Cookie technology has four components:
1. A cookie header-line in the HTTP response-message.
2. A cookie header-line in the HTTP request-message.
3. A cookie file kept on the user’s end-system and managed by

the user’s browser.
4. A back-end database at the Web-site.

➢ Example:

 Here is how it works (Figure 2.10)
1. Suppose a user, who always accesses the Web using Internet

Explorer from her home PC, contacts Amazon.com for the first
time.

2. Let us suppose that in the past he has already visited the eBay
site.

3. When the request comes into the Amazon Web server, first
time visits a site, the server
o creates a unique identification number (1678) and
o creates an entry in its back-end database by the

identification number.
4. The server then responds to user’s browser.
5. HTTP response includes Set-cookie: header which contains

the identification number (1678)
6. The browser then stores the identification number into the

cookie-file.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 22

7. Each time the user requests a Web-page, the browser
o extracts the identification number from the cookie file,

and
o puts the identification number in the HTTP request.

8. In this manner, the server is able to track user’s activity at the
web-site

4. Web Caching

➢ A Web cache—also called a proxy server—is a network entity that satisfies HTTP
requests on the behalf of an origin Web server

➢ The Web-cache has disk-storage.
➢ The disk-storage contains copies of recently requested-objects.
➢ As shown in Figure 2.11, a user’s browser can be configured so that all of the user’s

HTTP requests are first directed to the Web cache.
➢ Once a browser is configured, each browser request for an object is first directed to

the Web cache.
➢ As an example, suppose a browser is requesting the object

http://www.someschool.edu/campus.gif.

➢ Here is how it works (Figure 2.11):
1) The user's HTTP requests are first directed to the web-cache.
2) If the cache has the object requested, the cache returns the requested-

object to the client.
3) If the cache does not have the requested-object, then the cache

→ connects to the original server and
→ asks for the object.

4) When the cache receives the object, the cache
→ stores a copy of the object in local-storage and

→ sends a copy of the object to the client browser (over the

existing TCP connection between the client browser and the Web

cache).

➢ A cache acts as both a server and a client at the same time.
1) The cache acts as a server when the cache

→ receives requests from a browser and

http://www.someschool.edu/campus.gif

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 23

→ sends responses to the browser.
2) The cache acts as a client when the cache

→ requests to an original server and
→ receives responses from the origin server.

➢ Advantages of caching:
1) To reduce response-time for client-request.
2) To reduce traffic on an institution’s access-link to the Internet.
3) To reduce Web-traffic in the Internet.

➢ Typically, a Web cache is purchased and installed by an ISP.

➢ For example, a university might install a cache on its campus network and

configure all of the campus browsers to point to the cache.

➢ Or a major residential ISP (such as AOL) might install one or more caches in its

network and pre configure its shipped browsers to point to the installed caches.

5. The Conditional GET

➢ Conditional GET refers a mechanism that allows a cache to verify that the objects are

up to date.
➢ An HTTP request-message is called conditional GET if

1) Request-message uses the GET method and
2) Request-message includes an If-Modified-Since: header-line.

Ex: First, on the behalf of a requesting browser, a proxy cache sends a request message to
a Web server:

Second, the Web server sends a response message with the requested object to the cache:

➢ The cache forwards the object to the requesting browser but also caches the object

locally. Importantly, the cache also stores the last-modified date along with the

object.

➢ Third, one week later, another browser requests the same object via the cache, and

the object is still in the cache.

➢ Since this object may have been modified at the Web server in the past week, the

cache performs an up-to-date check by issuing a conditional GET.

➢ Specifically, the cache sends:

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 24

➢ This conditional GET is telling the server to send the object only if the object has

been modified since the specified date.

➢ Suppose the object has not been modified since 7 Sep 2011 09:23:24. Then, fourth,

the Web server sends a response message to the cache:

We see that in response to the conditional GET, the Web server still sends a response

message but does not include the requested object in the response message.

3. File Transfer: FTP
➢ FTP is used by the local host to transfer files to or from a remote-host over the

network.
➢ FTP is used for transferring file from one host to another host.
➢ In order for the user to access the remote account, the user must provide user

identification and a password. After providing this authorization information, the
user can transfer files from the local file system to the remote file system and vice
versa.

➢ The user first provides the hostname of the remote host, causing the FTP client
process in the local host to establish a TCP connection with the FTP server process
in the remote host.

➢ The user then provides the user identification and password, which are sent over the
TCP connection as part of FTP commands

➢ Once the server has authorized the user, the user copies one or more files stored in
the local file system into the remote file system (or vice versa).

➢ As shown in Figure 2.14, the user interacts with FTP through an FTP user agent.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 25

➢ HTTP and FTP are both file transfer protocols and have many common

characteristics; for example, they both run on top of TCP. However, the two

application-layer protocols have some important differences.

➢ The most striking difference is that FTP uses two parallel TCP connections to

transfer a file, a control connection and a data connection.

➢ The control connection is used for sending control information between the two

hosts—information such as user identification, password, commands to change

remote directory, and commands to “put” and “get” files.

➢ The data connection is used to actually send a file. Because FTP uses a separate

control connection, FTP is said to send its control information out-of-band.

HTTP, as you recall, sends request and response header lines into the same TCP

connection that carries the transferred file itself.

➢ For this reason, HTTP is said to send its control information in-band.

➢ The FTP control and data connections are illustrated in Figure 2.15

➢ Here is how it works:
1) When session starts, the client initiates a control-connection with the server

on port 21.
2) The client sends user-identity and password over the control-connection.
3) Then, the server initiates data-connection to the client on port 20.
4) FTP sends exactly one file over the data-connection and then closes the

data-connection.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 26

5) Usually, the control-connection remains open throughout the duration of

the user-session.
6) But, a new data-connection is created for each file transferred within a

session.
➢ During a session, the server must maintain the state-information about the user.

➢ For example:
The server must keep track of the user's current directory.

➢ Disadvantage:

Keeping track of state-info limits the no. of sessions maintained

simultaneously by a server.

1. FTP Commands and Replies:

➢ The commands are sent from client to server.
➢ The replies are sent from server to client.
➢ The commands and replies are sent across the control-connection in 7-bit ASCII

format.
➢ Each command consists of 4-uppercase ASCII characters followed by optional

arguments.
➢ For example:

1) USER username
➢ Used to send the user identification to the server.

2) PASS password
➢ Used to send the user password to the server.

3) LIST
➢ Used to ask the server to send back a list of all the files in the current

remote directory.
4) RETR filename

➢ Used to retrieve a file from the current directory of the remote-host.
5) STOR filename

➢ Used to store a file into the current directory of the remote-host.

➢ There is typically a one-to-one correspondence between the command that the user

issues and the FTP command sent across the control connection.

➢ Each command is followed by a reply, sent from server to client.

➢ The replies are three-digit numbers, with an optional message following the number.

This is similar in structure to the status code and phrase in the status line of the HTTP

response message.

➢ Some typical replies, along with their possible messages, are as follows:
➢ For example:

1) 331 Username OK, password required

2) 125 Data-connection already open; transfer starting
3) 425 Can’t open data-connection
4) 452 Error writing file

4. Electronic Mail in the Internet

➢ e-mail is an asynchronous communication medium in which people send and read
messages.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 27

➢ e-mail is fast, easy to distribute, and inexpensive.
➢ e-mail has features such as

→ messages with attachments

→ hyperlinks
→ HTML-formatted text and
→ embedded photos.

➢ Three major components of an e-mail system (Figure 2.16):
1) User Agents

➢ User-agents allow users to read, reply to, forward, save and compose messages.

➢ For example: Microsoft Outlook and Apple Mail
2) Mail Servers

➢ Mail-servers contain mailboxes for users.
➢ A message is first sent to the sender's mail-server.
➢ Then, the sender’s mail-server sends the message to the receiver's mail-server.
➢ If the sender’s server cannot deliver mail to receiver’s server, the sender’s server

→ holds the message in a message queue and

→ attempts to transfer the message later.
3) SMTP (Simple Mail Transfer Protocol)

➢ SMTP is an application-layer protocol used for email.

➢ SMTP uses TCP to transfer mail from the sender’s mail-server to the recipient’s mail-

server.

➢ SMTP has two sides:

1) A client-side, which executes on the sender’s mail-server.
2) A server-side, which executes on the recipient’s mail-server.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 28

➢ Both the client and server-sides of SMTP run on every mail-server.
➢ When a mail-server receives mail from other mail-servers, the mail-server

acts as a server. When a mail-server sends mail to other mail-servers,

the mail-server acts as a client.

1. SMTP:

➢ SMTP is the most important protocol of the email system.
➢ Three characteristics of SMTP (that differs from other applications):

1. Message body uses 7-bit ASCII code only.
2. Normally, no intermediate mail-servers used for sending mail.
3. Mail transmissions across multiple networks through mail relaying.

To illustrate the basic operation of SMTP, let’s walk through a common scenario.
Suppose Alice wants to send Bob a simple ASCII message.

1. Alice invokes her user agent for e-mail, provides Bob’s e-mail address (for

example, bob@someschool.edu), composes a message, and instructs the user
agent to send the message.

2. Alice’s user agent sends the message to her mail server, where it is placed in a
message queue.

3. The client side of SMTP, running on Alice’s mail server, sees the message in
 the message queue. It opens a TCP connection to an SMTP server, running on
Bob’s mail server.

4. After some initial SMTP handshaking, the SMTP client sends Alice’s message
 into the TCP connection.

5. At Bob’s mail server, the server side of SMTP receives the message. Bob’s
 mail server then places the message in Bob’s mailbox.

6. Bob invokes his user agent to read the message at his convenience.

 The scenario is summarized in Figure 2.17.

An example transcript of messages exchanged between an SMTP client (C) and an
SMTP server (S).

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 29

➢ In the example above, the client sends a message (“Do you like ketchup? How

about pickles?”) from mail server crepes.fr to mail server hamburger.edu.

➢ As part of the dialogue, the client issued five commands: HELO (an abbreviation

for HELLO), MAIL FROM, RCPT TO, DATA, and QUIT.

➢ These commands are self-explanatory.

➢ The client also sends a line consisting of a single period, which indicates the end

of the message to the server. (In ASCII jargon, each message ends with

CRLF.CRLF, where CR and LF stand for carriage return and line feed,

respectively.)

➢ The server issues reply to each command, with each reply having a reply code and

some (optional) English-language explanation.

➢ We mention here that SMTP uses persistent connections: If the sending mail

server has several messages to send to the same receiving mail server, it can send

all of the messages over the same TCP connection.

➢ For each message, the client begins the process with a new MAIL FROM:

crepes.fr, designates the end of message with an isolated period, and issues QUIT

only after all messages have been sent.

➢ It is highly recommended that you use Telnet to carry out a direct dialogue with

an SMTP server.

➢ To do this, issue telnet serverName 25 where serverName is the name of a local

mail server. When you do this, you are simply establishing a TCP connection

between your local host and the mail server.

➢ After typing this line, you should immediately receive the 220 reply from the

server.

➢ Then issue the SMTP commands HELO, MAIL FROM, RCPT TO, DATA,

CRLF.CRLF, and QUIT at the appropriate times. It is also highly recommended.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 30

2. Comparison of SMTP with HTTP

3. Mail Message Formats

➢ When an e-mail message is sent from one person to another, a header containing

peripheral information precedes the body of the message.

➢ The header lines and the body of the message are separated by a blank line.

➢ Every header must have a From: header line and a To: header line; a header may

include a Subject: header line as well as other optional header lines.

A typical message header looks like this

4. Mail Access Protocols

➢ It is not realistic to run the mail-servers on PC & laptop. This is because
→ mail-servers must be always-on and
→ mail-servers must have fixed IP addresses

➢ Problem: How a person can access the email using PC or laptop?

➢ Solution: Use mail access protocols.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 31

➢ Three mail access protocols:
1. Post Office Protocol (POP)

2. Internet Mail Access Protocol (IMAP) and

3. HTTP.

➢ From the above Figure 2.18, provides a summary of the protocols that are used for
Internet mail: SMTP is used to transfer mail from the sender’s mail server to the
recipient’s mail server; SMTP is also used to transfer mail from the sender’s user
agent to the sender’s mail server.

➢ A mail access protocol, such as POP3, is used to transfer mail from the recipient’s
mail server to the recipient’s user agent.

1. Post Office Protocol (POP3)

➢ POP3 is an extremely simple mail access protocol.

➢ POP3 begins when the user agent (the client) opens a TCP connection to

the mail server (the server) on port 110.

➢ With the TCP connection established, POP3 progresses through three

phases: authorization, transaction, and update.

➢ During the authorization phase, the user agent sends a username and a

password to authenticate the user.

➢ During the transaction phase, the user agent retrieves messages; also

during this phase, the user agent can mark messages for deletion, remove

deletion marks, and obtain mail statistics.

➢ The update phase occurs after the client has issued the quit command,

ending the POP3 session; at this time, the mail server deletes the messages

that were marked for deletion.

➢ In a POP3 transaction, the user agent issues commands, and the server

responds to each command with a reply. There are two possible responses:

+OK used by the server to indicate that the previous command was fine;

and -ERR, used by the server to indicate that something was wrong with

the previous command.

➢ The authorization phase has two principal commands: user <username>

and pass <password>.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 32

➢ A user agent using POP3 can often be configured (by the user) to

“download and delete” or to “download and keep.”

➢ In the download-and-delete mode, the user agent will issue the list, retr,

and delecommands.

➢ Example:

➢ A problem with this download-and-delete mode is that the recipient cannot

access mail messages from multiple machines.

➢ In the download-and keep mode, the user agent leaves the messages on the

mail server after downloading them. In this case, user can reread messages

from different machines.

➢ Disadvantage:

The user cannot manage the mails at remote mail-server. For ex: user

cannot delete messages.

2. IMAP

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 33

➢ IMAP is another mail access protocol, which has more features than POP.
➢ An IMAP server will associate each message with a folder.
➢ When a message first arrives at server, the message is associated with

recipient's INBOX folder
➢ Then, the recipient can

→ move the message into a new, user-created folder
→ read the message
→ delete the message and
→ search remote folders for messages matching specific criteria.

➢ An IMAP server maintains user state-information across IMAP sessions.
➢ IMAP permits a user-agent to obtain components of messages.
➢ For example, a user-agent can obtain just the message header of a message.

➢ With POP3 access, once user has downloaded his messages to the local
machine, he can create mail folders and move the downloaded messages into
the folders.

➢ User can then delete messages, move messages across folders, and search for
messages (by sender name or subject).

➢ But this paradigm—namely, folders and messages in the local machine—poses
a problem for the nomadic user, who would prefer to maintain a folder
hierarchy on a remote server that can be accessed from any computer. This is
not possible with POP3—the POP3 protocol does not provide any means for a
user to create remote folders and assign messages to folders.

➢ To solve this and other problems, the IMAP protocol was invented. Like POP3,
IMAP is a mail access protocol. It has many more features than POP3, but it is
also significantly more complex.

➢ An IMAP server will associate each message with a folder; when a message
first arrives at the server, it is associated with the recipient’s INBOX folder.

➢ The recipient can then move the message into a new, user-created folder, read
the message, delete the message, and so on.

➢ The IMAP protocol provides commands to allow users to create folders and
move messages from one folder to another.

➢ IMAP also provides commands that allow users to search remote folders for
messages matching specific criteria.

➢ Another important feature of IMAP is that it has commands that permit a user
agent to obtain components of messages.

➢ For example, a user agent can obtain just the message header of a message or
just one part of a multipart MIME message. This feature is useful when there is
a low-bandwidth connection (for example, a slow-speed modem link) between
the user agent and its mail server. With a low bandwidth connection, the user
may not want to download all of the messages in its mailbox, particularly
avoiding long messages that might contain, for example, an audio or video clip

3. Web-Based E-Mail

➢ HTTPs are now used for Web-based email accessing.
➢ The user-agent is an ordinary Web browser.
➢ The user communicates with its remote-server via HTTP.
➢ Now, Web-based emails are provided by many companies

including Google, Yahoo etc.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 34

5. DNS-The Internet’s Directory Service

➢ DNS is an internet service that translates domain-names into IP addresses.

For ex: the domain-name “www.google.com” might translate to IP address

“198.105.232.4”.
➢ Because domain-names are alphabetic, they are easier to remember for human

being.
➢ But the Internet is really based on IP addresses (DNS -Domain Name System).

1. Services Provided by DNS:

➢ The DNS is

1) A distributed database implemented in a hierarchy of DNS servers.
2) An application-layer protocol that allows hosts to query the distributed

database.
➢ DNS servers are often UNIX machines running the BIND software.
➢ The DNS protocol runs over UDP and uses port 53. (BIND -Berkeley Internet Name

Domain)
➢ DNS is used by application-layer protocols such as HTTP, SMTP, and FTP.

➢ Assume a browser requests the URL www.someschool.edu/index.html.
➢ Next, the user’s host must first obtain the IP address of www.someschool.edu

DNS provides a few other important services in addition to translating hostnames to IP

addresses:

1. Host aliasing:
a. A host with a complicated hostname can have one or more alias names. For

example, a hostname such as relay1.west-coast.enterprise.com could have, say,

two aliases such as enterprise.com and www.enterprise.com.

http://www.google.com/
http://www.someschool.edu/
http://www.someschool.edu/
http://www.enterprise.com/

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 35

b. In this case, the hostname relay1.westcoast.enterprise.com is said to be a
canonical hostname.

c. Alias hostnames, when present, are typically more mnemonic than canonical
hostnames.

d. DNS can be invoked by an application to obtain the canonical hostname for a
supplied alias hostname as well as the IP address of the host.
2. Mail server aliasing:

a. For obvious reasons, it is highly desirable that e-mail addresses be mnemonic.
b. For example, if Bob has an account with Hotmail, Bob’s e-mail address might be

as simple as bob@hotmail.com.
c. However, the hostname of the Hotmail mail server is more complicated and much

less mnemonic than simply hotmail.com (for example, the canonical hostname
might be something like relay1.west-coast.hotmail.com).

d. DNS can be invoked by a mail application to obtain the canonical hostname for a
supplied alias hostname as well as the IP address of the host.
3. Load distribution:

a. DNS is also used to perform load distribution among replicated servers,
such as replicated Web servers.

b. Busy sites, such as cnn.com, are replicated over multiple servers, with each server
running on a different end system and each having a different IP address.

c. For replicated Web servers, a set of IP addresses is thus associated with one
canonical hostname.

d. The DNS database contains this set of IP addresses.
e. When clients make a DNS query for a name mapped to a set of addresses, the

server responds with the entire set of IP addresses, but rotates the ordering of the
addresses within each reply.

f. Because a client typically sends its HTTP request message to the IP address that
is listed first in the set, DNS rotation distributes the traffic among the replicated
servers.

2. Overview of How DNS Works

➢ Suppose that some application running in a user’s host needs to translate a

hostname to an IP address. The application will invoke the client side of DNS,

specifying the hostname that needs to be translated.

➢ DNS in the user’s host then takes over, sending a query message into the network.

➢ All DNS query and reply messages are sent within UDP datagrams to port 53.

After a delay, ranging from milliseconds to seconds, DNS in the user’s host

receives a DNS reply message that provides the desired mapping. This mapping is

then passed to the invoking application.

➢ In this centralized design, clients simply direct all queries to the single DNS

server, and the DNS server responds directly to the querying clients. Although the

simplicity of this design is attractive, it is inappropriate for today’s Internet, with

its vast (and growing) number of hosts.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 36

➢ The problems with a centralized design include:

1. A single point of failure. If the DNS server crashes, so does the entire

Internet!

2. Traffic volume. A single DNS server would have to handle all DNS queries.

3. Distant centralized database.

➢ A single DNS server cannot be “close to” all the querying

clients.

➢ If we put the single DNS server in New York City, then all queries

from Australia must travel to the other side of the globe, perhaps

over slow and congested links.

➢ This can lead to significant delays.

4. Maintenance.

➢ The single DNS server would have to keep records for all Internet

hosts.

➢ This centralized database be huge, but it would have to be updated

frequently to account for every new host.

2.1 A Distributed, Hierarchical Database

➢ In order to deal with the issue of scale, the DNS uses a large number of
servers, organized in a hierarchical fashion and distributed around the world.

➢ There are three classes of DNS servers—root DNS servers, top-level
domain (TLD) DNS servers, and authoritative DNS servers—organized in a
hierarchy.

1. Root DNS servers.
➢ In the Internet there are 13 root DNS servers (labeled A through M),

most of which are located in North America.

➢ Although we have referred to each of the 13 root DNS servers as if it were
a single server, each “server” is actually a network of replicated servers,

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 37

for both security and reliability purposes.
➢ Altogether, there are 247 root servers.

2. Top-level domain (TLD) servers:

➢ These servers are responsible for top-level domains such as com,
org, net, edu, and gov, and all of the country top-level domains
such as in,uk, fr, ca.

3. Authoritative DNS servers:
➢ Every organization with publicly accessible hosts on the Internet

must provide publicly accessible DNS records that map the names
of those hosts to IP addresses.

➢ An organization’s authoritative DNS server houses these DNS
records.

➢ There is another important type of DNS server called the local
DNS server.

➢ A local DNS server does not strictly belong to the hierarchy of
servers but is nevertheless central to the DNS architecture.

➢ Each ISP—such as a university, an academic department, an
employee’s company, or a residential ISP—has a local DNS
server.

Two Types of Interaction:

1. Recursive Queries:

➢ The example shown in Figure 2.21 makes use of both recursive queries
and
iterative queries.

➢ The query sent from cis.poly.edu to dns.poly.edu is a recursive query,
since the query asks dns.poly.edu to obtain the mapping on its behalf.

➢ But the subsequent three queries are iterative since all of the replies are
directly returned to dns.poly.edu. In theory, any DNS query can be
iterative or recursive.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 38

2. Iterative Queries:

➢ Figure 2.21: The query from the requesting host to the local DNS server is

recursive, and the remaining queries are iterative.

➢ Here DNS query will be sent to Local DNS server, then to root server. Root

server sends the IP address of TLD server.

➢ Now local DNS server sends query to TLD DNS server.

➢ TLD DNS server sends the IP address of authoritative DNS server to local DNS

server.

➢ Now Local DNS server sends query to authoritative DNS server.

➢ Authoritative DNS server sends the IP address of host to local DNS server.

➢ Local DNS server sends it to the host.

2.2 DNS Caching

➢ In a query chain, when a DNS server receives a DNS reply it can cache the

mapping in its local memory.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 39

➢ If a hostname/IP address pair is cached in a DNS server and another query
arrives to the DNS server for the same hostname, the DNS server can
provide the desired IP address, even if it is not authoritative for the
hostname.

➢ Because hosts and mappings between hostnames and IP addresses are by no
means permanent, DNS servers discard cached information after a period of
time (often set to two days).

2.3 DNS Records and Messages

➢ The DNS server stores resource-records (RRs).
➢ RRs provide hostname-to-IP address mappings.
➢ Each DNS reply message carries one or more resource-records.
➢ A resource-record is a 4-tuple that contains the following fields:

(Name, Value, Type, TTL)
➢ TTL (time to live) determines when a resource should be removed

from a cache.
➢ The meaning of Name and Value depend on Type:

1) If Type=A, then Name is a hostname and Value is the IP address for the
hostname.

➢ Thus, a Type A record provides the standard hostname-to-IP address
mapping.

➢ For ex: (relay1.bar.foo.com, 145.37.93.126, A)
2) If Type=NS, then

I. Name is a domain (such as foo.com) and
II. Value is the hostname of an authoritative DNS server.

➢ This record is used to route DNS queries further along in the query
chain.

➢ For ex: (foo.com, dns.foo.com, NS) is a Type NS record.
3) If Type=CNAME, then Value is a canonical hostname for the alias
hostname Name.

➢ This record can provide querying hosts the canonical name for a
hostname.

➢ For ex: (foo.com, relay1.bar.foo.com, CNAME) is a CNAME
record.

4) If Type=MX, Value is the canonical name of a mail-server that has an
alias hostname Name.

➢ MX records allow the hostnames of mail-servers to have simple
aliases.

➢ For ex: (foo.com, mail.bar.foo.com, MX) is an MX record

2.4 DNS Messages

➢ Two types of DNS messages: 1) query and 2) reply.
➢ Both query and reply messages have the same format.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 40

The various fields in a DNS message are as follows (Figure 2.23):

1) Header Section

➢ The first 12 bytes is the header-section.
➢ This section has following fields:

1. Identification:

➢ This field identifies the query.
➢ This identifier is copied into the reply message to a query.
➢ This identifier allows the client to match received replies with sent

queries.
2. Flag:

➢ This field has following 3 flag-bits:

a) Query/Reply

This flag-bit indicates whether the message is a query (0) or a reply

(1).

b) Authoritative

This flag-bit is set in a reply message when a DNS server is an

authoritative-server.

c) Recursion Desired

This flag-bit is set when a client desires that the DNS server

perform recursion.

3. Four Number-of-Fields:

These fields indicate the no. of occurrences of 4 types of data sections that follow

the header.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 41

2) Question Section

➢ This section contains information about the query that is being made.
➢ This section has following fields:

I. Name

This field contains the domain-name that is being queried.

II. Type

This field indicates the type of question being asked about the domain-name.

3) Answer Section

➢ This section contains a reply from a DNS server.
➢ This section contains the resource-records for the name that was originally queried.
➢ A reply can return multiple RRs in the answer, since a hostname can have multiple IP

addresses.
4) Authority Section

This section contains records of other authoritative-servers.

5) Additional Section

This section contains other helpful records.

2.5 Inserting Records into the DNS

➢ Suppose you have just created an exciting new startup company called Network Utopia.

➢ The first thing you’ll surely want to do is register the domain name networkutopia.com at

a registrar.

➢ A registrar is a commercial entity that verifies the uniqueness of the domain name, enters

the domain name into the DNS database (as discussed below), and collects a small fee

from you for its services.

➢ For the primary authoritative server for networkutopia.com, the registrar would insert the

following two resource records into the DNS system:

(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

6. Peer-to-Peer Applications

➢ Peer-to-peer architecture is different from client-server architecture.
➢ In P2P, each node (called peers) acts as a client and server at the same time.
➢ The peers are not owned by a service-provider.
➢ The peers not supposed to be always listening on the Internet.
➢ The peers are dynamic, i.e., some peers will join some peers will leave from time to time.

1. P2P File Distribution

➢ In P2P file distribution, each peer can redistribute any portion of the file it has

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 42

received to any other peers, thereby assisting the server in the distribution

process.

➢ The most popular P2P file distribution protocol is BitTorrent

 Scalability of P2P Architectures

➢ Consider the following scenarios:

Suppose a server has a large file and ‘N’ computers want to download the file

(Figure 2.24).
1) In client-server architecture, each of the N computers will

→ connect to the server &

→ download a copy of the file to local-host.
2) In P2P architecture, a peer need not necessarily download a copy from the server.

Rather, the peer may download from other peers

Case 1: Client-Server Architecture
➢ We have 2 observations:

1) The server must transmit one copy of the file to each of the N peers.

➢ Since the server's upload rate is us, the distribution-time is at least NF/us.
2) The peer with the lowest download-rate cannot obtain all F bits of the file in less than F/dmin.
➢ Thus, the minimum distribution-time is at least F/ dmin.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 43

For N large file, the client-server distribution time is given by NF/us. Thus, the distribution
time increases linearly with the number of peers N.

Case 2: P2P Architecture

❖ Each peer can assist the server in distributing the file. In particular, when a peer receives

some file data, it can use its own upload capacity to redistribute the data to other peers.

• We have 2 observations:

1) At the beginning of the distribution, only the server has the file.

➢ So, the minimum distribution-time is at least F/us.

2) The peer with the lowest download-rate cannot obtain all F bits of the file in less than

F/dmin.

➢ Thus, the minimum distribution-time is at least F/ dmin.

3) The total upload capacity of the system as a whole is utotal = us + u1 + u2 . . . + uN.

➢ The system must deliver F bits to each of the N peers.

➢ Thus, the minimum distribution-time is at least NF/(us + u1 + u2 . . . + uN).

➢ Putting above 3 observations together, we have

➢ Above Equations provides a lower bound for the minimum distribution time for

the P2P architecture.

➢ It turns out that if we imagine that each peer can redistribute a bit as

 soon as it receives the bit, then there is a redistribution scheme that

actually achieves this lower bound [Kumar 2006].

➢ In reality, where chunks of the file are redistributed rather than individual bits,

Above Equation serves as a good approximation of the actual minimum

distribution time.

➢ Thus, let’s take the lower bound provided by Above Equation as the actual

minimum distribution time, that is,

➢ Figure 2.23: compares the minimum distribution-time for the client-server and

P2P architectures.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 44

➢ The above comparison shows that when N is large,
• P2P architecture is consuming less distribution-time.
• P2P architecture is self-scaling.

BitTorrent

➢ In BitTorrent, the collection of all peers participating in the distribution of a particular file is
called a torrent.

➢ Peers in a torrent download equal-size chunks of the file from one another. Chunk size = 256

KBytes.
➢ When a peer first joins a torrent, it has no chunks. Over time it accumulates more and more

chunks. While it downloads chunks it also uploads chunks to other peers.
➢ Once a peer has acquired the entire file, the peer may leave the torrent or remain in the torrent

and continue to upload chunks to other peers.
➢ Also, any peer may leave the torrent at any time with only a subset of chunks, and later rejoin

the torrent.
➢ Each torrent has an infrastructure node called tracker.
➢ Here is how it works (Figure):

1) When a peer joins a torrent, the peer
→ registers itself with the tracker and
→ periodically informs the tracker that it is in the torrent.

2) When a new peer joins the torrent, the tracker
→ randomly selects a subset of peers (for concreteness, say 50) from the set of
participating peers and

→ sends the IP addresses of these 50 peers to the new peer.
3) Then, the new peer tries to establish concurrent TCP connections with all peers on

this list.
➢ All peers on the list are called neighboring-peers.
4) Periodically, the new peer will ask each of the neighboring-peers(Over the TCP

connections) for the set of chunks.
➢ To choose the chunks to download, the peer uses a technique called rarest-first.
➢ Main idea of rarest-first:

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 45

→ Determine the chunks that are the rarest among the neighbors and
→ Request then those rarest chunks first.

➢ To determine which requests peer responds to, BitTorrent uses a clever trading algorithm.
➢ The basic idea is that peer gives priority to the neighbors that are currently supplying data

to it at the highest rate. Specifically, for each of its neighbors, peer continually measures
the rate at which it receives bits and determines the four peers that are feeding bits at the
highest rate.

➢ Peer then reciprocates by sending chunks to these same four peers.
➢ Every 10 seconds, peer recalculates the rates and possibly modifies the set of four peers.
➢ In BitTorrent lingo, these four peers are said to be unchoked.
➢ Importantly, every 30 seconds, peer also picks one additional neighbor at random and

sends it chunks.
➢ In BitTorrent lingo, this randomly selected peer is said to be optimistically

unchoked.

➢ The random neighbor selection also allows new peers to get chunks, so that they can
have something to trade.

➢ The incentive mechanism for trading just described is often referred to as tit-for-tat.

 2. Distributed Hash Table:

➢ Centralized version of this simple database will simply contain (key, value) pairs. We
query the database with a key.

➢ If there are one or more key-value pairs in the database that match the query key, the
database returns the corresponding values.

➢ Building such a database is straightforward with client-server architecture that stores all
the (key, value) pairs in one central server.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 46

➢ P2P version of this database will store the (key, value) pairs over millions of peers.
➢ In the P2P system, each peer will only hold a small subset of the totality of the (key,

value) pairs. We’ll allow any peer to query the distributed database with a particular
key. The distributed database will then locate the peers that have the corresponding
(key, value) pairs and return the key-value pairs to the querying peer.

➢ Any peer will also be allowed to insert new key-value pairs into the database.
Such a distributed database is referred to as a distributed hash table (DHT).

➢ One naïve approach to building a DHT is to randomly scatter the (key, value) pairs
across all the peers and have each peer maintain a list of the IP addresses of all
participating peers. In this design, the querying peer sends its query to all other
peers, and the peers containing the (key, value) pairs that match the key can respond
with their matching pairs.

➢ Such an approach is completely unscalable as it would require each peer to know
about all other peers and have each query sent to all peers.

➢ An elegant approach to designing a DHT is to first assign an identifier to each peer,
where each identifier is an integer in the range [0, 2n -1] for some fixed n.

➢ This also require each key to be an integer in the same range.
➢ To create integers out of such keys, we will use a hash function that maps each key

(e.g., social security number) to an integer in the range [0, 2 n -1].

Problem of storing the (key, value) pairs in the DHT:

o The central issue here is defining a rule for assigning keys to peers. Given
that each peer has an integer identifier and that each key is also an integer in
the same range, a natural approach is to assign each (key, value) pair to the
peer whose identifier is the closest to the key.

o To implement such a scheme, let’s define the closest peer as the closest
successor of the key.

o Now suppose a peer, Alice, wants to insert a (key, value) pair into the DHT.
Conceptually, this is straightforward: She first determines the peer whose
identifier is closest to the key; she then sends a message to that peer,
instructing it to store the (key, value) pair.

o If Alice were to keep track of all the peers in the system (peer IDs and
corresponding IP addresses), she could locally determine the closest peer. But
such an approach requires each peer to keep track of all other peers in the
DHT—which is completely impractical for a large scale system with millions
of peers.

3. Circular DHT

➢ To address this problem of scale, let’s now consider organizing the peers into a circle.

In this circular arrangement, each peer only keeps track of its immediate successor
and immediate predecessor (modulo 2n).

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 47

➢ Each peer is only aware of its immediate successor and predecessor; for example,
peer 5 knows the IP address and identifier for peers 8 and 4 but does not
necessarily know anything about any other peers that may be in the DHT.

➢ Now suppose that peer 3 wants to determine which peer in the DHT is responsible
for key 11.

➢ Using the circular overlay, the origin peer (peer 3) creates a message saying “Who
is responsible for key 11?” and sends this message clockwise around the circle.

➢ Whenever a peer receives such a message, because it knows the identifier of its
successor and predecessor, it can determine whether it is responsible for (that is,
closest to) the key in question.

➢ If a peer is not responsible for the key, it simply sends the message to its
successor. So, for example, when peer 4 receives the message asking about key
11, it determines that it is not responsible for the key (because its successor is
closer to the key), so it just passes the message along to peer 5.

➢ This process continues until the message arrives at peer 12, who determines that it
is the closest peer to key11.

➢ At this point, peer 12 can send a message back to the querying peer, peer 3,
indicating that it is responsible for key 11.

➢ Although each peer is only aware of two neighboring peers, to find the node
responsible for a key (in the worst case), all N nodes in the DHT will have to
forward a message around the circle;

➢ N/2 messages are sent on average.
➢ Shortcuts are used to expedite the routing of query messages. Specifically, when a

peer receives a message that is querying for a key, it forwards the message to the
neighbor (successor neighbor or one of the shortcut neighbors) which is the closet
to the key.

➢ When peer 4 receives the message asking about key 11, it determines that the
closet peer to the key (among its neighbors) is its shortcut neighbor 10 and then
forwards the message directly to peer 10.

➢ Clearly, shortcuts can significantly reduce the number of messages used to
process a Query

4. Peer Churn

➢ In P2P systems, a peer can come or go without warning.
➢ Thus, when designing a DHT, we also must be concerned about maintaining the DHT

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 48

overlay in the presence of such peer churn.
➢ To handle peer churn, we will now require each peer to track its first and second

successors;
➢ for example, peer 4 now tracks both peer 5 and peer 8. We also require each peer to

periodically verify that its two successors are alive
➢ Let’s now consider how the DHT is maintained when a peer abruptly leaves.
➢ For example, suppose peer 5 in above figure abruptly leaves.
➢ In this case, the two peers preceding the departed peer (4 and 3) learn that 5 has departed,

since it no longer responds to ping messages.
➢ Peers 4 and 3 thus need to update their successor state information.
➢ Let’s consider how peer 4 updates its state:

1. Peer 4 replaces its first successor (peer 5) with its second successor (peer 8).

2. Peer 4 then asks its new first successor (peer 8) for the identifier and IP address

of its immediate successor (peer 10). Peer 4 then makes peer 10 its second

successor.

3. Let’s say a peer with identifier 13 wants to join the DHT, and at the time of

joining, it only knows about peer 1’s existence in the DHT.

4. Peer 13 would first send peer 1 a message, saying “what will be 13’s

predecessor and successor?” This message gets forwarded through the DHT until

it reaches peer 12, who realizes that it will be 13’s predecessor and that its current

successor, peer 15, will become 13’s successor.

5. Next, peer 12 sends this predecessor and successor information to peer 13. Peer

13 can now join the DHT by making peer 15 its successor and by notifying peer

12 that it should change its immediate successor to 13.

7. Socket Programming: Creating Network Applications
➢ Two types of network-applications:

1) First type is an implementation whose operation is specified in a protocol standard
(RFC)
• Such an application is referred to as “open”.
• The client & server programs must conform to the rules dictated by the RFC.

2) Second type is a proprietary network-application.
• The client & server programs use an application-layer protocol not openly publ

ished in a RFC.
• A single developer creates both the client and server programs.

• The developer has complete control over the code.

➢ During development phase, the developer must decide whether the application uses TCP or

UDP.

1. Socket Programming with UDP
➢ Consider client-server application in which following events occurs:

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 49

1) The client
→ reads a line of characters (data) from the keyboard and
→ sends the data to the server.

2) The server receives the data and converts the characters to uppercase.
3) The server sends the modified data to the client.
4) The client receives the modified data and displays the line on its screen.

➢ Figure 2.28 highlights the main socket-related activity of the client and server that

communicate over the UDP transport service.

➢ The client program is called UDPClient.py, and the server program is called UDPServer.py.

➢ The client-side of the application is as follows:

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 50

Here, AF_INET indicates address family
SOCK_DGRAM indicates UDP as socket type contains server’s IP

address & port#

➢ The server-side of the application is as follows:

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 51

2. Socket Programming with TCP:

➢ Unlike UDP, TCP is a connection-oriented protocol. This means that before the client and
server can start to send data to each other, they first need to handshake and establish a TCP
connection.

➢ One end of the TCP connection is attached to the client socket and the other end is attached
to a server socket.

➢ When creating the TCP connection, we associate with it the client socket address (IP
address and port number) and the server socket address (IP address and port number).

➢ With the TCP connection established, when one side wants to send data to the other side, it
just drops the data into the TCP connection via its socket. This is different from UDP, for
which the server must attach a destination address to the packet before dropping it into the
socket.

➢ During the three-way handshake, the client process knocks on the welcoming door of the
server process. When the server “hears” the knocking, it creates a new door— more
precisely, a new socket that is dedicated to that particular client

➢ In Figure 2.29, the client process can send arbitrary bytes into its socket, and TCP
guarantees that the server process will receive (through the connection socket) each byte
in the order sent.

➢ TCP thus provides a reliable service between the client and server processes.
Furthermore, just as people can go in and out the same door, the client process not only
sends bytes into but also receives bytes from its socket; similarly, the server process not
only receives bytes from but also sends bytes into its connection socket.

➢ We use the same simple client-server application to demonstrate socket programming
with TCP: The client sends one line of data to the server, the server capitalizes the line
and sends it back to the client.

➢ Figure 2.30 highlights the main socket-related
activity of the client and server that communicate over the TCP transport service.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 52

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 53

Module-1 Questions

1) Explain client-server & P2P architecture. (8*)
2) With block diagram, explain how application processes communicate through a socket. (8*)
3) Explain 4 transport services available to applications. (4)
4) Briefly explain 2 transport layer protocols. (4)
5) With block diagram, explain the working of Web & HTTP. (8*)
6) Explain HTTP non-persistent & persistent connections. (8*)
7) With general format, explain HTTP request- & response-messages. (8*)
8) With a diagram, explain how cookies are used in user-server interaction. (6*)
9) With a diagram, explain the working of web caching. (6*)
10) With a diagram, explain the working of FTP. (6*)
11) With a diagram, explain the working of e-mail system. (6*)
12) Briefly explain 3 mail access protocols. (6*)
13) Briefly explain the working of DNS. (8*)
14) With general format, explain DNS messages. (6*)
15) Explain P2P File Distribution. (6)
16) With a diagram, explain the working of BitTorrent. (6*)
17) With a diagram, explain the working of Distributed Hash Table. (6)
18) Draw flow diagram for the client-server application using TCP. Also, write code for the

client- & server-sides of the application. (8*)
19) Draw flow diagram for the client-server application using UDP. Also, write code for the

client- & server-sides of the application. (8)

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 1

Module-2 Transport Layer

Transport layer resides in between Application layer and Network layer. It has the critical

role of providing communication services directly to the application processes running on

different hosts.

3.1 Introduction and Transport-Layer Services:

➢ A transport-layer protocol provides for logical communication between application

processes running on different hosts.

➢ Logical communication - from an application’s perspective, it is assumed as, the hosts

running the processes were directly connected; in reality, the hosts may be in remote

location, connected via numerous routers and a wide range of link types.

➢ Application processes use the logical communication provided by the transport layer to

send messages to each other, free from the worry of the details of the physical

infrastructure used to carry these messages.

➢ Figure 3.1, transport-layer provides logical rather than physical communication between

application processes.

➢ As shown in Figure 3.1, transport-layer protocols are implemented in the end systems but

not in network routers.

➢ On the sending side, the transport layer converts the application-layer messages it

receives from a sending application process into transport-layer packets, known as

transport-layer segments.

➢ This is done by (possibly) breaking the application messages into smaller chunks and

adding a transport-layer header to each chunk to create the transport-layer segment.

➢ The transport layer then passes the segment to the network layer at the sending end

system, where the segment is encapsulated within a network-layer packet (a datagram)

and sent to the destination.

➢ On the receiving side, the network layer extracts the transport-layer segment from the

datagram and passes the segment up to the transport layer.

➢ The transport layer then processes the received segment, making the data in the segment

available to the receiving application.

➢ Internet has two protocols—TCP and UDP. Each of these protocols provides a different

set of transport-layer services to the invoking application.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 2

3.1.1 Relationship Between Transport and Network Layers:
➢ Transport-layer protocol provides logical communication between

processes running on different hosts, a network-layer protocol

provides logical communication between hosts.

➢ Transport-layer protocols live in the end systems.

➢ Within an end system, a transport protocol moves messages from

application processes to the network layer and vice versa.

➢ Intermediate routers will not recognize, any information that the

transport layer may have added to the application messages.

➢ Transport layer provides reliable service where as network layer

provides unreliable service.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 3

3.1.2 Overview of the Transport Layer in the Internet:

Two protocols at transport layer are:

➢ UDP (User Datagram Protocol), provides an unreliable, connectionless

service to the invoking application.

➢ TCP (Transmission Control Protocol), provides a reliable, connection-

oriented service to the invoking application.

➢ Transport layer packet is referred as a segment. Transport-layer packet

for TCP is referred as a segment and for UDP as a datagram.

1. Responsibility of IP at Network layer:

➢ The Internet’s network-layer protocol has a name—IP, for Internet

Protocol. IP provides logical communication between hosts.

➢ The IP service model is a best-effort delivery service. IP makes “best

effort” to deliver segments between communicating hosts.

➢ IP does not guarantee segment delivery, orderly delivery of segments and

the integrity of the data in the segments. Hence, IP is an unreliable

service.

➢ Every host has at least one network-layer address, called IP address.

2. Responsibility of UDP and TCP at Transport layer:

➢ UDP and TCP extends IP’s delivery service between two end systems to a

delivery service between two processes running on the end systems.

➢ Extending host-to-host delivery to process-to-process delivery is called

transport-layer multiplexing and demultiplexing.

➢ UDP and TCP provides integrity checking by including error detection

fields in their segments’ headers.

 3. Services provided by UDP & TCP:

UDP is an unreliable service—it does not guarantee that data sent by one process will

arrive intact to the destination process. UDP traffic is unregulated.

TCP Service:

➢ Provides reliable data transfer. Using flow control,
sequence numbers, acknowledgments, and timers.

➢ TCP ensures that data is delivered from sending process to
receiving process, correctly and in order.

➢ TCP converts IP’s unreliable service between end systems

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 4

into a reliable data transport service between processes.
➢ TCP provides congestion control.

➢ TCP congestion control prevents any one TCP
connection from swamping the links and routers
between communicating hosts with an excessive
amount of traffic.

➢ TCP strives to give each connection traversing a
congested link an equal share of the link bandwidth.

➢ Regulates the rate at which the sending sides of TCP
connections can send traffic into the network.

3.2 Multiplexing and Demultiplexing

➢ When the transport layer in receiving host receives data from the network layer

below, it needs to direct the received data to one of the four processes P1, P2, P3,

P4.

➢ A process can have one or more sockets, through which data passes from the

network

to the process and through which data passes from the process to the network.

Each

socket has a unique identifier.

➢ Thus, as shown in Figure above, the transport layer in the receiving host does not

deliver data directly to a process, but instead to an intermediary socket.

➢ Each transport-layer segment has a set of fields in the segment to redirect data to

above layer. At the receiving end, the transport layer examines these fields to

identify

the receiving socket and then directs the segment to that socket.

➢ Delivering the data in a transport-layer segment to the correct socket is called

demultiplexing.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 5

➢ Gathering data chunks at the source host from different sockets, encapsulating

each

data chunk with header information to create segments, and passing the segments

to

the network layer is called multiplexing.

➢ The transport layer in the middle host in Figure above must demultiplex

segments

arriving from the network layer below to either process P1 or P2 above;

➢ Demultiplexing is done by directing the arriving segment’s data to the

corresponding

process’s socket.

➢ The transport layer in the middle host must also gather outgoing data from

these sockets, form transport-layer segments, and pass these segments down to

the network

layer

Transport-layer multiplexing requires:

(1) Unique identifiers for sockets

(2) Each segment must have special fields that indicate the socket to which the

segment is to be delivered.

These special fields, are the source port number field and the destination port

number field.

➢ Each port number is a 16-bit number, ranging from 0 to 65535.

➢ The port numbers ranging from 0 to 1023 are called well-known port numbers

➢ They are reserved for use by well-known application protocols such as HTTP

(80) and FTP (21).

➢ Each socket in the host could be assigned a port number, and when a segment

arrives at the host, the transport layer examines the destination port number in the

segment and directs the segment to the corresponding socket.

➢ The segment’s data then passes through the socket into the attached process.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 6

Connectionless Multiplexing and Demultiplexing

➢ clientSocket = socket (socket.AF_INET, socket.SOCK_DGRAM)

➢ When a UDP socket is created, the transport layer automatically assigns a port

number to the socket.

➢ The transport layer assigns a port number in the range 1024 to 65535 that is

currently not being used by any other UDP port in the host.

➢ Associate a specific port number (say, 19157) to this UDP socket via the socket

bind() method:

➢ clientSocket.bind((‘’, 19157))

UDP multiplexing/demultiplexing:

➢ Suppose a process in Host A, with UDP port 19157, wants to send a chunk of

application data to a process with UDP port 46428 in Host B.

➢ The transport layer in Host A creates a transport-layer segment that includes the

application data, the source port number (19157), the destination port number

(46428).

➢ The transport layer then passes the resulting segment to the network layer.

➢ The network layer encapsulates the segment in an IP datagram and makes a best-

effort attempt to deliver the segment to the receiving host.

➢ If the segment arrives at the receiving Host B, the transport layer at the receiving

host examines the destination port number in the segment (46428) and delivers

the segment to its socket identified by port 46428.

➢ As UDP segments arrive from the network, Host B directs (demultiplexes) each

segment to the appropriate socket by examining the segment’s destination port

number.

➢ UDP socket is fully identified by a two-tuple consisting of a destination IP

address and a destination port number.

➢ If two UDP segments have different source IP addresses and/or source port

numbers, but have the same destination IP address and destination port number,

then the two segments will be directed to the same destination process via the

same destination socket.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 7

➢ Host A-to-B: In the segment, the source port number serves as part of a “return

address”—when B wants to send a segment back to A, the destination port in the

B-to-A segment will take its value from the source port value of the A-to-B

segment.

➢ UDPServer.py, the server uses the recvfrom() method to extract the clientside

(source) port number from the segment it receives from the client; it then sends a

new segment to the client, with the extracted source port number serving as the

destination port number in this new segment.

Connection-Oriented Multiplexing and Demultiplexing:

➢ Difference between a TCP socket and a UDP socket is that a TCP socket is identified by

a four-tuple: (source IP address, source port number, destination IP address, destination

port number).

➢ When a TCP segment arrives from the network to a host, the host uses all four values to

direct (demultiplex) the segment to the appropriate socket.

➢ Two arriving TCP segments with different source IP addresses or source port numbers

will be directed to two different sockets.

➢ The TCP server application has a “welcoming socket,” that waits for connection

establishment requests from TCP clients on port number 12000.

➢ The TCP client creates a socket and sends a connection establishment request segment

with the lines:

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,12000))

➢ A connection-establishment request is more a TCP segment with destination port number

12000 and a special connection-establishment bit set in the TCP header.

➢ The segment also includes a source port number that was chosen by the client.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 8

➢ When the host operating system of the computer running the server process receives the

incoming connection-request segment with destination port 12000, it locates the server

process that is waiting to accept a connection on port number 12000.

➢ The server process then

creates a new socket:

connectionSocket, addr = serverSocket.accept()

➢ The transport layer at the server notes the following four values in the connection-

request segment:

(1) the source port number in the segment,

(2) the IP address of the source host,

(3) the destination port number in the segment, and

(4) its own IP address.

➢ The newly created connection socket is identified by these four values; all subsequently

arriving segments whose source port, source IP address, destination port, and destination

IP address match these four values will be demultiplexed to this socket.

➢ With the TCP connection, the client and server can now send data to each other.

➢ The server host may support many simultaneous TCP connection sockets, with each

socket attached to a process, and with each socket identified by its own four tuple.

➢ When a TCP segment arrives at the host, all four fields (source IP address, source port,

destination IP address, destination port) are used to direct (demultiplex) the segment to

the appropriate socket.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 9

➢ Eg. Consider above Figure, in which Host C initiates two HTTP sessions to server B, and

Host A initiates one HTTP session to B. Hosts A and C and server Beach have their own

unique IP address—A, C, and B, respectively.

➢ Host C assigns two different source port numbers (26145 and 7532) to its two HTTP

connections.

➢ Because Host A is choosing source port numbers independently of C, it might also assign

a source port of 26145 to its HTTP connection.

➢ Server B will still be able to correctly demultiplex the two connections having the same

source port number, since the two connections have different source IP addresses.

Web Servers and TCP:

➢ Consider a host running a Web server, such as an Apache Web server, on
port 80.

➢ When clients (for example, browsers) send segments to the server, all
segments will have destination port 80.

➢ In particular, both the initial connection-establishment segments and the
segments carrying HTTP request messages will have destination port 80.

➢ The server distinguishes the segments from the different clients using source
IP addresses and source port numbers.

➢ As shown in Figure, each of these processes has its own connection socket
through which HTTP requests arrive and HTTP responses are sent.

➢ There is not always a one-to-one correspondence between connection
sockets and processes.

➢ Web servers often use only one process and create a new thread with a new
connection socket for each new client connection.

3.3 Connectionless Transport: UDP

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 10

➢ The transport layer has to provide a multiplexing/demultiplexing service in order
to pass data between the network layer and the correct application-level process.

➢ UDP, does the multiplexing/demultiplexing function, error checking.
➢ UDP takes messages from the application process, attaches source and

destination port number fields for the multiplexing/demultiplexing service, adds
two other small fields, and passes the resulting segment to the network layer.

➢ The network layer encapsulates the transport-layer segment into an IP datagram
and then makes a best-effort attempt to deliver the segment to the receiving host.

➢ If the segment arrives at the receiving host, UDP uses the destination port
number to deliver the segment’s data to the correct application process.

➢ UDP has no handshaking between sending and receiving transport-layer entities
before sending a segment. Hence, UDP is said to be connectionless.

UDP is best suited for many applications for the following reasons:

1. Finer application-level control over what data is sent, and when.

➢ Under UDP, as soon as an application process passes data to UDP, UDP
will package the data inside a UDP segment and immediately pass the
segment to the network layer.

➢ TCP, on the other hand, has a congestion-control mechanism that
throttles the transport-layer TCP sender when one or more links between
the source and destination hosts become excessively congested.

➢ TCP will continue to resend a segment until the receipt of the segment
has been acknowledged by the destination.

➢ Since real-time applications often require a minimum sending rate, do
not want to overly delay segment transmission, and can tolerate some
data loss, TCP’s service model is not particularly well matched to these
applications’ needs.

2. No connection establishment.

➢ TCP uses a three-way handshake before it starts to transfer data. UDP just
sends data away without any formal preliminaries.

➢ Thus UDP does not introduce any delay to establish a connection.
➢ HTTP uses TCP rather than UDP, since reliability is critical for Web pages

with text.

3. No connection state

➢ TCP maintains connection state in the end systems. This connection state includes
receive and send buffers, congestion-control parameters and sequence and
acknowledgment number parameters.

➢ UDP, does not maintain connection state and does not track any of these parameters.

4. Small packet header overhead.

➢ The TCP segment has 20 bytes of header overhead in every segment,

whereas UDP has only 8 bytes of overhead.

➢ E-mail, remote terminal access, the Web, and file transfer run over TCP—all

these applications need the reliable data transfer service of TCP.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 11

➢ UDP and TCP are used today with multimedia applications, such as Internet

phone, real-time video conferencing, and streaming of stored audio and

video.

➢ The lack of congestion control in UDP can result in high loss rates between

a UDP sender and receiver.

3.3.1 UDP Segment Structure:
➢ The application data occupies the data field of the UDP segment.

➢ For example, For a streaming audio application, audio samples fill the data

field.

➢ The UDP header has only four fields, each consisting of two bytes.

➢ The port numbers allow the destination host to pass the application data to the

correct process running on the destination end system (that is, to perform the

demultiplexing function).

➢ The length field specifies the number of bytes in the UDP segment (header

plus data).

➢ An explicit length value is needed since the size of the data field may differ

from one UDP segment to the next.

➢ The checksum is used by the receiving host to check whether errors have been

introduced into the segment.

➢ The length field specifies the length of the UDP segment, including the header,

in bytes.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 12

3.3.2 UDP Checksum

➢ The UDP checksum provides for error detection.
➢ That is, the checksum is used to determine whether bits within the UDP

segment have been altered as it moved from source to destination.
➢ UDP at the sender side performs the 1s complement of the sum of all the

16-bit words in the segment, with any overflow encountered during the sum
being wrapped around.

➢ This result is put in the checksum field of the UDP segment.
Example, suppose that we have the following three 16-bit words:

0110011001100000
0101010101010101
1000111100001100

The sum of first two of these 16-bit words is

0110011001100000
0101010101010101
1011101110110101

Adding the third word to the above sum gives

1011101110110101
1000111100001100
0100101011000010

➢ Last addition had overflow, which was wrapped around. The 1s
complement is obtained by converting all the 0s to 1s and converting all the 1s to
0s.

➢ Thus the 1s complement of the sum 0100101011000010 is
1011010100111101, which becomes the checksum.

➢ At the receiver, all four 16-bit words are added, including the checksum. If
no errors are introduced into the packet, then the sum at the receiver will be
1111111111111111.

➢ If one of the bits is a 0, then errors have been introduced into the packet.
➢ Take 1’s compliment of generated sum, which is all 0’s. Hence, no error has been

detected.

➢ UDP provides error checking because there is no guarantee that all the links between

source and destination provide error checking; that is, one of the links may use a link-

layer protocol that does not provide error checking.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 13

➢ Even if segments are correctly transferred across a link, it’s possible that bit errors could

be introduced when a segment is stored in a router’s memory.

➢ Neither link-by-link reliability nor in-memory error detection is guaranteed, UDP must

provide error detection at the transport layer, on an end-end basis, if the end-end data

transfer service is to provide error detection.

➢ UDP has no error recovery method.

3.4 Principles of Reliable Data Transfer:

➢ With the reliable channel, no transferred data bits are corrupted or lost, and all are

delivered in the order in which they were sent.

➢ This is the service model offered by TCP to the Internet applications that invoke

it. It is the responsibility of a reliable data transfer protocol to implement this

service abstraction.

➢ The layer below the reliable data transfer protocol may be unreliable. For

example, TCP is a reliable data transfer protocol that is implemented on top of an

unreliable (IP) end-to-end network layer.

➢ Figure 3.8(b) illustrates the interfaces for data transfer protocol.

➢ The sending side of the data transfer protocol will be invoked from above by a

call to rdt_send().Here rdt stands for reliable data transfer protocol and _send

indicates that the sending side of rdt is being called.

➢ It will pass the data to be delivered to the upper layer at the receiving side.

➢ On the receiving side, rdt_rcv() will be called when a packet arrives from the

sending side of the channel.

➢ When the rdt protocol wants to deliver data to the upper layer, it will do so by

calling deliver_data().

➢ Here unidirectional data transfer is considered, that is, data transfer from the

sending to the receiving side.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 14

➢ In addition to exchanging packets containing the data to be transferred, the

sending and receiving sides of rdt will also need to exchange control packets back

and forth.

➢ Both the send and receive sides of rdt send packets to the other side by a call to

udt_send().

3.4.1 Building a Reliable Data Transfer Protocol

1. Reliable Data Transfer over a Perfectly Reliable Channel: rdt1.0

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 15

➢ Consider the simplest case, in which the underlying channel is completely

reliable.

➢ The protocol is called rdt1.0.

➢ The finite-state machine (FSM) definitions for the rdt1.0 sender and

receiver are shown in Figure above.

➢ The FSM in Figure (a) defines the operation of the sender, while the FSM

in Figure (b) defines the operation of the receiver.

➢ There are separate FSMs for the sender and for the receiver. The sender

and receiver FSMs in Figure each have just one state.

➢ The arrows in the FSM description indicate the transition of the protocol

from one state to another.

➢ Since each FSM in Figure has just one state, a transition is necessarily

from the one state back to itself;

➢ The event causing the transition is shown above the horizontal line

labeling the transition, and the actions taken when the event occurs are

shown below the horizontal line.

➢ When no action is taken on an event, or no event occurs and an action is

taken, the symbol ‘_’ below or above the horizontal is used . It explicitly

denotes the lack of an action or event.

➢ The initial state of the FSM is indicated by the dashed arrow.

➢ The sending side of rdt simply accepts data from the upper layer via the

rdt_send(data) event, creates a packet containing the data via the action

make_pkt(data)) and sends the packet into the channel.

➢ The rdt_send(data) event would result from a procedure call by the

upper-layer application.

➢ On the receiving side, rdt receives a packet from the underlying channel

via the rdt_rcv(packet) event, removes the data from the packet (via the

action extract (packet, data)) and passes the data up to the upper layer (via

the action deliver_data(data)).

➢ The rdt_rcv(packet) event would result from a procedure call (for

example, to rdt_rcv()) from the lower layer protocol.

➢ The packet flows from the sender to receiver; with a perfectly reliable

channel there is no need for the receiver side to provide any feedback to

the sender

➢ The receiver is able to receive data as fast as the sender happens to send

data. Thus, there is no need for the sender to slow down its sending rate.

2. Reliable Data Transfer over a Channel with Bit Errors: rdt2.0

A more realistic model of the underlying channel is one in which bits in a

packet may be corrupted.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 16

➢ Such bit errors occur in the physical components of a packet is transmitted, propagates, or

is buffered.

➢ Assume that all transmitted packets are received (although their bits may be corrupted) in

the order in which they were sent.

➢ This message-dictation protocol uses both positive acknowledgments and negative

acknowledgments. These control messages allow the receiver to let the sender know

what has been received correctly, and what has been received in error and thus requires

repeating.

➢ Reliable data transfer protocols based on retransmission are known as ARQ (Automatic

Repeat reQuest) protocols.

➢ Three additional protocol capabilities are required in ARQ protocols to handle the

presence of bit errors:

1. Error detection.

➢ A mechanism is needed to allow the receiver to detect bit errors if occurred. UDP

uses the Internet checksum field for this purpose.

➢ Error detection techniques allow the receiver to detect and possibly correct packet

bit errors.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 17

➢ These techniques require that extra bits(checksum) be sent from the sender to the

receiver; these bits will be gathered into the packet checksum field of the rdt2.0

data packet.

2. Receiver feedback.

➢ Since the sender and receiver are typically executing on different end systems, it

requires for the receiver to provide explicit feedback to the sender.

➢ The positive (ACK) and negative (NAK) acknowledgment replies in the message

are examples of such feedback. Rdt2.0 protocol sends ACK and NAK packets

back from the receiver to the sender.

➢ ACK packets is just one bit long; for example, a 0 value could indicate a NAK

and a value of 1 could indicate an ACK.

3. Retransmission.

➢ A packet that is received in error at the receiver will be retransmitted by the

sender.

➢ Figure shows the FSM representation of rdt2.0, a data transfer protocol employing

error detection, positive acknowledgments, and negative acknowledgments.

➢ The sender side of rdt2.0 has two states:

i. The send-side protocol is waiting for data to be passed down from the

upper layer. When the rdt_send(data) event occurs, the sender will create

a packet (sndpkt) containing the data to be sent, along with a packet

checksum and then send the packet via the udt_send(sndpkt) operation.

ii. In the rightmost state, the sender protocol is waiting for an ACK or a NAK

packet from the receiver. If an ACK packet is received (the notation

rdt_rcv(rcvpkt) && isACK (rcvpkt) in Figure corresponds to this event),

the sender knows that the most recently transmitted packet has been

received correctly.

➢ Thus, the protocol returns to the state of waiting for data from the upper layer. If a

NAK is received, the protocol retransmits the last packet and waits for an ACK or

NAK to be returned by the receiver in response to the retransmitted data packet.

➢ When the sender is in the wait-for-ACK-or-NAK state, it cannot get more data

from the upper layer; that is, the rdt_send() event cannot occur; that will happen

only after the sender receives an ACK and leaves this state.

➢ Thus, the sender will not send a new piece of data until it is sure that the receiver

has correctly received the current packet.

➢ Because of this behavior, protocols rdt2.0 is known as stop-and-wait protocol.

➢ The receiver-side FSM for rdt2.0 still has a single state. On packet arrival, the

receiver replies with either an ACK or a NAK, depending on whether or not the

received packet is corrupted.

➢ Notation rdt_rcv(rcvpkt) && corrupt(rcvpkt) corresponds to the event in

which a packet is received and is found to be in error.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 18

➢ ACK or NAK packet could be corrupted and solution could be adding checksum

bits to ACK/NAK packets in order to detect such errors.

➢ The difficulty here is that if an ACK or NAK is corrupted, the sender has no way

of knowing whether or not the receiver has correctly received the last piece of

transmitted data.

➢ Consider three possibilities for handling corrupted ACKs or NAKs:

1. For the first possibility, if Sender receives garbled ACK/NAK , he creates a

new packet –asking the receiver to resend ACK/NAK. But creation of such

new packet leads to issues.

2. A second alternative is to add enough checksum bits to allow the sender not

only to detect, but also to recover from, bit errors. This solves the immediate

problem for a channel that can corrupt packets but not lose them.

3. A third approach is for the sender simply to resend the current data packet

when it receives a garbled ACK or NAK packet. This approach, introduces

duplicate packets into the sender to-receiver channel. The fundamental

difficulty with duplicate packets is that the receiver doesn’t know whether the

ACK or NAK it last sent was received correctly at the sender.

Solution :

➢ A simple solution to this new problem is to add a new field to the data packet

and have the sender number its data packets by putting a sequence number

into this field.

➢ The receiver then need only check this sequence number to determine whether

or not the received packet is a retransmission.

➢ For this simple case of a stop-and wait protocol, a 1-bit sequence number

will suffice, since it will allow the receiver to know whether the sender is

resending the previously transmitted packet (the sequence number of the

received packet has the same sequence number as the most recently received

packet) or a new packet.

➢ Since it is assumed that channel does not lose packets, ACK and NAK

packets do not themselves need to indicate the sequence number of the packet

they are acknowledging.

➢ The sender knows that a received ACK or NAK packet (whether garbled or

not) was generated in response to its most recently transmitted data packet.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 19

RDT 2.1 sender(a) :

RDT 2.1 receiver(b) :

➢ Figures (a) and (b) shows the FSM description for rdt2.1.

➢ The rdt2.1 sender and receiver FSMs each now have twice as many states as before.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 20

➢ This is because the protocol state must now reflect whether the packet currently being

sent (by the sender) or expected (at the receiver) should have a sequence number of 0 or

1.

➢ Protocol rdt2.1 uses both positive and negative acknowledgments from the receiver to

the sender.

➢ When an out-of-order packet is received, the receiver sends a positive acknowledgment

for the packet it has received.

➢ When a corrupted packet is received, the receiver sends a negative acknowledgment.

➢ The same effect as a NAK could be accomplished if, instead of sending a NAK, we send

an ACK for the last correctly received packet.

➢ A sender that receives two ACKs for the same packet (that is, receives duplicate ACKs)

knows that the receiver did not correctly receive the packet following the packet that is

being ACKed twice.

RDT 2.2 sender:

NAK-free reliable data transfer protocol for a channel with bit errors is rdt2.2.

RDT 2.2 receiver:

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 21

➢ The sequence number is included in the packet i.e being acknowledged by an ACK message

(this is done by including the ACK,0 or ACK1 argument in make_pkt() in the receiver FSM)

➢ The sender must now check the sequence number of the packet being acknowledged by a

received ACK message (this is done by including the 0 or 1 argument in is ACK() in the

sender FSM).

3. Reliable Data Transfer over a Lossy Channel with Bit Errors: rdt3.0

➢ The use of check summing, sequence numbers, ACK packets, and

retransmissions—are solutions for corrupted data , out of order data , lost

packet problems.

➢ Detecting and recovering from lost packets is the responsibility of sender.

➢ Suppose that the sender transmits a data packet and either that packet, or

the receiver’s ACK of that packet, gets lost. In either case, no reply is

forthcoming at the sender from the receiver.

➢ Solution is setting a timer by the sender.

➢ The sender must clearly wait at least as long as a round-trip delay between

the sender and receiver plus amount of time is needed to process a packet

at the receiver.

➢ If an ACK is not received within this timer, the packet is retransmitted. If

a packet experiences a large delay, the sender may retransmit the packet

even though neither the data packet nor its ACK have been lost.

➢ This introduces the possibility of duplicate data packets in the sender-to-

receiver channel.

➢ Sequence numbers can be used to handle the case of duplicate packets.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 22

➢ The sender does not know whether a data packet was lost, an ACK was

lost, or if the packet or ACK was simply overly delayed. Retransmission is

the solution for all these problems.

➢ Implementing a time-based retransmission mechanism requires a

countdown timer that can interrupt the sender after a given amount of

time has expired.

➢ The sender will thus need to be able to

(1) start the timer each time a packet (either a first-time packet or a

retransmission) is sent,

(2) respond to a timer interrupt (taking appropriate actions)

(3) stop the timer

➢ Figure shows the sender FSM for rdt3.0, a protocol that reliably transfers data

over a channel that can corrupt or lose packets.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 23

➢ In Figure below, time moves forward from the top of the diagram toward the

bottom of the diagram;

➢ Receive time for a packet is necessarily later than the send time for a packet as

a result of transmission and propagation delays.

3.4.2 Pipelined Reliable Data Transfer Protocols:

➢ Consider an idealized case of two hosts, one located on the West Coast of the

United States and the other located on the East Coast, as shown in Figure below.

➢ The round-trip propagation delay between these two end systems, RTT, is

approximately 30 milliseconds. RTT=30ms

➢ Suppose that they are connected by a channel with a transmission rate, R, of 1 Gbps

(109 bits per second).

➢ R=1Gbps With a packet size, L, of 1,000 bytes (8,000 bits) per packet, including both

header fields and data.

➢ L=8000 bitsps The time needed to actually transmit the packet into the 1 Gbps link is

dtrans =L/R = 8000 bits/packet / 109bits/sec = 8 microseconds

➢ Figure (a) shows that with stop-and-wait protocol, if the sender begins sending the

packet at , t = 0, then at t = L/R = 8 microseconds;

➢ The packet then makes its 15-msec journey from sender to receiver, RTT/2=15ms.

➢ The last bit of the packet is emerging at the receiver at, t = RTT/2 + L/R =15.008

msec.

➢ The ACK emerges back at the sender at t = RTT + L/R = 30.008 msec. (RTT=

15+15=30ms).

➢ At this point, the sender can now transmit the next message.

➢ Thus, in 30.008 msec, the sender was sending for only 0.008 msec.

➢ If we define the utilization of the sender (or the channel) as the fraction of time the

sender is actually busy sending bits into the channel, the analysis in below Figure (a)

shows that the stop-and-wait protocol has sender utilization, Usender, of

Usender = L/R / (RTT + L/R) = .008 / 30.008 = 0.00027.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 24

➢ That is, the sender was busy only 2.7 hundredths of one percent of the time!

➢ The solution to this performance problem is: Rather than operate in a stop-and-wait

manner, the sender is allowed to send multiple packets without waiting for

acknowledgments, as illustrated in below Figure (b).

➢ Figure (b) shows that if the sender is allowed to transmit three packets

before having to wait for acknowledgments, the utilization of the

sender is essentially tripled.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 25

➢ Since the many in-transit sender-to-receiver packets can be visualized as filling a

pipeline, this technique is known as pipelining.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 26

Pipelining has the following consequences for reliable data transfer protocols:

The range of sequence numbers must be increased, since each in-transit packet (not

counting retransmissions) must have a unique sequence number and there may be multiple, in-

transit, unacknowledged packets.

1. The sender and receiver sides of the protocols may have to buffer more than one packet.

The sender will have to buffer packets that have been transmitted but not yet

acknowledged. Buffering of correctly received packets may also be needed at the

receiver.

2. The range of sequence numbers needed and the buffering requirements will depend on

the manner in which a data transfer protocol responds to lost, corrupted and overly

delayed packets.

Two basic approaches toward pipelined error recovery can be: Go-Back-N and selective

repeat.

3.4.3 Go-Back-N (GBN):

➢ In a Go-Back-N (GBN) protocol, the sender is allowed to transmit multiple packets

without waiting for an acknowledgment, but is constrained to have no more than some

maximum allowable number, N, of unacknowledged packets in the pipeline.

➢ Figure above shows the sender’s view of the range of sequence numbers in a GBN

protocol.

➢ Define base to be the sequence number of the oldest unacknowledged packet and

nextseqnum to be the smallest unused sequence number (that is, the sequence number of

the next packet to be sent).

➢ Sequence numbers in the interval [0, base-1] correspond to packets that have already

been transmitted and acknowledged.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 27

➢ The interval [base, nextseqnum-1] corresponds to packets that have been sent but not yet

acknowledged.

➢ Sequence numbers in the interval [nextseqnum, base+N-1] can be used for packets that

can be sent immediately, should data arrive from the upper layer.

➢ Finally, sequence numbers greater than or equal to base+N cannot be used until an

unacknowledged packet currently in the pipeline has been acknowledged.

➢ The range of permissible sequence numbers for transmitted but not yet acknowledged

packets can be viewed as a window of size N over the range of sequence numbers.

➢ As the protocol operates, this window slides forward over the sequence number space.

For this reason, N is often referred to as the window size and the GBN protocol as a

sliding-window protocol.

➢ A packet’s sequence number is carried in a fixed-length field in the packet header. If k is

the number of bits in the packet sequence number field, the range of sequence numbers is

thus

➢ The sequence number space can be thought of as a ring of size , where sequence

number is immediately followed by sequence number 0.

➢ The GBN sender must respond to three types of events:

1. Invocation from above.

a. When rdt_send() is called from above, the sender first checks to see if the

window is full, that is, whether there are N outstanding, unacknowledged packets.

b. If the window is not full, a packet is created and sent, and variables are

appropriately updated.

c. If the window is full, the sender simply returns the data back to the upper layer, an

implicit indication that the window is full. The upper layer would have to try

again.

2. Receipt of an ACK.

In our GBN protocol, an acknowledgment for a packet with sequence number n will be

taken to be a cumulative acknowledgment, indicating that all packets with a sequence

number up to and including n have been correctly received at the receiver.

3. A timeout event.

A timer will be used to recover from lost data or acknowledgment packets. If a timeout

occurs, the sender resends all packets that have been previously sent but that have not yet

been acknowledged.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 28

1. Sender in above Figure uses only a single timer, which can be thought of as a timer

for the oldest transmitted but not yet acknowledged packet.

➢ If an ACK is received but there are still additional transmitted but not yet

acknowledged packets, the timer is restarted.

➢ If there are no outstanding, unacknowledged packets, the timer is stopped.

2. The receiver’s action: If a packet with sequence number n is received correctly and

is in order, the receiver sends an ACK for packet n and delivers the data portion of the

packet to the upper layer.

a. In all other cases, the receiver discards the packet and resends an ACK for the

most recently received in-order packet.

b. Since packets are delivered one at a time to the upper layer, if packet k has

been received and delivered, then all packets with a sequence number lower

than k have also been delivered.

c. Thus, cumulative acknowledgments is used for GBN.

d. In GBN protocol, the receiver discards out-of-order packets because the

receiver must deliver data in order to the upper layer.

➢ Suppose the packet n is expected, but packet n + 1 arrives. Because data must be

delivered in order, the receiver could buffer (save) packet n + 1 and then deliver this

packet to the upper layer after it had later received and delivered packet n.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 29

➢ If packet n is lost, both it and packet n + 1 will eventually be retransmitted as a result of

the GBN retransmission rule at the sender.

➢ Thus, the receiver can simply discard packet n + 1.

➢ The advantage of this approach is the receiver need not buffer any out-of-order packets.

➢ Thus, while the sender must maintain the upper and lower bounds of its window and the

position of nextseqnum within this window.

➢ The only piece of information the receiver need maintain is the sequence number of the

next in-order packet.

➢ This value is held in the variable expected seqnum, shown in the receiver FSM in Figure

below.

The disadvantage of discarding a correctly received packet is that the subsequent

retransmission of that packet might be lost or garbled and thus even more retransmissions would

be required.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 30

➢ Figure above shows the operation of the GBN protocol for the case of a window size of

four packets.

➢ Because of this window size limitation, the sender sends packets 0 through 3 but then

must wait for one or more of these packets to be acknowledged before proceeding.

➢ As each successive ACK (for example, ACK0 and ACK1) is received, the window slides

forward and the sender can transmit one new packet (pkt4 and pkt5, respectively).

➢ On the receiver side, packet 2 is lost and thus packets 3, 4, and 5 are found to be out of

order and are discarded.

➢ In the sender, the events would be:

(1) a call from the upper-layer entity to invoke rdt_send(),

(2) a timer interrupt,

(3) a call from the lower layer to invoke rdt_rcv() when a packet arrives.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 31

➢ In Figures (b)–(d), the send-side brackets indicate the times at which a timer is set and

later times out.

➢ Because packet sequence numbers alternate between 0 and 1, protocol rdt3.0 is also

known as the alternating-bit protocol.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 32

➢ In a Go-Back-N (GBN) protocol, the sender is allowed to transmit multiple packets

without waiting for an acknowledgment, but is constrained to have no more than some

maximum allowable number, N, of unacknowledged packets in the pipeline.

➢ Figure above shows the sender’s view of the range of sequence numbers in a GBN

protocol.

➢ Define base to be the sequence number of the oldest unacknowledged packet and

nextseqnum to be the smallest unused sequence number (that is, the sequence number of

the next packet to be sent).

➢ Sequence numbers in the interval [0, base-1] correspond to packets that have already

been transmitted and acknowledged.

➢ The interval [base, nextseqnum-1] corresponds to packets that have been sent but not yet

acknowledged.

➢ Sequence numbers in the interval [nextseqnum, base+N-1] can be used for packets that

can be sent immediately, should data arrive from the upper layer.

➢ Finally, sequence numbers greater than or equal to base+N cannot be used until an

unacknowledged packet currently in the pipeline has been acknowledged.

➢ The range of permissible sequence numbers for transmitted but not yet acknowledged

packets can be viewed as a window of size N over the range of sequence numbers.

➢ As the protocol operates, this window slides forward over the sequence number space.

For this reason, N is often referred to as the window size and the GBN protocol as a

sliding-window protocol.

➢ A packet’s sequence number is carried in a fixed-length field in the packet header. If k is

the number of bits in the packet sequence number field, the range of sequence numbers is

thus

➢ The sequence number space can be thought of as a ring of size , where sequence

number is immediately followed by sequence number 0.

➢ The GBN sender must respond to three types of events:

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 33

4. Invocation from above.

a. When rdt_send() is called from above, the sender first checks to see if the

window is full, that is, whether there are N outstanding, unacknowledged packets.

b. If the window is not full, a packet is created and sent, and variables are

appropriately updated.

c. If the window is full, the sender simply returns the data back to the upper layer, an

implicit indication that the window is full. The upper layer would have to try

again.

5. Receipt of an ACK.

In our GBN protocol, an acknowledgment for a packet with sequence number n will be

taken to be a cumulative acknowledgment, indicating that all packets with a sequence

number up to and including n have been correctly received at the receiver.

6. A timeout event.

A timer will be used to recover from lost data or acknowledgment packets. If a timeout

occurs, the sender resends all packets that have been previously sent but that have not yet

been acknowledged.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 34

3. Sender in above Figure uses only a single timer, which can be thought of as a timer

for the oldest transmitted but not yet acknowledged packet.

➢ If an ACK is received but there are still additional transmitted but not yet

acknowledged packets, the timer is restarted.

➢ If there are no outstanding, unacknowledged packets, the timer is stopped.

4. The receiver’s action: If a packet with sequence number n is received correctly and

is in order, the receiver sends an ACK for packet n and delivers the data portion of the

packet to the upper layer.

a. In all other cases, the receiver discards the packet and resends an ACK for the

most recently received in-order packet.

b. Since packets are delivered one at a time to the upper layer, if packet k has

been received and delivered, then all packets with a sequence number lower

than k have also been delivered.

c. Thus, cumulative acknowledgments is used for GBN.

d. In GBN protocol, the receiver discards out-of-order packets because the

receiver must deliver data in order to the upper layer.

➢ Suppose the packet n is expected, but packet n + 1 arrives. Because data must be

delivered in order, the receiver could buffer (save) packet n + 1 and then deliver this

packet to the upper layer after it had later received and delivered packet n.

➢ If packet n is lost, both it and packet n + 1 will eventually be retransmitted as a result of

the GBN retransmission rule at the sender.

➢ Thus, the receiver can simply discard packet n + 1.

➢ The advantage of this approach is the receiver need not buffer any out-of-order packets.

➢ Thus, while the sender must maintain the upper and lower bounds of its window and the

position of nextseqnum within this window.

➢ The only piece of information the receiver need maintain is the sequence number of the

next in-order packet.

➢ This value is held in the variable expected seqnum, shown in the receiver FSM in Figure

below.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 35

The disadvantage of discarding a correctly received packet is that the subsequent

retransmission of that packet might be lost or garbled and thus even more retransmissions would

be required.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 36

➢ Figure above shows the operation of the GBN protocol for the case of a window size of

four packets.

➢ Because of this window size limitation, the sender sends packets 0 through 3 but then

must wait for one or more of these packets to be acknowledged before proceeding.

➢ As each successive ACK (for example, ACK0 and ACK1) is received, the window slides

forward and the sender can transmit one new packet (pkt4 and pkt5, respectively).

➢ On the receiver side, packet 2 is lost and thus packets 3, 4, and 5 are found to be out of

order and are discarded.

➢ In the sender, the events would be:

(1) a call from the upper-layer entity to invoke rdt_send(),

(2) a timer interrupt,

(3) a call from the lower layer to invoke rdt_rcv() when a packet arrives.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 37

3.4.4 Selective Repeat (SR):

➢ The GBN protocol allows the sender to potentially “fill the pipeline” with packets, thus

avoiding the channel utilization problems.

➢ GBN has performance problems: When the window size and bandwidth-delay product

are both large, many packets can be in the pipeline.

➢ A single packet error can thus cause GBN to retransmit a large number of packets, many

unnecessarily.

➢ As the probability of channel errors increases, the pipeline can become filled with these

unnecessary retransmissions.

➢ Selective-repeat protocols avoid unnecessary retransmissions by having the sender

retransmit only those packets that it suspects were received in error (that is, were lost or

corrupted) at the receiver.

➢ This needed retransmission will require that the receiver individually acknowledge

correctly received packets.

➢ A window size of N will again be used to limit the number of outstanding,

unacknowledged packets in the pipeline.

➢ The sender will have already received ACKs for some of the packets in the window.

Figure shows the SR sender’s view of the sequence number space.

➢ Figure details the various actions taken by the SR sender.

➢ The SR receiver will acknowledge a correctly received packet whether or not it is in

order.

➢ Out-of-order packets are buffered until any missing packets (that is, packets with lower

sequence numbers) are received, at which point a batch of packets can be delivered in

order to the upper layer.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 38

Figure above itemizes the various actions taken by the SR receiver.

In Step 2 in Figure above, the receiver reacknowledges (rather than ignores) already

received packets with certain sequence numbers below the current window base.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 39

➢
Above Figure shows an example of SR operation in the presence of lost packets.

➢ Here, the receiver initially buffers packets 3, 4, and 5, and delivers them together with

packet 2 to the upper layer when packet 2 is finally received.

➢ For example, if there is no ACK for packet send_base propagating from the receiver to

the sender, the sender will eventually retransmit packet send_base, even though it is clear

that the receiver has already received.

SR Sender Events and actions :

1. Data received from above.

a. When data is received from above, the SR sender checks the next available

sequence number for the packet.

b. If the sequence number is within the sender’s window, the data is packetized and

sent; otherwise, it is either buffered or returned to the upper layer for later

transmission, as in GBN.

2. Timeout.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 40

a. Timers are used to protect against lost packets.

b. However, each packet must now have its own logical timer, since only a single

packet will be transmitted on timeout.

c. A single hardware timer can be used to mimic the operation of multiple logical

timers

3. ACK received.

a. If an ACK is received, the SR sender marks that packet as having been received,

provided it is in the window.

b. If the packet’s sequence number is equal to send_base, the window base is moved

forward to the unacknowledged packet with the smallest sequence number.

c. If the window moves and there are untransmitted packets with sequence numbers

that now fall within the window, these packets are transmitted.

SR receiver events and actions :

1.Packet with sequence number in [rcv_base, rcv_base+N-1] is correctly received:

a. The received packet falls within the receiver’s window and a selective ACK

packet is returned to the sender.

b. If the packet was not previously received, it is buffered.

c. If this packet has a sequence number equal to the base of the receive window

(rcv_base) then this packet, and any previously buffered and consecutively

numbered (beginning with rcv_base) packets are delivered to the upper layer. The

receive window is then moved forward by the number of packets delivered to the

upper layer.

d. As an example, consider above Figure.

e. When a packet with a sequence number of rcv_base=2 is received, it and packets

3, 4, and 5 can be delivered to the upper layer.

2. Packet with sequence number in [rcv_base-N, rcv_base-1] is correctly received.

In this case, an ACK must be generated, even though this is a packet that the receiver has

previously acknowledged.

3. Otherwise.

a. Ignore the packet. that packet. If the receiver were not to acknowledge this packet, the

sender’s window would never move forward.

b. The sender and receiver will not always have an identical view of what has been

received correctly and what has not. For SR protocols, this means that the sender and receiver

windows will not always coincide.

c. The lack of synchronization between sender and receiver windows has important

consequences when we are faced with the reality of a finite range of sequence numbers.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 41

d. For example, with a finite range of four packet sequence numbers, 0, 1, 2, 3, and a

window size of three.

f. Suppose packets 0 through 2 are transmitted and correctly received and

acknowledged at the receiver.

g. At this point, the receiver’s window is over the fourth, fifth, and sixth packets,

which have sequence numbers 3, 0, and 1, respectively.

Consider two scenarios:

1. In the first scenario, shown in Figure (a) below, the ACKs for the first three packets are

lost and the sender retransmits these packets. The receiver thus next receives a packet

with sequence number 0—a copy of the first packet sent.

2. In the second scenario, shown in Figure (b) below, the ACKs for the first three packets

are all delivered correctly. The sender thus moves its window forward and sends the

fourth, fifth, and sixth packets, with sequence numbers 3, 0, and 1, respectively. The

packet with sequence number 3 is lost, but the packet with sequence number 0 arrives—a

packet containing new data.

➢ Consider the receiver’s view point in Figure below, since the receiver cannot “see” the

actions taken by the sender.

➢ All the receiver observes is the sequence of messages it receives from the channel and

sends into the channel.

➢ The two scenarios in Figure are identical.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 42

➢ There is no way of distinguishing the retransmission of the first packet from an original

transmission of the fifth packet.

Solution is the window size must be less than or equal to half the size of the sequence

number space for SR protocols.

3.4.5 Summary of Reliable Data Transfer Mechanisms and their Use

Table 2.2: Summary of reliable data transfer mechanisms and their use

Mechanism Use, Comments

Checksum Used to detect bit errors in a transmitted packet.

Timer Used to timeout/retransmit a packet because the packet (or its ACK) was

lost.
Because timeouts can occur when a packet is delayed but not lost,
duplicate copies of a packet may be received by a receiver.

Sequence-number Used for sequential numbering of packets of data flowing from sender to
receiver.

Gaps in the sequence-numbers of received packets allow the receiver to

detect a lost packet.
Packets with duplicate sequence-numbers allow the receiver to detect

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 43

duplicate copies of a packet.

Acknowledgment Used by the receiver to tell the sender that a packet or set of packets has

been received correctly.

Acknowledgments will typically carry the sequence-number of the

packet or packets being acknowledged.
Acknowledgments may be individual or cumulative, depending on the
protocol.

Negative

acknowledgment

Used by the receiver to tell the sender that a packet has not been received

correctly.
Negative acknowledgments will typically carry the sequence-number of
the packet that was not received correctly.

Window, pipelining The sender may be restricted to sending only packets with sequence-

numbers that fall within a given range.
By allowing multiple packets to be transmitted but not yet
acknowledged,
sender utilization can be increased over a stop-and-wait mode of
operation.

3.5 Connection-Oriented Transport: TCP

➢ TCP is a reliable connection-oriented protocol.

o Connection-oriented means a connection is established b/w

sender & receiver before sending the data.
o Reliable service means TCP guarantees that the data will arrive to

destination-process

o correctly.

➢ TCP provides flow-control, error-control and congestion-control.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 44

.5.1 The TCP Connection:
➢ TCP is said to be connection-oriented because before one

application process can begin to send data to another, the two
processes must first “handshake” with each other—that is, they
must send some preliminary segments to each other to establish the
parameters of the ensuing data transfer.

➢ TCP connection establishment, both sides of the connection will
initialize many TCP state variables associated with the TCP
connection.

➢ TCP protocol runs only in the end systems and not in the
intermediate network elements (routers and link-layer switches),
the intermediate network elements do not maintain TCP
connection state.

➢ A TCP connection provides a full-duplex service: If there is a
TCP connection between Process A on one host and Process B on
another host, then application layer data can flow from Process A
to Process B at the same time as application layer data flows from
Process B to Process A.

➢ A TCP connection is also always point-to-point, that is, between a
single sender and a single receiver. So-called “multicasting”—the
transfer of data from one sender to many receivers in a single send
operation—is not possible with TCP.

➢ Python client program command:

clientSocket.connect((serverName,serverPort))

➢ where serverName is the name of the server and serverPort identifies the process on the
server.

➢ TCP in the client then proceeds to establish a TCP connection with TCP in the server.
➢ Client first sends a special TCP segment; the server responds with a second special TCP

segment and finally the client responds again with a third special segment.
➢ The first two segments carry no payload, that is, no application-layer data; the third of

these segments may carry a payload. Because three segments are sent between the two
hosts, this connection- establishment procedure is often referred to as a three-way
handshake

➢ Once a TCP connection is established, the two application processes can send data to
each other. Consider the sending of data from the client process to the server process.

➢ The client process passes a stream of data through the socket.
➢ Once the data passes through the socket, the data is in the hands of TCP running in the

client.

➢ As Figure shows, TCP directs this data to the connection’s send buffer, which is one of
the buffers that is set aside during the initial three-way handshake.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 45

➢ From time to time, TCP will grab chunks of data from the send buffer and pass the data

to the network layer.

➢ The maximum amount of data that can be grabbed and placed in a segment is limited by

the maximum segment size (MSS).

➢ The MSS is set by first determining the length of the largest link-layer frame that can be

sent by the local sending host (maximum transmission unit, MTU) and then setting the

MSS to ensure that a TCP segment (when encapsulated in an IP datagram) plus the

TCP/IP header length (typically 40 bytes) will fit into a single link-layer frame.

➢ TCP pairs each chunk of client data with a TCP header, thereby forming TCP segments.

The segments are passed down to the network layer, where they are separately

encapsulated within network-layer IP datagrams.

➢ The IP datagrams are then sent into the network. When TCP receives a segment at the

other end, the segment’s data is placed in the TCP connection’s receive buffer, as shown

in Figure above.

➢ Send & Receive Buffers

➢ As shown in Figure 3.28, consider sending data from the client-process to the server-
process.

At Sender
i) The client-process passes a stream-of-data through the socket.
ii) Then, TCP forwards the data to the send-buffer.
iii) Each chunk-of-data is appended with a header to form a segment.
iv) The segments are sent into the network.

At Receiver
i) The segment’s data is placed in the receive-buffer.

ii) The application reads the stream-of-data from the receive-buffer.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 46

.5.2 TCP Segment Structure:

➢ The TCP segment consists of header fields and a data field. The data field contains

a chunk of application data. MSS limits the maximum size of a segment’s data

field.

➢ When TCP sends a large file, such as an image as part of a Web page, it typically

breaks the file into chunks of size MSS.

➢ Interactive applications , often transmit data chunks that are smaller than the MSS;

➢ Figure above shows the structure of the TCP segment. The header includes source

and destination port numbers, which are used for multiplexing / demultiplexing

data from/to upper-layer applications.

➢ Header includes a checksum field for error detection.

A TCP segment header also contains the following fields:

➢ The 32-bit sequence number field and the 32-bit acknowledgment number

field are used by the TCP sender and receiver in implementing a reliable data

transfer service.

➢ The 16-bit receive window field is used for flow control.

➢ The 4-bit header length field specifies the length of the TCP header in 32-bit

words.

➢ The TCP header can be of variable length due to the TCP options field.

➢ The optional and variable-length options field is used when a sender and

receiver negotiate the maximum segment size (MSS) or as a window scaling

factor for use in high-speed networks.

➢ A time-stamping option is also defined.

➢ The flag field contains 6 bits.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 47

o The ACK bit is used to indicate that the value carried in the

acknowledgment field is valid; that is, the segment contains

an acknowledgment for a segment that has been

successfully received.

o The RST, SYN, and FIN bits are used for connection setup and

teardown.

o Setting the PSH bit indicates that the receiver should pass the data to the

upper layer immediately.

o URG bit is used to indicate that there is data in this segment that the

sending-side upper-layer entity has marked as “urgent.”

o The location of the last byte of this urgent data is indicated by the 16-bit

urgent data pointer field.

➢ TCP must inform the receiving- side upper-layer entity when urgent data exists

and pass it a pointer to the end of the urgent data.

Sequence Numbers and Acknowledgment Numbers

➢ Two of the most important fields in the TCP segment header are the sequence

number field and the acknowledgment number field.

➢ These fields are a critical part of TCP’s reliable data transfer service.

➢ TCP views data as an unstructured, but ordered, stream of bytes.

➢ TCP’s use of sequence numbers reflects this view in that sequence numbers are

over the stream of transmitted bytes and not over the series of transmitted

segments.

➢ The sequence number for a segment is therefore the byte-stream number of the

first byte in the segment.

➢ Example. Suppose a process in Host A wants to send a stream of data to a

process in Host B over a TCP connection.

o The TCP in Host A will implicitly number each byte in the data

stream.

o Suppose that the data stream consists of a file consisting of 500,000 bytes,

that the MSS is 1,000 bytes, and that the first byte of the data stream is

numbered 0.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 48

➢ As shown in Figure above, TCP constructs 500 segments out of

the data stream.

➢ The first segment gets assigned sequence number 0, the second

segment gets assigned sequence number 1,000, the third segment

gets assigned sequence number 2,000, and so on.

➢ Each sequence number is inserted in the sequence number field in

the header of the appropriate TCP segment.

➢ Consider acknowledgment numbers.

➢ TCP is full-duplex, so that Host A may be receiving data from

Host B while it sends data to Host B (as part of the same TCP

connection).

➢ The acknowledgment number that Host A puts in its segment is

the sequence number of the next byte Host A is expecting from

Host B.

➢ Suppose that Host A has received all bytes numbered 0 through

535 from B and suppose that it is aboutto send a segment to Host

B.

➢ Host A is waiting for byte 536 and all the subsequentbytes in Host

B’s data stream. So Host A puts 536 in the acknowledgment

numberfield of the segment it sends to B.

➢ Suppose Host A has received one segment from Host B containing

bytes 0 through 535 and another segment containing bytes 900

through 1,000.

➢ For some reason Host A has not yet received bytes 536 through

899. In this example, Host A is still waiting for byte 536 (and

 beyond) in order to re-create B’s data stream.

➢ Thus, A’s next segment to B will contain 536 in the

acknowledgment number field.

➢ Because TCP only acknowledges bytes up to the first missing byte

in the stream, TCP is said to provide cumulative

acknowledgments.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 49

➢ Host A received the third segment (bytes 900 through 1,000)

before receiving the second segment (bytes 536 through 899).

Thus, the third segment arrived out of order.

The issue is:

➢ Host A receives out-of-order segments in a TCP connection.

There are two choices:

(1) the receiver immediately discards out-of-order segments

(2) the receiver keeps the out-of-order bytes and waits for the

missing bytes to fill in the gaps.

➢ In Figure above, we assumed that the initial sequence number

was zero.

➢ Both sides of a TCP connection randomly choose an initial

sequence number.

Telnet: A Case Study for Sequence and Acknowledgment Numbers:

➢ Telnet is a popular application-layer protocol used for remote-login.
➢ Telnet runs over TCP.

➢ Suppose Host A initiates a Telnet session with Host B.

➢ Because Host A initiates the session, it is labeled the client, and Host B is labeled the

server.

➢ Each character typed by the user (at the client) will be sent to the remote host; the remote

host will send back a copy of each character, which will be displayed on the Telnet user’s

screen.

➢ “Echo back” is used to ensure that characters seen by the Telnet user have already been

received and processed at the remote site.

➢ Each character thus traverses the network twice between the time the user hits the key

and the time the character is displayed on the user’s monitor.

➢ Suppose the user types a single letter, ‘C’.

➢ As shown in Figure below, the starting sequence numbers are 42 and 79 for the client and

server, respectively.

➢ The sequence number of a segment is the sequence number of the first byte in the data

field.

➢ Thus, the first segment sent from the client will have sequence number 42; the first

segment sent from the server will have sequence number 79.

➢ The acknowledgment number is the sequence number of the next byte of data that the

host is waiting for.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 50

➢ After the TCP connection is established but before any data is sent, the client is

waiting for byte 79 and the server is waiting for byte 42.

As shown in Figure above, three segments are sent.

1. The first segment is sent from the client to the server, containing the 1-byte ASCII

representation of the letter ‘C’ in its data field.

➢ This first segment also has 42 in its sequence number field.

➢ Because the client has not yet received any data from the server, this first segment

will have 79 in its acknowledgment number field.

2. The second segment is sent from the server to the client.

➢ It serves a dual purpose.

➢ First it provides an acknowledgment of the data the server has received. By

putting 43 in the acknowledgment field, the server is telling the client that it has

successfully received everything up through byte 42 and is now waiting for bytes

43 onward.

➢ The second purpose of this segment is to echo back the letter ‘C.’

➢ Thus, the second segment has the ASCII representation of ‘C’ in its data field.

This second segment has the sequence number 79, the initial sequence number of

the server-to client data flow of this TCP connection, as this is the very first byte

of data that the server is sending.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 51

➢ This acknowledgment is said to be piggybacked on the server-to-client data

segment.

3. The third segment is sent from the client to the server.

➢ Its purpose is to acknowledge the data it has received from the server.

➢ This segment has an empty data field .

➢ The segment has 80 in the acknowledgment number field because the client has

received the stream of bytes up through byte sequence number 79 and it is now

waiting for bytes 80 .

.5.3 Round-Trip Time Estimation and Timeout:

➢ TCP, uses a timeout/retransmit mechanism to recover from lost segments. The

timeout should be larger than the connection’s round-trip time (RTT), that is, the

time from when a segment is sent until it is acknowledged.

Estimating the Round-Trip Time

➢ TCP estimates the round-trip time between sender and receiver.

This is accomplished as follows:

➢ The sample RTT, denoted SampleRTT, for a segment is the amount of time

between when the segment is sent and when an acknowledgment for the segment

is received.

➢ Instead of measuring a SampleRTT for every transmitted segment, most TCP

implementations take only one SampleRTT measurement at a time.

➢ That is, at any point in time, the SampleRTT is being estimated for only one of

the transmitted but currently unacknowledged segments, leading to a new value of

SampleRTT approximately once every RTT.

➢ Also, TCP never computes a SampleRTT for a segment that has been

retransmitted; it only measures SampleRTT for segments that have been

transmitted once .

➢ The SampleRTT values will fluctuate from segment to segment due to

congestion in the routers and to the varying load on the end systems.

➢ Because of this fluctuation, any given SampleRTT value may be atypical. In order

to estimate a typical RTT, it is therefore natural to take some sort of average of

the SampleRTT values.

➢ TCP maintains an average, called EstimatedRTT, of the SampleRTT values.

➢ Upon obtaining a new SampleRTT, TCP updates EstimatedRTT according to the

following formula:

EstimatedRTT = (1 – α) • EstimatedRTT + α • SampleRTT

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 52

➢ The formula above is written in the form of a programming-language statement—

the new value of EstimatedRTT is a weighted combination of the previous value

of EstimatedRTT and the new value for SampleRTT.

➢ The recommended value of α is α = 0.125 (that is, 1/8) in which case the formula

above becomes:

EstimatedRTT = 0.875 • EstimatedRTT + 0.125 • SampleRTT

➢ EstimatedRTT is a weighted average of the SampleRTT values.

➢ In statistics, such an average is called an exponential weighted moving average

(EWMA).

➢ The word “exponential” appears in EWMA because the weight of a given

SampleRTT decays exponentially fast as the updates proceed.

➢ Figure shows the SampleRTT values and EstimatedRTT for a value of α = 1/8 for

a TCP connection between say gaia.cs.umass.edu(site 1) to

fantasia.eurecom.fr(site 2).

➢ Clearly, the variations in the SampleRTT are smoothed out in the computation of

the EstimatedRTT

➢ In addition to having an estimate of the RTT, it is also valuable to have a measure

of the variability of the RTT.

➢ The RTT variation, DevRTT, as an estimate of how much SampleRTT typically

deviates from EstimatedRTT:

DevRTT = (1 – β) • DevRTT + β •| SampleRTT – EstimatedRTT |

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 53

➢ DevRTT is an EWMA of the difference between SampleRTT and EstimatedRTT.

➢ If the SampleRTT values have little fluctuation, then DevRTT will be small; if

there is a lot of fluctuation, DevRTT will be large. The recommended value of β

is 0.25.

Setting and Managing the Retransmission Timeout Interval

➢ Given values of EstimatedRTT and DevRTT, the interval should be greater than

or equal to EstimatedRTT, or unnecessary retransmissions would be sent. But the

timeout interval should not be too much larger than EstimatedRTT; otherwise,

when a segmentis lost, TCP would not quickly retransmit the segment, leading to

large data transfer delays.

➢ It is therefore desirable to set the timeout equal to the EstimatedRTT plus some

margin.

➢ The margin should be large when there is a lot of fluctuation in the SampleRTT

values; it should be small when there is little fluctuation.

➢ The value of DevRTT should thus come into play here.

➢ All of these considerations are taken into account in TCP’s method for

determining the retransmission timeout interval:

TimeoutInterval = EstimatedRTT + 4 • DevRTT

➢ When a timeout occurs, the value of TimeoutInterval is doubled to avoid a

premature timeout occurring for a subsequent segment that will soon be

acknowledged.

➢ As soon as a segment is received and EstimatedRTT is updated, the

TimeoutInterval is again computed using the formula above.

.5.4 Reliable Data Transfer:

➢ The Internet’s network-layer service (IP service) is unreliable.
➢ IP does not guarantee datagram delivery, does not guarantee in-order

delivery of datagrams and does not guarantee the integrity of the data in
the datagrams. With IP service, datagrams can overflow router buffers and
never reach their destination, datagrams can arrive out of order, and bits in
the datagram can get corrupted (flipped from 0 to 1 and vice versa).

➢ Transport-layer segments are carried across the network by IP datagrams,

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 54

transport-layer segments can suffer from these problems as well.
➢ TCP creates a reliable data transfer service on top of IP’s unreliable best

effort service.
➢ TCP’s reliable data transfer service ensures that the data stream that a

process reads out of its TCP receive buffer is uncorrupted, without gaps,
without duplication, and in sequence;

➢ that is, the byte stream is exactly the same byte stream that was sent by the end system
on the other side of the connection.

➢ The recommended TCP timer management procedures use only a single retransmission
timer, even if there are multiple transmitted but not yet acknowledged segments.

➢ Suppose that data is being sent in only one direction, from Host A to Host B, and that
Host A is sending a large file.

➢ Three major events related to data transmission and retransmission in the TCP
sender:

1. data received from application above;
2. timer timeout;
3. ACK receipt.

➢ Upon the occurrence of the first major event, TCP receives data from the application,
encapsulates the data in a segment, and passes the segment to IP.

➢ Each segment includes a sequence number that is the byte-stream number of the
first data byte in the segment.
➢ If the timer is already not running for some other segment, TCP starts the timer
when the segment is passed to IP.
➢ The expiration interval for this timer is the TimeoutInterval, which is calculated
from
EstimatedRTT and DevRTT

Simplified TCP sender :

/* Assume sender is not constrained by TCP flow or congestion control, that data from
above

is less than MSS in size, and that data transfer is in one direction only. */
NextSeqNum=InitialSeqNumber
SendBase=InitialSeqNumber
loop (forever) {
switch(event)
event: data received from application above

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 55

create TCP segment with sequence number NextSeqNum
if (timer currently not running)
start timer
pass segment to IP
NextSeqNum=NextSeqNum+length(data)
break;
event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer
break;
event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase=y

if (there are currently any not-yet-acknowledged segments)
start timer
}
break;
} /* end of loop forever */

➢ The second major event is the timeout. TCP responds to the timeout event by

retransmitting the segment that caused the timeout.
➢ TCP then restarts the timer.
➢ The third major event that must be handled by the TCP sender is the arrival of an
 acknowledgment segment (ACK) from the receiver.
➢ On the occurrence of this event, TCP compares the ACK value y with its variable

SendBase.
➢ The TCP state variable SendBase is the sequence number of the oldest unacknowledged

byte.
➢ TCP uses cumulative acknowledgments, so that y acknowledges the receipt of all bytes

before byte number y.
➢ If y > SendBase, then the ACK is acknowledging one or more previously

unacknowledged segments.
➢ Thus the sender updates its SendBase variable; it also restarts the timer if there currently

are any not-yet-acknowledged segments

A Few Interesting Scenarios:

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 56

Figure above depicts the first scenario,

➢ In which Host A sends one segment to Host B.

➢ Suppose that this segment has sequence number 92 and contains 8 bytes of data.

➢ After sending this segment, Host A waits for a segment from B with acknowledgment

number 100.

➢ Although the segment from A is received at B, the acknowledgment from B to A gets

lost.

➢ In this case, the timeout event occurs, and Host A retransmits the same segment. When

Host B receives the retransmission, it observes from the sequence number that the

segment contains data that has already been received.

➢ Thus, TCP in Host B will discard the bytes in the retransmitted segment.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 57

In a second scenario, shown in Figure,

➢ Host A sends two segments back to back.

➢ The first segment has sequence number 92 and 8 bytes of data, and the second segment

has sequence number 100 and 20 bytes of data.

➢ Suppose that both segments arrive intact at B, and B sends two separate

acknowledgments for each of these segments.

➢ The first of these acknowledgments has acknowledgment number 100; the second has

acknowledgment number 120.

➢ Suppose now that neither of the acknowledgments arrives at Host A before the timeout.

➢ When the timeout event occurs, Host A resends the first segment with sequence number

92 and restarts the timer.

➢ As long as the ACK for the second segment arrives before the new timeout, the second

segment will not be retransmitted.

In a third and final scenario,

➢ Suppose Host A sends the two segments, exactly as in the second example.

➢ The acknowledgment of the first segment is lost in the network, but just before the

timeout event, Host A receives an acknowledgment with acknowledgment number 120.

➢ Host A therefore knows that Host B has received everything up through byte 119; so

Host A does not resend either of the two segments. This scenario is illustrated in Figure

below.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 58

 Doubling the Timeout Interval

➢ The length of the timeout interval after a timer expiration.

➢ In this modification, whenever the timeout event occurs, TCP retransmits the not-yet

acknowledged segment with the smallest sequence number, as described above.

➢ But each time TCP retransmits, it sets the next timeout interval to twice the previous

value, rather than deriving it from the last EstimatedRTT and DevRTT .

➢ For example, suppose TimeoutInterval associated with the oldest not yet acknowledged

segment is .75 sec when the timer first expires.

➢ TCP will then retransmit this segment and set the new expiration time to 1.5 sec.

➢ If the timer expires again 1.5 sec later, TCP will again retransmit this segment, now

setting the expiration time to 3.0 sec.

➢ Thus the intervals grow exponentially after each retransmission.

➢ However, whenever the timer is started after either of the two other events (that is, data

received from application above, and ACK received), the TimeoutInterval is derived

from the most recent values of EstimatedRTT and DevRTT.

➢ This modification provides a limited form of congestion control.

➢ The timer expiration is most likely caused by congestion in the network, that is, too many

packets arriving at one (or more) router queues in the path between the source and

destination, causing packets to be dropped and/or long queuing delays.

➢ In times of congestion, if the sources continue to retransmit packets persistently, the

congestion may get worse.

➢ Instead, TCP acts more politely, with each sender retransmitting after longer and longer

intervals.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 59

Fast Retransmit:

➢ One of the problems with timeout-triggered retransmissions is that the timeout period can

be relatively long.

➢ When a segment is lost, this long timeout period forces the sender to delay resending the

lost packet, thereby increasing the end-to end delay.

➢ The sender can often detect packet loss well before the timeout event occurs by noting so

called duplicate ACKs.

➢ A duplicate ACK is an ACK that reacknowledges a segment for which the sender has

already received an earlier acknowledgment.

➢ When a TCP receiver receives a segment with a sequence number that is larger than the

next, expected, in-order sequence number, it detects a gap in the data stream—that is, a

missing segment.

➢ This gap could be the result of lost or reordered segments within the network.

➢ Table :

➢ Since TCP does not use negative acknowledgments, the receiver cannot send an explicit

negative acknowledgment back to the sender.

➢ Instead, it simply reacknowledges (that is, generates a duplicate ACK for) the last in-

order byte of data it has received.

➢ Because a sender often sends a large number of segments back to back, if one segment is

lost, there will likely be many back-to-back duplicate ACKs.

➢ If the TCP sender receives three duplicate ACKs for the same data, it takes this as an

indication that the segment following the segment that has been ACKed three times has

been lost.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 60

➢ In the case that three duplicate ACKs are received, the TCP sender performs a fast

retransmit , retransmitting the missing segment before that segment’s timer expires.

➢ This is shown in Figure above, where the second segment is lost, then retransmitted

before its timer expires.

➢ For TCP with fast retransmit, the following code snippet replaces the ACK received

event in Figure 3.37:

event: ACK received, with ACK field value of y

if (y > SendBase) {

SendBase=y

if (there are currently any not yet

acknowledged segments)

start timer

}

else { /* a duplicate ACK for already ACKed segment */

increment number of duplicate ACKs

received for y

if (number of duplicate ACKS received

for y==3)

/* TCP fast retransmit */

resend segment with sequence number y

}

break;

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 61

Go-Back-N or Selective Repeat:

➢ TCP sender need only maintain the smallest sequence number of a transmitted but

unacknowledged byte (SendBase) and the sequence number of the next byte to be sent

(NextSeqNum).

➢ TCP looks a lot like a GBN-style protocol. But there are some striking differences

between TCP and Go-Back-N.

➢ Many TCP implementations will buffer correctly received but out-of-order .Suppose that

the acknowledgment for packet n < N gets lost, but the remaining N – 1

acknowledgments arrive at the sender before their respective timeouts.

➢ In this example, GBN would retransmit not only packet n, but also all of the subsequent

packets n + 1, n + 2, . . . , N. TCP, on the other hand, would retransmit at most one

segment, namely, segment n.

➢ Moreover, TCP would not even retransmit segment n if the acknowledgment for segment

n + 1 arrived before the timeout for segment n. A proposed modification to TCP, the so-

called Selective acknowledgment.

➢ TCP receiver acknowledges out-of-order segments selectively rather than just

cumulatively acknowledging the last correctly received, inorder segment. When

combined with selective retransmission—skipping the retransmission of segments that

have already been selectively acknowledged by the receiver.

.5.5 Flow Control:

➢ Hosts on each side of a TCP connection sets aside a receive buffer for the connection.

When the TCP connection receives bytes that are correct and insequence, it places the

data in the receive buffer.

➢ The associated application process will read data from this buffer, but not necessarily at

the instant the data arrives.

➢ The receiving application may be busy with some other task and may not even attempt to

read the data until long after it has arrived.

➢ If the application is relatively slow at reading the data, the sender can very easily

overflow the connection’s receive buffer by sending too much data too quickly.

➢ TCP provides a flow-control service to its applications to eliminate the possibility of the

sender overflowing the receiver’s buffer.

➢ Flow control is thus a speed-matching service—matching the rate at which the sender is

sending against the rate at which the receiving application is reading.

➢ TCP sender can also be throttled due to congestion within the IP network; this form of

sender control is referred to as congestion control.

➢ TCP provides flow control by having the sender maintain a variable called the receive

window.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 62

➢ Informally, the receive window is used to give the sender an idea of how much free

buffer space is available at the receiver.

➢ Because TCP is full-duplex, the sender at each side of the connection maintains a distinct

receive window.

➢ Suppose that Host A is sending a large file to Host B over a TCP connection.

➢ Host B allocates a receive buffer to this connection; denote its size by RcvBuffer. From

time to time, the application process in Host B reads from the buffer.

Define the following variables:

➢ LastByteRead: the number of the last byte in the data stream read from the buffer by the

application process in B.

➢ LastByteRcvd: the number of the last byte in the data stream that has arrived from the

network and has been placed in the receive buffer at B Because TCP is not permitted to

overflow the allocated buffer, we must have

LastByteRcvd – LastByteRead <= RcvBuffer

➢ The receive window, denoted rwnd is set to the amount of spare room in the buffer:

rwnd = RcvBuffer – [LastByteRcvd – LastByteRead]

➢ Because the spare room changes with time, rwnd is dynamic. The variable rwnd is

illustrated in Figure below.

➢ Host B tells Host A how much spare room it has in the connection buffer by placing its

current value of rwnd in the receive window field of every segment it sends to A.

➢ Initially, Host B sets rwnd = RcvBuffer. Host B must keep track of several connection-

specific variables.

➢ Host A in turn keeps track of two variables, LastByteSent and Last- ByteAcked.

➢ The difference between these two variables, LastByteSent – LastByteAcked, is the

amount of unacknowledged data that A has sent into the connection.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 63

➢ By keeping the amount of unacknowledged data less than the value of rwnd, Host A is

assured that it is not overflowing the receive buffer at Host B.

➢ Thus, Host A makes sure throughout the connection’s life that

 LastByteSent – LastByteAcked < = rwnd

➢ Problem with this scheme: Suppose Host B’s receive buffer becomes full so that rwnd =

0.

➢ After advertising rwnd = 0 to Host A, also suppose that B has nothing to send to A. As

the application process at B empties the buffer, TCP does not send new segments with

new rwnd values to Host A; indeed, TCP sends a segment to Host A only if it has data to

send or if it has an acknowledgment to send.

➢ Therefore, Host A is never informed that some space has opened up in Host B’s receive

buffer—Host A is blocked and can transmit no more data!

➢ To solve this problem, the TCP specification requires Host A to continue to send

segments with one data byte when B’s receive window is zero.

➢ These segments will be acknowledged by the receiver.

➢ Eventually the buffer will begin to empty and the acknowledgments will contain a

nonzero rwnd value.

.5.6 TCP Connection Management:
➢ Suppose a process running in one host (client) wants to initiate a connection with another

process in another host (server).

➢ The client application process first informs the client TCP that it wants to establish a

connection to a process in the server.

➢ The TCP in the client then proceeds to establish a TCP connection with the TCP in the

server in the following manner:

Step 1. The client-side TCP first sends a special TCP segment to the server-side TCP. This

special segment contains no application-layer data.

➢ But one of the flag bits in the segment’s header (refer TCP segment Figure), the SYN

bit, is set to 1.

➢ For this reason, this special segment is referred to as a SYN segment.

➢ In addition, the client randomly chooses an initial sequence number (client_isn) and

puts this number in the sequence number field of the initial TCP SYN segment.

➢ This segment is encapsulated within an IP datagram and sent to the server.

Step 2. Once the IP datagram containing the TCP SYN segment arrives at the server host, the

server extracts the TCP SYN segment from the datagram, allocates the TCP buffers and

variables to the connection, and sends a connection-granted segment to the client TCP.

➢ This connection-granted segment also contains no application layer data.

➢ It contains three important pieces of information in the segment header :

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 64

1) The SYN bit is set to 1.

2) The acknowledgment field of the TCP segment header is set to

client_isn+1.

3) Server chooses its own initial sequence number (server_isn) and puts this

value in

➢ The sequence number field of the TCP segment header.

➢ This connection-granted segment is saying, in effect, “Server received clients SYN

packet to start a connection with clients initial sequence number, client_isn.

➢ Server is agree to establish this connection.

➢ Servers initial sequence number is server_isn.” The connection granted segment is

referred to as a SYNACK segment.

Step 3. Upon receiving the SYNACK segment, the client also allocates buffers and

variables to the connection.

➢ The client host then sends the server yet another segment;

➢ This last segment acknowledges the server’s connection-granted segment (the client does

so by putting the value server_isn+1 in the acknowledgment field of the TCP segment

header).

➢ The SYN bit is set to zero, since the connection is established.

➢ This third stage of the three-way handshake may carry client-to-server data in the

segment payload.

➢ Once these three steps have been completed, the client and server hosts can send

segments containing data to each other. In each of these future segments, the SYN bit

will be set to zero.

➢ In order to establish the connection, three packets are sent between the two hosts, as

illustrated in Figure.

➢ For this reason, this connection establishment procedure is often referred to as a three-

way handshake.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 65

➢ Either of the two processes participating in a TCP connection can end the connection.

When a connection ends, the “resources” (that is, the buffers and variables) in the hosts

are deallocated.

➢ Example, suppose the client decides to close the connection, as shown in Figure below.

➢ The client application process issues a close command.

➢ This causes the client TCP to send a special TCP segment to the server process.

➢ This special segment has a flag bit in the segment’s header, the FIN bit, set to 1.

➢ When the server receives this segment, it sends the client an acknowledgment segment in

return.

➢ The server then sends its own shutdown segment, which has the FIN bit set to 1.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 66

➢ Finally, the client acknowledges the server’s shutdown segment.

➢ At this point, all the resources in the two hosts are now deallocated.

➢ During the life of a TCP connection, the TCP protocol running in each host makes

transitions through various TCP states.

➢ Figure above illustrates a typical sequence of TCP states that are visited by the client

TCP.

➢ The client TCP begins in the CLOSED state. The application on the client side initiates a

new TCP connection.

➢ This causes TCP in the client to send a SYN segment to TCP in the server. After having

sent the SYN segment, the client TCP enters the SYN_SENT state. While in the

SYN_SENT state, the client TCP waits for a segment from the server TCP that includes

an acknowledgment for the client’s previous segment and has the SYN bit set to 1.

➢ Having received such a segment, the client TCP enters the ESTABLISHED state. While

in the ESTABLISHED state, the TCP client can send and receive TCP segments

containing payload (message) data

➢ Suppose that the client application decides it wants to close the connection. This causes

the client TCP to send a TCP segment with the FIN bit set to 1 and to enter the

FIN_WAIT_1 state.

➢ While in the FIN_WAIT_1 state, the client TCP waits for a TCP segment from the server

with an acknowledgment.

➢ When it receives this segment, the client TCP enters the FIN_WAIT_2 state.

➢ While in the FIN_WAIT_2 state, the client waits for another segment from the server

with the FIN bit set to 1; after receiving this segment, the client TCP acknowledges the

server’s segment and enters the TIME_WAIT state.

➢ The TIME_WAIT state lets the TCP client resend the final acknowledgment in case the

ACK is lost.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 67

➢ The time spent in the TIME_WAIT state is implementation-dependent, but typical values

are 30 seconds, 1 minute, and 2 minutes.

➢ After the wait, the connection formally closes and all resources on the client side

(including port numbers) are released.

➢ Figure above illustrates the series of states typically visited by the server-side TCP,

assuming the client begins connection teardown.

➢ If a host receives a TCP segment whose port numbers or source IP address do not match

with any of the ongoing sockets in the host.

➢ For example, suppose a host receives a TCP SYN packet with destination port 80, but the

host is not accepting connections on port 80.

➢ Then the host will send a special reset segment to the source. This TCP segment has the

RST flag bit set to 1.

➢ Thus, when a host sends a reset segment, Source sends TCP SYN segment with

destination port 6789 to target host.

➢ There are three possible outcomes:

1. The source host receives a TCP SYNACK segment from the target host. Since this

means that an application is running with TCP port 6789 on the target post, returns

“open.”

2. The source host receives a TCP RST segment from the target host.

a. This means that the SYN segment reached the target host, but the target host is

not running an application with TCP port 6789.

b. But the attacker at least knows that the segments destined to the host at port 6789

are not blocked by any firewall on the path between source and target hosts.

3. The source receives nothing. SYN segment was blocked by an intervening firewall and

never reached the target host.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 68

.6 Principles of Congestion Control

➢ Cause of network congestion is too many sources attempting to send data at too high a

rate.

➢ To treat the cause of network congestion, mechanisms are needed to throttle senders in

the face of network congestion.

The Causes and the Costs of Congestion

Scenario 1: Two Senders, a Router with Infinite Buffers

➢ The simplest congestion scenario possible: Two hosts (A and B) each have a connection

that shares a single hop between source and destination, as shown in Figure above.

➢ Assume that the application in Host A is sending data into the connection at an average

rate of λ in bytes/sec.

➢ These data are original in the sense that each unit of data is sent into the socket only once.

➢ The underlying transport-level protocol is a simple one.

➢ Data is encapsulated and sent; no error recovery (for example, retransmission), flow

control, or congestion control is performed.

➢ Ignoring the additional overhead due to adding transport- and lower-layer header

information, the rate at which Host A offers traffic to the router in this first scenario is

thus λ in bytes/sec.

➢ Host B operates in a similar manner, and we assume for simplicity that it too is sending at

a rate of λ in bytes/sec.

➢ Packets from Hosts A and B pass through a router and over a shared outgoing link of

capacity R.

➢ The router has buffers that allow it to store incoming packets when the packet-arrival rate

exceeds the outgoing link’s capacity.

In this first scenario, we assume that the router has an infinite amount of buffer space.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 69

➢ Figure above plots the performance of Host A’s connection under this first scenario.

➢ The left graph plots the per-connection throughput (number of bytes per second at the

receiver) as a function of the connection-sending rate.

➢ For a sending rate between 0 and R/2, the throughput at the receiver equals the sender’s

sending rate—everything sent by the sender is received at the receiver with a finite delay.

➢ When the sending rate is above R/2, however, the throughput is only R/2.

➢ This upper limit on throughput is a consequence of the sharing of link capacity between

two connections.

➢ The link simply cannot deliver packets to a receiver at a steady-state rate that exceeds

R/2.

➢ Even if Hosts A and B set their sending rates high, they will each never see a throughput

higher than R/2.

➢ Achieving a per-connection throughput of R/2 is good because the link is fully utilized in

delivering packets to their destinations.

➢ The right-hand graph in Figure a above, shows the consequence of operating near link

capacity.

➢ As the sending rate approaches R/2 (from the left), the average delay becomes larger and

larger.

➢ When the sending rate exceeds R/2, the average number of queued packets in the router is

unbounded and the average delay between source and destination becomes infinite

(assuming that the connections operate at these sending rates for an infinite period of time

and there is an infinite amount of buffering available).

➢ Thus, while operating at an aggregate throughput of near R may be ideal from a

throughput standpoint, it is far from ideal from a delay standpoint.

➢ Thus, Large queuing delays are experienced as the packet arrival rate nears the link

capacity.

Scenario 2: Two Senders and a Router with Finite Buffers

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 70

➢ Scenario 1 is modified in the following two ways:(Figure).

1. The amount of router buffering is assumed to be finite.

a. A consequence of this assumption is that packets will be dropped when arriving to

an already full buffer.

2. Assume that each connection is reliable.

a. If a packet containing a transport-level segment is dropped at the router, the

sender will eventually retransmit it.

b. The rate at which the application sends original data into the socket by in

bytes/sec.

c. The rate at which the transport layer sends segments (containing original data and

retransmitted data) into the network will be denoted λin bytes/sec.

d. λin is referred to as the offered load to the network.

➢ The performance realized under scenario 2 will now depend strongly on how

retransmission is performed.

1.Consider the unrealistic case that Host A is able to somehow determine whether or not a

buffer is free in the router and thus sends a packet only when a buffer is free.

➢ In this case, no loss would occur, λ in would be equal to λ in, and the throughput of the

connection would be equal to λ in.

This case is shown in Figure (a).

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 71

➢ From a throughput standpoint, performance is ideal—everything that is sent is received.

➢ The average host sending rate cannot exceed R/2 under this scenario, since packet loss is

assumed never to occur.

2.Consider a realistic case in which the sender retransmits only when a packet is known for

certain to be lost.

➢ In this case, the performance is shown in Figure (b).

➢ Consider the case that the offered load, λ in (the rate of original data transmission plus

retransmissions), equals R/2. According to Figure (b), at this value of the offered load,

the rate at which data are delivered to the receiver application is R/3.

➢ Thus, out of the 0.5R units of data transmitted, 0.333R bytes/sec (on average) are original

data and 0.166R bytes/sec (on average) are retransmitted data.

➢ The sender must perform retransmissions in order to compensate for dropped (lost)

packets due to buffer overflow.

➢ Finally, consider the case that the sender may time out prematurely and retransmit a

packet that has been delayed in the queue but not yet lost.

➢ In this case, both the original data packet and the retransmission may reach the receiver.

➢ The receiver needs but one copy of this packet and will discard the retransmission.

➢ In this case, the work done by the router in forwarding the retransmitted copy of the

original packet was wasted, as the receiver will have already received the original copy of

this packet.

➢ The router would have better used the link transmission capacity to send a different

packet instead.

➢ The unneeded retransmissions by the sender in the face of large delays may cause a

router to use its link bandwidth to forward unneeded copies of a packet.

➢ Figure (c) shows the throughput versus offered load when each packet is assumed to be

forwarded (on average) twice by the router. Since each packet is forwarded twice, the

throughput will have an asymptotic value of R/4 as the offered load approaches R/2.

Scenario 3: Four Senders, Routers with Finite Buffers, and Multihop Paths

➢ In final congestion scenario, four hosts transmit packets, each over overlapping two-hop

paths, as shown in Figure below.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 72

➢ Assume that each host uses a timeout/retransmission mechanism to implement a reliable

data transfer service, that all hosts have the same value of λin, and that all router links

have capacity R bytes/sec.

➢ Consider the connection from Host A to Host C, passing through routers R1 and R2. The

A–C connection shares router R1 with the D–B connection and shares router R2 with the

B–D connection.

➢ For extremely small values of λin, buffer overflows are rare (as in congestion scenarios 1

and 2), and the throughput approximately equals the offered load.

➢ For slightly larger values of λin, the corresponding throughput is also larger, since more

original data is being transmitted into the network and delivered to the destination, and

overflows are still rare.

➢ Thus, for small values of λin, an increase in λin results in an increase in λout. Having

considered the case of extremely low traffic, consider the case that λin (and hence λin) is

extremely large.

➢ Consider router R2.

➢ The A–C traffic arriving to router R2 (which arrives at R2 after being forwarded from

R1) can have an arrival rate at R2 that is at most R, the capacity of the link from R1 to

R2, regardless of the value of λin. If λin is extremely large for all connections (including

the B–D connection), then the arrival rate of B–D traffic at R2 can be much larger than

that of the A–C traffic.

➢ Because the A–C and B–D traffic must compete at router R2 for the limited amount of

buffer space, the amount of A–C traffic that successfully gets through R2 (that is, is not

lost due to buffer overflow) becomes smaller and smaller as the offered load from B–D

gets larger and larger.

➢ In the limit, as the offered load approaches infinity, an empty buffer at R2 is immediately

filled by a B–D packet, and the throughput of the A–C connection at R2 goes to zero.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 73

➢ This, in turn, implies that the A–C end-to-end throughput goes to zero in the limit of

heavy traffic.

➢ The offered load versus throughput trade off shown in Figure 3.48.

➢ The reason for the eventual decrease in throughput with increasing offered load is evident

when one considers the amount of wasted work done by the network.

➢ In the high-traffic scenario, whenever a packet is dropped at a second-hop router, the

work done by the first-hop router in forwarding a packet to the second-hop router ends up

being “wasted.”

➢ The transmission capacity used at the first router to forward the packet to the second

router could have been used to transmit a different packet.

➢ Example, when selecting a packet for transmission, it might be better for a router to give

priority to packets that have already traversed some number of upstream routers.

➢ When a packet is dropped along a path, the transmission capacity that was used at each of

the upstream links to forward that packet to the point at which it is dropped ends up

having been wasted.

3.6.2 Approaches to Congestion Control:

The two broad approaches to congestion control that are taken in practice and discuss specific

network architectures and congestion-control protocols embodying these approaches.

1. End-to-end congestion control : In an end-to-end approach to congestion control, the

network layer provides no explicit support to the transport layer for congestion control

purposes.

a. Even the presence of congestion in the network must be inferred by the end

systems based only on observed network behavior (for example, packetloss and

delay).

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 74

b. Segment loss is taken as an indication of network-congestion and the window-size

is decreased accordingly.

2. Network-assisted congestion control. With network-assisted congestion control,

network layer components (that is, routers) provide explicit feedback to the sender

regarding the congestion state in the network.

a. This feedback may be as simple as a single bit indicating congestion at a link.

b. Congestion information is fed back from the network to the sender in one of two

ways:

i) Direct feedback may be sent from a network-router to the sender (Figure

3.49).

➢ This form of notification typically takes the form of a choke

packet.

ii) A router marks a field in a packet flowing from sender to receiver to

indicate congestion.

➢ Upon receipt of a marked packet, the receiver then notifies

the sender of the congestion indication.

➢ This form of notification takes at least a full round-trip time.

➢ This approach is used in ATM available bit-rate (ABR) congestion control.

➢ More sophisticated network feedback is also possible.

➢ For example, one form of ATM ABR congestion control allows a router to inform the

sender explicitly of the transmission rate it (the router) can support on an outgoing link.

➢ For network-assisted congestion control, congestion information is typically fed back

from the network to the sender in one of two ways, as shown in Figure below.

3.6.3 Network Assisted Congestion Control Example:

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 75

ATM ABR Congestion Control

➢ ATM (Asynchronous Transfer Mode) protocol uses network-assisted approach for
congestion-control.

➢ ABR (Available Bit Rate) has been designed as an elastic data-transfer-service.
i) When the network is underloaded, ABR has to take advantage of the spare available

bandwidth.
ii) When the network is congested, ABR should reduce its transmission-rate.

➢ Figure 2.41 shows the framework for ATM ABR congestion-control.
➢ Data-cells are transmitted from a source to a destination through a series of intermediate

switches.
➢ RM-cells are placed between the data-cells. (RM Resource Management).

➢ The RM-cells are used to send congestion-related information to the hosts & switches.
➢ When an RM-cell arrives at a destination, the cell will be sent back to the sender
➢ Thus, RM-cells can be used to provide both

→ direct network feedback and
→ network feedback via the receiver.

 Three Methods to indicate Congestion
➢ ATM ABR congestion-control is a rate-based approach.
➢ ABR provides 3 mechanisms for indicating congestion-related information:

1) EFCI Bit
➢ Each data-cell contains an EFCI bit. (EFCI Explicit forward congestion indication)
➢ A congested-switch sets the EFCI bit to 1 to signal congestion to the destination.

➢ The destination must check the EFCI bit in all received data-cells.
➢ If the most recently received data-cell has the EFCI bit set to 1, then the destination

→ sets the CI bit to 1 in the RM-cell (CI congestion indication)

→ sends the RM-cell back to the sender.

➢ Thus, a sender can be notified about congestion at a network switch.
2) CI and NI Bits

➢ The rate of RM-cell interspersion is a tunable parameter.
➢ The default value is one RM-cell every 32 data-cells. (NI No Increase)
➢ The RM-cells have a CI bit and a NI bit that can be set by a congested-switch.
➢ A switch

→ sets the NI bit to 1 in a RM-cell under mild congestion and

→ sets the CI bit to 1 under severe congestion conditions.
3) ER Setting

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 76

➢ Each RM-cell also contains an ER field. (ER explicit rate)
➢ A congested-switch may lower the value contained in the ER field in a passing RM-

cell.
➢ In this manner, ER field will be set to minimum supportable rate of all switches on

the path.

.7 TCP Congestion Control:
➢ TCP has congestion-control mechanism.
➢ TCP uses end-to-end congestion-control rather than network-assisted congestion-control
➢ Here is how it works:

➢ Each sender limits the rate at which it sends traffic into its connection as a

function of perceived congestion.
i) If sender perceives that there is little congestion, then sender increases its data-

rate.
ii) If sender perceives that there is congestion, then sender reduces its data-rate.

➢ This approach raises three questions:
1) How does a sender limit the rate at which it sends traffic into its connection?
2) How does a sender perceive that there is congestion on the path?
3) What algorithm should the sender use to change its data-rate?

➢ The sender keeps track of an additional variable called the congestion-window (cwnd).
➢ The congestion-window imposes a constraint on the data-rate of a sender.
➢ The amount of unacknowledged-data at a sender will not exceed minimum of (cwnd & rwnd),

that is:

➢ The sender’s data-rate is roughly cwnd/RTT bytes/sec.
➢ Explanation of Loss event:

➢ A “loss event” at a sender is defined as the occurrence of either
→ timeout or
→ receipt of 3 duplicate ACKs from the receiver.

➢ Due to excessive congestion, the router-buffer along the path overflows. This

causes a datagram to be dropped.
➢ The dropped datagram, in turn, results in a loss event at the sender.
➢ The sender considers the loss event as an indication of congestion on the path.

➢ How congestion is detected?
➢ Consider the network is congestion-free.
➢ Acknowledgments for previously unacknowledged segments will be received at the

sender.
➢ TCP

→ will take the arrival of these acknowledgments as an indication that all is well

and

→ will use acknowledgments to increase the window-size (& hence data-rate).
➢ TCP is said to be self-clocking because

→ acknowledgments are used to trigger the increase in window-size

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 77

➢ Congestion-control algorithm has 3 major components:
1) Slow start
2) Congestion avoidance and

3) Fast recovery.

.7.1 Slow Start

➢ When a TCP connection begins, the value of cwnd is initialized to 1 MSS.
➢ TCP doubles the number of packets sent every RTT on successful transmission.
➢ Here is how it works:

o As shown in Figure 3.51, the TCP

▪ → sends the first-segment into the network and
▪ → waits for an acknowledgment.

o When an acknowledgment arrives, the sender
▪ → increases the congestion-window by one MSS and
▪ → sends out 2 segments.

o When two acknowledgments arrive, the sender

▪ → increases the congestion-window by one MSS and

▪ → sends out 4 segments.

o This process results in a doubling of the sending-rate every RTT.

➢ Thus, the TCP data-rate starts slow but grows exponentially during the slow start phase.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 78

➢ When should the exponential growth end?
➢ Slow start provides several answers to this question.

1) If there is a loss event, the sender
→ sets the value of cwnd to 1 and
→ begins the slow start process again. (ssthresh “slow start threshold”)

→ sets the value of ssthresh to cwnd/2.

2) When the value of cwnd equals ssthresh, TCP enters the congestion

avoidance state.
3) When three duplicate ACKs are detected, TCP

→ performs a fast retransmit and
→ enters the fast recovery state.

➢ TCP’s behavior in slow start is summarized in FSM description in Figure 3.52.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 79

.7.2 Congestion Avoidance

➢ On entry to congestion-avoidance state, the value of cwnd is approximately half its previous
value.

➢ Thus, the value of cwnd is increased by a single MSS every RTT.
➢ The sender must increases cwnd by MSS bytes (MSS/cwnd) whenever a new

acknowledgment arrives
➢ When should linear increase (of 1 MSS per RTT) end?

1) When a timeout occurs.
➢ When the loss event occurred,

→ value of cwnd is set to 1 MSS and

→ value of ssthresh is set to half the value of cwnd.
2) When triple duplicate ACK occurs.

➢ When the triple duplicate ACKs were received,
→ value of cwnd is halved.

→ value of ssthresh is set to half the value of cwnd.

.7.3 Fast Recovery

➢ The value of cwnd is increased by 1 MSS for every duplicate ACK received.
➢ When an ACK arrives for the missing segment, the congestion-avoidance state is entered.

➢ If a timeout event occurs, fast recovery transitions to the slow-start state.
➢ When the loss event occurred

→ value of cwnd is set to 1 MSS, and

→ value of ssthresh is set to half the value of cwnd.
➢ There are 2 versions of TCP:

1) TCP Tahoe
➢ An early version of TCP was known as TCP Tahoe.
➢ TCP Tahoe

→ cut the congestion-window to 1 MSS and

→ entered the slow-start phase after either
i) timeout-indicated or
ii) triple-duplicate-ACK-indicated loss event.

2) TCP Reno
➢ The newer version of TCP is known as TCP Reno.
➢ TCP Reno incorporated fast recovery.

➢ Figure 3.53 illustrates the evolution of TCP’s congestion-window for both Reno and

Tahoe.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 80

3.7.4 TCP Congestion Control Retrospective

➢ TCP’s congestion-control consists of (AIMD ->additive increase, multiplicative decrease)

→ Increasing linearly (additive) value of cwnd by 1 MSS per RTT and

→ Halving (multiplicative decrease) value of cwnd on a triple duplicate-ACK event.

➢ For this reason, TCP congestion-control is often referred to as an AIMD.

➢ AIMD congestion-control gives rise to the “saw tooth” behavior shown in Figure 2.45.
➢ TCP

→ increases linearly the congestion-window-size until a triple duplicate-ACK event

occurs and

 → decreases then the congestion-window-size by a factor of 2

3.7.5 TCP Fairness

➢ Congestion-control mechanism is fair if each connection gets equal share of the link-
bandwidth.

➢ As shown in Figure 3.55, consider 2 TCP connections sharing a single link with transmission-

rate R.

➢ Assume the two connections have the same MSS and RTT.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 81

➢ Figure 3.56 plots the throughput realized by the two TCP connections.

➢ If TCP shares the link-bandwidth equally b/w the 2 connections,
then the throughput falls along the 45-degree arrow starting from the origin.

 Fairness and UDP
➢ Many multimedia-applications (such as Internet phone) often do not run over TCP.
➢ Instead, these applications prefer to run over UDP. This is because

o → applications can pump their audio into the network at a constant rate and
o → occasionally lose packets.

 Fairness and Parallel TCP Connections

➢ Web browsers use multiple parallel-connections to transfer the multiple objects within a Web
page.

➢ Thus, the application gets a larger fraction of the bandwidth in a congested link.
➢ ‘.’ Web-traffic is so pervasive in the Internet; multiple parallel-connections are common

nowadays.

Computer Network and Security 18CS52

Department of ISE, Atria. I.T Page 82

MODULE-WISE QUESTIONS

1) With a diagram, explain multiplexing and demultiplexing. (6*)
2) Explain the significance of source and destination-port-no in a segment. (4*)
3) With a diagram, explain connectionless multiplexing and demultiplexing. (4)
4) With a diagram, explain connection oriented multiplexing and demultiplexing. (4)
5) Briefly explain UDP & its services. (6*)
6) With general format, explain various field of UDP segment. Explain how checksum is

calculated (8*)
7) With a diagram, explain the working of rdt1.0. (6)
8) With a diagram, explain the working of rdt2.0. (6*)
9) With a diagram, explain the working of rdt2.1. (6)
10) With a diagram, explain the working of rdt3.0. (6*)

11) With a diagram, explain the working of Go-Back-N. (6*)
12) With a diagram, explain the working of selective repeat. (6*)
13) Explain the following terms: (8)

i) Sequence-number
ii) Acknowledgment
iii) Negative acknowledgment

14) Window, pipelining briefly explain TCP & its services. (6*)
15) With general format, explain various field of TCP segment. (6*)
16) With a diagram, explain the significance of sequence and acknowledgment numbers. (4*)
17) With a diagram, explain the reliable data transfer with few interesting scenarios. (8)
18) With a diagram, explain fast retransmit in TCP. (6*)
19) With a diagram, explain flow Control in TCP. (6)
20) With a diagram, explain connection management in TCP. (8*)
21) With a diagram, explain the causes of congestion with few scenarios. (8)
22) Briefly explain approaches to congestion control. (6*)
23) With a diagram, explain ATM ABR congestion control. (8)
24) With a diagram, explain slow start in TCP. (6*)
25) With a diagram, explain fast recovery in TCP. (6*)

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Module – 3

The Network layer: What's Inside a Router?: Input Processing, Switching, Output

Processing, Where Does Queuing Occur? Routing control plane, IPv6,A Brief foray into IP

Security, Routing Algorithms: The Link-State (LS) Routing Algorithm, The Distance-Vector

(DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet, Intra-AS Routing in

the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter/AS Routing: BGP, Broadcast

and Multicast Routing: Broadcast Routing Algorithms and Multicast.

What’s inside a router ?

A high-level view of a generic router architecture is shown in Figure above. Four router

components can be identified:

• Input ports. An input port performs several key functions. It performs the physical layer

function of terminating an incoming physical link at a router; this is shown in the leftmost

box of the input port and the rightmost box of the output port in Figure above.

An input port also performs link-layer functions needed to interoperate with the link layer at

the other side of the incoming link; this is represented by the middle boxes in the input and

output ports.

The lookup function is also performed at the input port; this will occur in the rightmost box

of the input port. Here the forwarding table is consulted to determine the router output port to

which an arriving packet will be forwarded via the switching fabric.

Page 1

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

• Switching fabric. The switching fabric connects the router’s input ports to its output ports.

This switching fabric is completely contained within the router

• Output ports. An output port stores packets received from the switching fabric and transmits

these packets on the outgoing link by performing the necessary link-layer and physical-layer

functions.

• Routing processor. The routing processor executes the routing protocols, maintains routing

tables and attached link state information and computes the forwarding table for the router.

It also performs the network management functions we distinguished between a router’s

forwarding and routing functions. A router’s input ports, output ports and switching fabric

together implement the forwarding function, as shown in Figure.

These forwarding functions are collectively referred to as the router forwarding plane.

Example: Consider a 10 Gbps input link and a 64-byte IP datagram, the input port has only

51.2 ns to process the datagram before another datagram may arrive.

If N ports are combined, the datagram-processing pipeline must operate N times faster.

Input Processing :

The lookup performed in the input port is central to the router’s operation—it is here that the

router uses the forwarding table to look up the output port to which an arriving packet will be

forwarded via the switching fabric.

The forwarding table is computed and updated by the routing processor, with a shadow copy

typically stored at each input port.

The forwarding table is copied from the routing processor to the line cards over a separate

bus (e.g., a PCI bus) indicated by the dashed line from the routing processor to the input line

cards in Figure below.

With a shadow copy, forwarding decisions can be made locally, at each input port, without

invoking the centralized routing processor on a per-packet basis and thus avoiding a

centralized processing bottleneck.

Once a packet’s output port has been determined via the lookup, the packet can be sent into

the switching fabric.

 Page 2

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

In some designs, a packet may be temporarily blocked from entering the switching fabric if

packets from other input ports are currently using the fabric.

A blocked packet will be queued at the input port and then scheduled to cross the fabric at a

later point in time.

Important action in input port processing are :

(1) physical- and link-layer processing must occur ;

(2) the packet’s version number, checksum and time-to-live field

(3) counters used for network management must be updated.

4.3.2 Switching

The switching fabric is at the very heart of a router, as it is through fabric that the packets are

actually switched (that is, forwarded) from an input port to an output port.

Switching can be accomplished in following ways, as shown in Figure below:

• Switching via memory.

Switching between input and output ports is done under direct control of the CPU (routing

processor). An input port with an arriving packet first signals the routing processor via an

interrupt.

The packet is then copied from the input port into processor memory. The routing processor

then extracts the destination address from the header, looking up the appropriate output port

in the forwarding table and copies the packet to the output port’s buffers.

 Page 3

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

If the memory bandwidth is such that B packets per second can be written into, or read from,

memory, then the overall forwarding throughput (the total rate at which packets are

transferred from input ports to output ports) must be less than B/2.

• Switching via a bus. In this approach, an input port transfers a packet directly to the output

port over a shared bus, without intervention by the routing processor.

This is done by having the input port pre-pend a switch-internal label (header) to the packet

indicating the local output port to which this packet is being transferred and transmitting the

packet onto the bus.

The packet is received by all output ports, but only the port that matches the label will keep

the packet. The label is then removed at the output port, as this label is only used within the

switch to cross the bus.

If multiple packets arrive to the router at the same time, each at a different input port, all but

one must wait since only one packet can cross the bus at a time.

Since every packet must cross the single bus, the switching speed of the router is limited to

the bus speed;

• Switching via an interconnection network. One way to overcome the bandwidth limitation

of a single, shared bus is to use a more sophisticated interconnection network, such as those

that have been used in the past to interconnect processors in a multiprocessor computer

architecture.

A crossbar switch is an interconnection network consisting of 2N buses that connect N input

ports to N output ports, as shown in Figure above.

Each vertical bus intersects each horizontal bus at a cross point, which can be opened or

closed at any time by the switch fabric controller.

When a packet arrives from port A and needs to be forwarded to port Y, the switch controller

closes the crosspoint at the intersection of busses A and Y, and port A then sends the packet

onto its bus, which is picked up (only) by bus Y.

A packet from port B can be forwarded to port X at the same time, since the A-to-Y and B-to-

X packets use different input and output busses.

Thus, crossbar networks are capable of forwarding multiple packets in parallel.

However, if two packets from two different input ports are destined to the same output port,

then one will have to wait at the input, since only one packet can be sent over any given bus

at a time.

4.3.3 Output Processing

Output port processing, shown in Figure below, takes packets that have been stored in the

output port’s memory and transmits them over the output link.

Page 4

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

 Page 5

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

This includes selecting and de-queueing packets for transmission, and performing the needed

link layer and physical-layer transmission functions.

4.3.4 Where Does Queueing Occur?

The location and extent of queueing (either at the input port queues or the output port queues)

will depend on the traffic load, the relative speed of the switching fabric, and the line speed.

As these queues grow large, the router’s memory can eventually be exhausted and packet

loss will occur when no memory is available to store arriving packets.

At the queues within a router, where such packets are actually dropped and lost.

Suppose that the input and output line speeds (transmission rates) all have an identical

transmission rate of Rline packets per second, and that there are N input ports and N output

ports.

Assume that all packets have the same fixed length, and the packets arrive to input ports in a

synchronous manner.

That is, the time to send a packet on any link is equal to the time to receive a packet on any

link, and during such an interval of time, either zero or one packet can arrive on an input link.

Define the switching fabric transfer rate Rswitch as the rate at which packets can be moved

from input port to output port. If Rswitch is N times faster than Rline, then only negligible

queuing will occur at the input ports.

This is because even in the worst case, where all N input lines are receiving packets, and all

packets are to be forwarded to the same output port, each batch of N packets (one packet per

input port) can be cleared through the switch fabric before the next batch arrives.

Suppose Rswitch is N times faster than Rline. Packets arriving at each of the N input ports are

destined to the same output port.

The time it takes to send a single packet onto the outgoing link, N new packets will arrive at

this output port. Since the output port can transmit only a single packet in a unit of time (the

packet transmission time), the N arriving packets will have to queue (wait) for transmission

over the outgoing link. Then N more packets can possibly arrive in the time it takes to

transmit just one of the N packets that had just previously been queued.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

 Page 6

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Eventually, the number of queued packets can grow large enough to exhaust available

memory at the output port, in which case packets are dropped.

Output port queuing is illustrated in Figure 4.10. At time t, a packet has arrived at each of the

incoming input ports, each destined for the uppermost outgoing port.

Assuming identical line speeds and a switch operating at three times the line speed, one time

unit later (that is, in the time needed to receive or send a packet), all three original packets

have been transferred to the outgoing port and are queued awaiting transmission.

In the next time unit, one of these three packets will have been transmitted over the outgoing

link. In example, two new packets have arrived at the incoming side of the switch; one of

these packets is destined for this uppermost output port.

Given that router buffers are needed to absorb the fluctuations in traffic load. Buffer sizing

was that the amount of buffering (B) should be equal to an average round-trip time (RTT, say

250 msec) times the link capacity (C).

Thus, a 10 Gbps link with an RTT of 250 msec would need an amount of buffering equal to B

= RTT · C = 2.5 Gbits of buffers.

When there are a large number of TCP flows (N) passing through a link, the amount of

buffering needed is B = RTT _ C/√N

With a large number of flows typically passing through large backbone router links, the value

of N can be large, with the decrease in needed buffer size becoming quite significant.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

 Page 7

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

A consequence of output port queuing is that a packet scheduler at the output port must

choose one packet among those queued for transmission. This selection might be done on

first-come-first-served (FCFS) scheduling, or a more sophisticated scheduling discipline such

as weighted fair queuing (WFQ), which shares the outgoing link fairly among the different

end-to-end connections that have packets queued for transmission.

Similarly, if there is not enough memory to buffer an incoming packet, a decision must be

made to either drop the arriving packet (a policy known as drop-tail) or remove one or more

already-queued packets to make room for the newly arrived packet.

One of the widely implemented Active Queue Management AQM algorithms is the Random

Early Detection (RED) algorithm.

Under RED, a weighted average is maintained for the length of the output queue. If the

average queue length is less than a minimum threshold, minth, when a packet arrives, the

packet is admitted to the queue.

Conversely, if the queue is full or the average queue length is greater than a maximum

threshold, maxth, when a packet arrives, the packet is marked or dropped.

Finally, if the packet arrives to find an average queue length in the interval [minth, maxth],

the packet is marked or dropped with a probability that is typically some function of the

average queue length, minth, and maxth.

If the switch fabric is not fast enough (relative to the input line speeds) to transfer all arriving

packets through the fabric without delay, then packet queuing can also occur at the input

ports, as packets must join input port queues to wait their turn to be transferred through the

switching fabric to the output port.

Consider a crossbar switching fabric and suppose that

(1) all link speeds are identical

(2) that one packet can be transferred from any one input port to a given output port in the

same amount of time it takes for a packet to be received on an input link.

(3) packets are moved from a given input queue to their desired output queue in an FCFS

manner.

Multiple packets can be transferred in parallel, as long as their output ports are different.

However, if two packets at the front of two input queues are destined for the same output

queue, then one of the packets will be blocked and must wait at the input queue—the

switching fabric can transfer only one packet to a given output port at a time.

Figure below shows an example in which two packets (darkly shaded) at the front of their

input queues are destined for the same upper-right output port.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

 Page 8

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Suppose that the switch fabric chooses to transfer the packet from the front of the upper-left

queue. In this case, the darkly shaded packet in the lower-left queue must wait.

But not only must this darkly shaded packet wait, so too must the lightly shaded packet that is

queued behind that packet in the lower-left queue, even though there is no contention for the

middle-right output port (the destination for the lightly shaded packet). This phenomenon is

known as head-of-the-line (HOL) blocking in an input-queued switch—a queued packet in

an input queue must wait for transfer through the fabric (even though its output port is free)

because it is blocked by another packet at the head of the line.

Due to HOL blocking, the input queue will grow to unbounded length under certain

assumptions as soon as the packet arrival rate on the input links reaches only 58 percent of

their capacity.

4.3.5 The Routing Control Plane

Router control plane architectures in which part of the control plane is implemented in the

routers (e.g., local measurement/reporting of link state, forwarding table installation and

maintenance) along with the data plane and part of the control plane can be implemented

externally to the router (e.g., in a centralized server, which could perform route calculation).

A well-defined API dictates how these two parts interact and communicate with each other.

By separating the software control plane from the hardware data plane (with a minimal

router-resident control plane) can simplify routing by replacing distributed routing calculation

with centralized routing calculation, and enable network innovation by allowing different

customized control planes to operate over fast hardware data planes.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

4.4 The Internet Protocol (IP): Forwarding and Addressing in the

Internet

Internet addressing and forwarding are important components of the Internet Protocol (IP).

There are two versions of IP in use today i.e IPv4 & IPv6. We’ll first examine the widely

deployed IP protocol version 4, which is usually referred to simply as IPv4.

The components that make up the Internet’s network layer

As shown in Figure 4.12, the Internet’s network layer has three major components.

• The first component is the IP protocol, is the principal communications protocol in

the Internet protocol suite for relaying datagrams across network boundaries..

• The second major component is the routing component, which determines the path a

datagram follows from source to destination.Routing protocols compute the

forwarding tables that are used to forward packets through the network.

• The final component of the network layer is a facility to report errors in datagrams

and respond to requests for certain network-layer information. Example for the

Internet’s network-layer error- and information-reporting protocol, the Internet

Control Message Protocol (ICMP)

4.4.1 Datagram Format

A network-layer packet is referred to as a datagram. This provides an overview of the syntax

and semantics of the IPv4 datagram.

The key fields in the IPv4 datagram are the following:

• Version number. These 4 bits specify the IP protocol version of the datagram.By

looking at the version number, the router can determine how to interpret the

remainder of the IP datagram. Different versions of IP use different datagram formats.

The datagram format for the current version of IP, IPv4, is shown in Figure 4.13. The

datagram format for the new version of IP (IPv6) is discussed at the end of this

section.

Page 9

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

Page 10

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

• Header length. Because an IPv4 datagram can contain a variable number of options

(which are included in the IPv4 datagram header), these 4 bits are needed to

determine where in the IP datagram the data actually begins. Most IP datagrams

do not contain options, so the typical IP datagram has a 20-byte header.

• Type of service. The type of service (TOS) bits were included in the IPv4 header to

allow different types of IP datagrams to be distinguished from each other (for

example, datagrams particularly requiring low delay, high throughput, or reliability).

For example, it might be useful to distinguish real-time datagrams (such as those used

by an IP telephony application) from non-real-time traffic (for example, FTP).

• Datagram length. This is the total length of the IP datagram (header plus data),

measured in bytes. Since this field is 16 bits long, the theoretical maximum size of the

IP datagram is 65,535 bytes. However, datagrams are rarely larger than 1,500 bytes.

• Identifier, flags,

fragmentation offset. These

three fields deal with IP

fragmentation.

Interestingly, the new

version of IP, IPv6, does not

allow for fragmentation at

routers.

• Time-to-live. The time-to-

live (TTL) field is included

to ensure that datagrams

do not circulate forever

(due to, for example, a long-

lived routing loop) in the

network. This field is

decremented by one each

time the datagram is processed by a router. If the TTL field reaches 0, the datagram

must be dropped.

• Protocol. This field is used only when an IP datagram reaches its final

destination.The value of this field indicates the specific transport-layer protocol to

which the data portion of this IP datagram should be passed. For example, a value of 6

indicates that the data portion is passed to TCP, while a value of 17 indicates that the

data is passed to UDP. Note that the protocol number in the IP datagram has a role

that is analogous to the role of the port number field in the transport layer segment.

The protocol number is the glue that binds the network and transport layers together,

whereas the port number is the glue that binds the transport and application layers

together.

• Header checksum. The header checksum aids a router in detecting bit errors in a

received IP datagram. The header checksum is computed by treating each 2 bytes in

the header as a number and summing these numbers using 1s complement arithmetic.

A router computes the header checksum for each received IP datagram and detects an

error condition if

the checksum carried in the datagram header does not equal the computed checksum.

Routers typically discard datagrams for which an error has been detected.

why does TCP/IP perform error checking at both the transport and network layers?

• First, note that only the IP header is checksummed at the IP layer, while the

TCP/UDP checksum is computed over the entire TCP/UDP segment.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

Page 11

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

• Second, TCP/UDP and IP do not necessarily both have to belong to the same

protocol stack. TCP can, in principle, run over a different protocol (for

example, ATM) and IP can carry data that will not be passed to TCP/UDP.

• Source and destination IP addresses. When a source creates a datagram, it inserts its

IP address into the source IP address field and inserts the address of the ultimate

destination into the destination IP address field.

• Options. The options fields allow an IP header to be extended. Header options were

meant to be used rarely—hence the decision to save overhead by not including the

information in options fields in every datagram header.

• Data (payload). the data field of the IP datagram contains the transport-layer

segment (TCP or UDP) to be delivered to the destination. However, the data field can

carry other types of data, such as ICMP messages.

Note that an IP datagram has a total of 20 bytes of header (assuming no options). If the

datagram carries a TCP segment, then each (nonfragmented) datagram carries a total of 40

bytes of header (20 bytes of IP header plus 20 bytes of TCP header) along with the

application-layer message.

IP Datagram Fragmentation

• Not all link-layer protocols can carry network-layer packets of the same size. Some

protocols can carry big datagrams, whereas other protocols can carry only little

packets.

o For example, Ethernet frames can carry up to 1,500 bytes of data, whereas

frames for some wide-area links can carry no more than 576 bytes.

• The maximum amount of data that a link-layer frame can carry is called the

maximum transmission unit (MTU).

• Because each IP datagram is encapsulated within the link-layer frame for transport

from one router to the next router, the MTU of the link-layer protocol places a hard

limit on the length of an IP datagram.

• That each of the links along the route between sender and destination can use different

link-layer protocols, and each of these protocols can have different MTUs.

• If we have to send data through a link with

MTU that is smaller than the length of the IP

datagram. How are you going to squeeze this

oversized IP datagram into the payload field of

the link-layer frame?

• The solution is to fragment the data in the IP

datagram into two or more smaller IP

datagrams, encapsulate each of these smaller IP

datagrams in a separate link-layer frame; and

send these frames over the outgoing link. Each

of these smaller datagrams is referred to as a

fragment.

• Fragments need to be reassembled before they

reach the transport layer at the destination. Indeed, both TCP and UDP are expecting

to receive complete, unfragmented segments from the network layer.

• The job of datagram reassembly lies the end systems rather than in network routers.

When a destination host receives a series of datagrams from the same source, it needs to

determine whether any of these datagrams are fragments of some original, larger datagram. If

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

some datagrams are fragments, it must further determine when it has received the last

fragment and how the fragments it has received should be

pieced back together to form the original datagram.

To allow the destination host to perform these reassembly tasks, the designers of IP (version

4) put identification,

flag, and fragmentation offset fields in the IP datagram header.

• When a datagram is created, the sending host stamps the datagram with an

identification number as well

as source and destination addresses. Typically, the sending host increments the

identification

number for each datagram it sends.

• When a router needs to fragment a datagram, each resulting datagram (that is,

fragment) is stamped with the source address, destination address, and identification

number of the original datagram.

• When the destination receives a series of datagrams from the same sending host, it

can examine the identification numbers of the datagrams to determine which of the

datagrams are actually fragments of the same larger datagram.

• Because IP is an unreliable service, one or more of the fragments may never arrive at

the destination.For this reason, in order for the destination host to be absolutely sure it

has received the last fragment of the original datagram, the last fragment has a flag bit

set to 0,whereas all the other fragments have this flag bit set to 1.

• Also, in order for the destination host to determine whether a fragment is missing (and

also to be able to

reassemble the fragments in their proper order), the offset field is used to specify

where the fragment fits within the original IP datagram.

Figure 4.14 illustrates an example. A datagram of 4,000 bytes (20 bytes of IP header plus

3,980 bytes of IP payload) arrives at a router and must be forwarded to a link with an MTU of

1,500 bytes. This implies that the 3,980 data bytes in the original datagram must be allocated

to three separate fragments (each of which is also an IP datagram). Suppose that the original

datagram is stamped with an identification number of 777. The characteristics of the three

fragments are shown in Table 4.2. The values in Table 4.2 reflect the requirement that the

amount of original payload data in all but the last fragment be a multiple of 8 bytes, and that

the offset value be specified in units of 8-byte chunks.

But fragmentation also has its Disadvantages.

 Page 12

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Prepared By- Sushma M.D,Dept. Of CS&E,CEC

• First, it complicates routers and end systems, which need to be designed to

accommodate datagram fragmentation and reassembly.

• Second, fragmentation can be used to create lethal DoS attacks, whereby the attacker

sends a series of bizarre and unexpected fragments. A classic example is the Jolt2

attack, where the attacker sends a stream of small fragments to the target host, none of

which has an offset of zero. The target can collapse as it attempts to rebuild datagrams

out of the degenerate packets. Another class of exploits sends overlapping IP

fragments, that is, fragments whose offset values are set so that the fragments do not

align properly. Vulnerable operating systems, not knowing what to do with

overlapping fragments,

can crash [Skoudis 2006].

4.4.2 IPv4 Addressing

A host typically has only a single link into the

network; when IP in the host wants to send a

datagram, it does

so over this link. The boundary between the host and

the physical link is called an interface. Now consider

a router and its interfaces. Because a router’s job is to

receive a datagram on one link and forward the

datagram on some other link, a router necessarily has

two or more links to which it is connected. The

boundary between the router and any one of its

links is also called an interface. A router thus has

multiple interfaces, one for each of its links. Because

every host and router is capable of sending and

receiving IP datagrams, IP requires each host and router interface to have its own IP address.

Thus, an IP address is technically associated with an interface, rather than with the host or

router containing that interface.

Each IP address is 32 bits long (equivalently, 4 bytes), and there are thus a total of 232

possible IP addresses. By approximating 210 by 103, it is easy to see that there are about 4

billion possible IP addresses. These addresses are typically written in so-called dotted-

decimal notation, in which each byte of the address is written in

its decimal form and is separated by a period (dot) from other bytes in the address.

Each interface on every host and router in the global Internet must have an IP address that is

globally unique.

These addresses cannot be chosen

randomly,however. A portion of an

interface’s IP address will be determined by

the subnet to which it is connected.

Figure 4.15 provides an example of IP

addressing and interfaces. In this figure, one

router (with three interfaces) is used to

interconnect seven hosts.

Notice,the three hosts in the upper-left

portion of Figure 4.15, and the router

interface to which they are connected, all

Page 13

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

have an IP address of the form 223.1.1.xxx. That is, they all have the same leftmost 24 bits in

their IP address.

The four interfaces are also interconnected to each other by a network that contains no

routers. This network could be interconnected by an Ethernet LAN, in which case the

interfaces would be interconnected by an Ethernet, or by a wireless access point

In IP terms, this network interconnecting three host interfaces and one router interface forms

a subnet [RFC 950]. (A subnet is also called an IP network or simply a network in the

Internet literature.)

IP addressing assigns an address to this subnet: 223.1.1.0/24, where the /24 notation,

sometimes known as a subnet mask, indicates that the leftmost 24 bits of the 32-bit quantity

define the subnet address. The subnet 223.1.1.0/24 thus consists of the three host interfaces

(223.1.1.1, 223.1.1.2, and 223.1.1.3) and one router interface (223.1.1.4). Any additional

hosts attached to the 223.1.1.0/24 subnet would be required to have an address of the form

223.1.1.xxx.

There are two additional subnets shown in Figure 4.15: the 223.1.2.0/24 network and the

223.1.3.0/24 subnet. Figure 4.16 illustrates the three IP subnets present in Figure 4.15.

The IP definition of a subnet is not restricted to Ethernet segments that connect multiple hosts

to a router interface.

Figure 4.17, which shows three routers that are interconnected with each other by point-to-

point links. Each router has three interfaces, one for each point-to-point link and one for the

broadcast link that directly connects the router to a pair of hosts. What subnets are present

here? Three subnets, 223.1.1.0/24, 223.1.2.0/24, and 223.1.3.0/24, are similar to the subnets

we encountered in Figure 4.15.

But note that there are three additional subnets in this example as well: one subnet,

223.1.9.0/24, for the interfaces that connect routers R1 and R2; another subnet, 223.1.8.0/24,

for the interfaces that connect routers R2 and R3; and a third subnet, 223.1.7.0/24, for the

interfaces that connect routers R3 and R1.

a given subnet having the same subnet address.

For a general interconnected

system of routers and hosts,we can

use the following recipe to define

the subnets in the system:

To determine the subnets, detach

each interface from its host or

router, creating islands of isolated

networks, with interfaces

terminating the end points of the

isolated networks. Each of these

isolated networks is called a

subnet.

If we apply this procedure to the

interconnected system in Figure

4.17, we get six islands or

subnets.It’s clear that an

organization (such as a company or

academic institution) with multiple

Ethernet segments and point-to-

point links will have multiple

subnets, with all of the devices on

Page 14

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

In principle, the different subnets could have quite different subnet addresses. In practice,

however, their subnet addresses often have much in common.

To understand why, let’s next turn our attention to how addressing is handled in The

Internet’s address assignment strategy is known as Classless Interdomain Routing

(CIDR—pronounced cider) [RFC 4632]. CIDR generalizes the notion of subnet addressing.

• As with subnet addressing, the 32-bit IP address is divided into two parts and again

has the dotted-decimal form a.b.c.d/x, where x indicates the number of bits in the first
part of the address.

• The x most significant bits of an address of the form a.b.c.d/x constitute the network

portion of the IP address, and are often referred to as the prefix (or network prefix) of

the address.

• An organization is typically assigned a block of contiguous addresses, that is, a range

of addresses with a common prefix. In this case, the IP addresses of devices within

the organization will share the common prefix.

• only these x leading prefix bits are considered by routers outside the organization’s

network. That is, when a router outside the organization forwards a datagram whose

destination address is inside the organization, only the leading x bits of the address

need be considered.

• This considerably reduces the size of the forwarding table in these routers, since a
single entry of the form a.b.c.d/x will be sufficient to forward packets to any

destination within the organization.

• The remaining 32-x bits of an address can be thought of as distinguishing among the

devices within the organization, all of which have the same network prefix.These are

the bits that will be considered when forwarding packets at routerswithin the

organization. These lower-order bits may (or may not) have an additional subnetting

structure, such as that discussed above.

• For example, suppose the first 21 bits of the CIDRized address a.b.c.d/21 specify the

organization’s network prefix and are common to the IP addresses of all devices in

that organization. The remaining 11 bits then identify the specific hosts in the

organization.

• The organization’s internal structure might be such that these 11 rightmost bits are

used for subnetting

within the organization, as discussed above. For example, a.b.c.d/24 might refer to a

specific subnet within the organization.

Before CIDR was adopted, the network portions of an IP address were constrained to be 8,

16, or 24 bits in length, an addressing scheme known as classful addressing, since subnets

with 8-, 16-, and 24-bit subnet addresses were known as class A, B, and C networks,

respectively. The requirement that the subnet portion of

an IP address be exactly 1, 2, or 3 bytes long turned out to be problematic for supporting the

rapidly growing number of organizations with small and medium-sized subnets. A class C

(/24) subnet could accommodate only up to 28 – 2 = 254 hosts (two of the 28 = 256 addresses

are reserved for special use)—too small for many

organizations. However, a class B (/16) subnet, which supports up to 65,634 hosts, was too

large. Under classful addressing, an organization with, say, 2,000 hosts was typically

allocated a class B (/16) subnet address. This led to a rapid depletion of the class B address

space and poor utilization of the assigned address space. For example, the organization that

used a class B address for its 2,000 hosts was allocated enough of the address space for up to

Page 15

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

65,534 interfaces—leaving more than 63,000 addresses that could not be used by other

organizations.

Internet Protocol hierarchy contains several classes of IP Addresses to be used efficiently in

various situations as per the requirement of hosts per network. Broadly, the IPv4 Addressing

system is divided into five classes of IP Addresses. All the five classes are identified by the

first octet of IP Address.

Internet Corporation for Assigned Names and Numbers is responsible for assigning IP

addresses.

The first octet referred here is the left most of all. The octets numbered as follows depicting

dotted decimal notation of IP Address:

The number of networks and the number of hosts per class can be derived by this formula:

When calculating hosts' IP addresses, 2 IP addresses are decreased because they cannot be

assigned to hosts, i.e. the first IP of a network is network number and the last IP is reserved

for Broadcast IP.

• Class A Address

The first bit of the first octet is always set to 0 (zero). Thus the first octet ranges from

1 – 127, i.e.

Class A addresses only include IP starting from 1.x.x.x to 126.x.x.x only. The IP

range 127.x.x.x is reserved for loopback IP addresses.

The default subnet mask for Class A IP address is 255.0.0.0 which implies that Class

A addressing can have 126 networks (27-2) and 16777214 hosts (224-2).

Class A IP address format is

thus: 0NNNNNNN.HHHHHHHH.HHHHHHHH.HHHHHHHH

• Class B Address

An IP address which belongs to class B has the first two bits in the first octet set to 10,

i.e.

Class B IP Addresses range from 128.0.x.x to 191.255.x.x. The default subnet mask

for Class B is 255.255.x.x.

Class B has 16384 (214) Network addresses and 65534 (216-2) Host addresses.

Class B IP address format

is: 10NNNNNN.NNNNNNNN.HHHHHHHH.HHHHHHHH

Page 16

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

• Class C Address

The first octet of Class C IP address has its first 3 bits set to 110, that is:

Class C IP addresses range from 192.0.0.x to 223.255.255.x. The default subnet mask

for Class C is 255.255.255.x.

Class C gives 2097152 (221) Network addresses and 254 (28-2) Host addresses.

Class C IP address format

is: 110NNNNN.NNNNNNNN.NNNNNNNN.HHHHHHHH

• Class D Address

Very first four bits of the first octet in Class D IP addresses are set to 1110, giving a

range of:

Class D has IP address rage from 224.0.0.0 to 239.255.255.255. Class D is reserved

for Multicasting. In multicasting data is not destined for a particular host, that is why

there is no need to extract host address from the IP address, and Class D does not have

any subnet mask.

• Class E Address

This IP Class is reserved for experimental purposes only for R&D or Study. IP

addresses in this class ranges from 240.0.0.0 to 255.255.255.254. Like Class D, this

class too is not equipped with any subnet mask.

Obtaining a Block of Addresses

• In order to obtain a block of IP addresses for use within an organization’s subnet, a

network administrator might first contact its ISP, which would provide addresses from

a larger block of addresses that had already been allocated to the ISP.

For example, the ISP may itself have been allocated the address block

200.23.16.0/20.

• The ISP, in turn, could divide its address block into eight equal-sized contiguous

address blocks and give one of these address blocks out to each of up to eight

organizations that are supported by this ISP, as shown below.

• ISP’s block 200.23.16.0/20 11001000 00010111 00010000 00000000

Organization 0 200.23.16.0/23 11001000 00010111 00010000 00000000

Organization 1 200.23.18.0/23 11001000 00010111 00010010 00000000

Organization 2 200.23.20.0/23 11001000 00010111 00010100 00000000

.

Organization 7 200.23.30.0/23 11001000 00010111 00011110 00000000

• While obtaining a set of addresses from an ISP is one way to get a block of addresses,

it is not the only way. Clearly, there must also be a way for the ISP itself to get a

block of addresses. Is there a global authority that has ultimate responsibility for

managing the IP address space and allocating address blocks to ISPs and other

organizations? IP addresses are managed under the authority of the Internet

Corporation for Assigned Names and Numbers (ICANN) [ICANN 2012],based on

guidelines set forth in [RFC 2050].

Page 17

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

• The role of the nonprofit ICANN organization [NTIA 1998] is not only to allocate IP

addresses, but also to manage the DNS root servers. It also has the very contentious

job of assigning domain names and resolving domain name disputes. The ICANN

allocates addresses to regional Internet registries (for example, ARIN, RIPE, APNIC,

and LACNIC, which together form the Address Supporting Organization of ICANN

[ASO-ICANN 2012]), and handle the allocation/management of addresses within

their regions.

Obtaining a Host Address: the Dynamic Host Configuration Protocol

• Once an organization has obtained a block of addresses, it can assign individual IP

addresses to the host and router interfaces in its organization. A system administrator

will typically manually configure the IP addresses into the router (often remotely,

with a network management tool).

• Host addresses can also be configured manually, but more often this task is now done

using the Dynamic Host Configuration Protocol (DHCP) [RFC 2131]. DHCP
allows a host to obtain (be allocated) an IP address automatically.

• A network administrator can configure DHCP so that a given host receives the same

IP address each time it connects to the network, or a host may be assigned a

temporary IP address that will be different each time the host connects to the

network.

• In addition to host IP address assignment, DHCP also allows a host to learn
additional information, such as its subnet mask, the address of its first-hop router

(often called the default gateway), and the address of its local DNS server.

• Because of DHCP’s ability to automate the network-related aspects of connecting a
host into a network, it is often referred to as a plug-and-play protocol.

• DHCP is also enjoying widespread use in residential Internet access networks and in

wireless LANs, where hosts join and leave the network frequently.

• Consider, for example, the student who

carries a laptop from a dormitory room to

a library to a classroom. It is likely that in

each location, the student will be

connecting into a new subnet and hence

will need a new IP address at each

location. DHCP is ideally suited to this

situation, as there are many users coming

and going, and addresses are needed for

only a limited amount of time.

• DHCP is similarly useful in residential

ISP access networks. Consider, for

example, a residential ISP that has 2,000

customers, but no more than 400

customers are ever online at the same time. In this case, rather than needing a block of

2,048 addresses, a DHCP server that assigns addresses dynamically needs only a

block of 512 addresses (for example, a block of the form a.b.c.d/23).

• As the hosts join and leave, the DHCP server needs to update its list of available IP

addresses. Each time a host joins, the DHCP server allocates an arbitrary address

from its current pool of available addresses; each time a host leaves, its address is

returned to the pool.

Page 18

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

Page 19

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

• DHCP is a client-server protocol. A client is typically a newly arriving host wanting

to obtain network configuration information, including an IP address for itself. In the

simplest case, each subnet (in the

addressing sense of Figure 4.17)

will have a DHCP server. If no

server is present on the subnet, a

DHCP relay agent (typically a

router) that knows the address of a

DHCP server for that network is

needed.

• Figure 4.20 shows a DHCP server

attached to subnet 223.1.2/24, with

the router serving as the relay agent

for arriving clients attached to

subnets 223.1.1/24 and 223.1.3/24.

In our discussion below, we’ll

assume that a DHCP server is

available on the subnet.

• For a newly arriving host, the

DHCP protocol is a four-step

process, as shown in Figure 4.21 for

the network setting shown in Figure

4.20. In this figure, yiaddr (as in

“your Internet address”) indicates

the address being allocated to the newly arriving client. The four steps are:

o DHCP server discovery. The first task of a newly arriving host is to find a
DHCP server with which to interact. This is done using a DHCP discover

message, which a client sends within a UDP packet to port 67. The UDP
packet is encapsulated in an IP datagram.

o The DHCP client creates an IP datagram containing its DHCP discover
message along with the broadcast destination IP address of 255.255.255.255
and a “this host” source IP address of 0.0.0.0. The DHCP client passes the IP
datagram to the link layer, which then broadcasts this frame to all nodes
attached to the subnet

o DHCP server offer(s). A DHCP server receiving a DHCP discover message
responds to the client with a DHCP offer message that is broadcast to all

nodes on the subnet, again using the IP broadcast address of 255.255.255.255.
Since several DHCP servers can be present on the subnet, the client may find

itself in the enviable position of being able to choose from among several
offers. Each server offer message contains the transaction ID of the received

discover message, the proposed IP address for the client, the network mask,

and an IP address lease time—the amount of time for which the IP address
will be valid. It is common for the server to set the lease time to several hours

or days.

o DHCP request. The newly arriving client will choose from among one or
more server offers and respond to its selected offer with a DHCP request
message, echoing back the configuration parameters.

o DHCP ACK. The server responds to the DHCP request message with a DHCP
ACK message, confirming the requested parameters.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

Page 20

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Once the client receives the DHCP ACK, the interaction is complete and the client can use

the DHCP-allocated IP address for the lease duration. Since a client may want to use its

address beyond the lease’s expiration, DHCP also provides a mechanism that allows a client

to renew its lease on an IP address.

The value of DHCP’s plug-and-play capability is clear, considering the fact that the

alternative is to manually configure a host’s IP address. Consider the student who moves

from classroom to library to dorm room with a laptop, joins a new subnet, and thus obtains a

new IP address at each location. It is unimaginable that a system

administrator would have to reconfigure laptops at each location, and few students (except

those taking a computer networking class!) would have the expertise to configure their

laptops manually. From a mobility aspect, however, DHCP does have shortcomings. Since a

new IP address is obtained from DHCP each time a node connects to a new subnet, a TCP

connection to a remote application cannot be maintained as a mobile node moves between

subnets.

Network Address Translation (NAT)

Given our discussion about Internet addresses and the IPv4 datagram format, we’re now well

aware that every IP-capable device needs an IP address. With the proliferation of small

office, home office (SOHO) subnets, this would seem to imply that whenever a SOHO wants

to install a LAN to connect multiple machines, a range of

addresses would need to be allocated by the ISP to cover all of the SOHO’s machines. If the

subnet grew bigger (for example, the kids at home have not only their own computers, but

have smartphones and networked Game Boys as well), a larger block of addresses would

have to be allocated. But what if the ISP had already allocated the contiguous portions of the

SOHO network’s current address range?

And what typical homeowner wants (or should need) to know how to manage IP addresses in

the first place? Fortunately, there is a simpler approach to address allocation that has found

increasingly widespread use in such scenarios: network address translation (NAT) [RFC

2663; RFC 3022; Zhang 2007].

Figure 4.22 shows the operation

of a NAT-enabled router.

o The NAT-enabled router,
residing in the home, has
an interface that is part of
the home network on the

right of Figure 4.22.

o Addressing within the
home network is exactly
as we have seen

above—all four interfaces in the

home network have the same

subnet address of 10.0.0/24. The address space 10.0.0.0/8 is one of three portions of the IP

address space that is reserved in [RFC 1918] for a private network or a realm with private

addresses, such as the home network in Figure 4.22.

o A realm with private addresses refers to a network whose addresses only have
meaning to devices within that network. To see why this is important, consider the
fact that there are hundreds of thousands of home networks, many using the same

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

Page 21

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

address space, 10.0.0.0/24.Devices within a given home network can send packets to

each other using 10.0.0.0/24 addressing.

o However, packets forwarded beyond the home network into the larger global Internet
clearly cannot use these addresses (as either a source or a destination address) because
there are hundreds of thousands of networks using this block of addresses.

o That is, the 10.0.0.0/24 addresses can only have meaning within the given home
network. But if private addresses only have meaning within a given network, how is
addressing handled when packets are sent to or received from the global Internet,
where addresses are necessarily unique?

o The NAT-enabled router does not look like a router to the outside world. Instead the
NAT router behaves to the outside world as a single device with a single IP address.
In Figure 4.22, all traffic leaving the home router for the larger Internet has a source
IP address of 138.76.29.7, and all traffic entering the home router must have a
destination address of 138.76.29.7.

o In essence, the NAT-enabled router is hiding the details of the home network from the
outside world. If all datagrams arriving at the NAT router from the WAN have the
same destination IP address (specifically, that of the WAN-side interface of the NAT
router), then how does the router know the internal host to which it should forward a
given datagram?

o The trick is to use a NAT translation table at the NAT router, and to include port
numbers as well as IP addresses in the table entries.

Consider the example in Figure 4.22.

• Suppose a user sitting in a home network behind host 10.0.0.1 requests a Web page on

some Web server (port 80) with IP address 128.119.40.186.

• The host 10.0.0.1 assigns the (arbitrary) source port number 3345 and sends the

datagram into the LAN. The NAT router receives the datagram, generates a new

source port number 5001 for the datagram, replaces the source IP address with its

WAN-side IP address 138.76.29.7, and replaces the original source port number 3345

with the new source port number 5001.

• When generating a new source port number, the NAT router can select any source

port number that is not currently in the NAT translation table. (Note that because a

port number field is 16 bits long, the NAT protocol can support over 60,000

simultaneous connections with a single WAN-side IP address for the router!) NAT in

the router also adds an entry to its NAT translation table.

• The Web server, blissfully unaware that the arriving datagram containing the HTTP

request has been manipulated by the NAT router, responds with a datagram whose

destination address is the IP address of the NAT router, and whose destination port

number is 5001.

• When this datagram arrives at the NAT router, the router indexes the NAT translation

table using the destination IP address and destination port number to obtain the

appropriate IP address (10.0.0.1) and destination port number (3345) for the browser

in the home network.

• The router then rewrites the datagram’s destination address and destination port
number, and forwards the datagram into the home network.

DISADVANTAGES

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

Page 22

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

• First, port numbers are meant to be used for addressing processes, not for addressing
hosts.

• Second, routers are supposed to process packets only up to layer 3.

• Third, the NAT protocol violates the so-called end-to-end argument; that is, hosts

should be talking directly with each other, without interfering nodes modifying IP

addresses and port numbers.

• And fourth, we should use IPv6 to solve the shortage of IP addresses, rather than

recklessly patching up the problem with a stopgap solution like NAT.

• Yet another major problem with NAT is that it interferes with P2P applications,

including P2P file-sharing applications and P2P Voice-over-IP applications. Recall

from Chapter 2 that in a P2P application, any participating Peer A should be able to

initiate a TCP connection to any other participating Peer B. The essence of the

problem is that if Peer B is behind a NAT, it cannot act as a server and accept TCP

connections. In this case, Peer A can first contact Peer B through an intermediate

Peer C, which is not behind a NAT and to which B has established an ongoing TCP

connection. Peer A can then ask Peer B, via Peer C, to initiate a TCP connection

directly back to Peer A. Once the direct P2P TCP connection Is established between

Peers A and B, the two peers can exchange messages or files. This hack, called

connection reversal, is actually used by many P2P applications for NAT traversal.

UPnP

NAT traversal is provided by Universal Plug and Play (UPnP), a protocol that allows a host

to discover and configure a nearby NAT.

UPnP requires that both the host and the NAT be UPnP compatible. With UPnP, an

application running in a host can request a NAT mapping between its (private IP address,

private port number) and the (public IP address, public port number) for some requested

public port number.

If the NAT accepts the request and creates the mapping, then nodes from the outside can

initiate TCP connections to (public IP address, public port number).

UPnP lets the application know the value of (public IP address, public port number), so that

the application can advertise it to the outside world.

Example: Suppose a host, behind a UPnP-enabled NAT, has private address 10.0.0.1 and is

running BitTorrent on port 3345. Suppose that the public IP address of the NAT is

138.76.29.7.

BitTorrent application naturally wants to be able to accept connections from other hosts, so

that it can trade chunks with them.

BitTorrent application in a host asks the NAT to create a “hole” that maps (10.0.0.1, 3345) to

(138.76.29.7, 5001). (The public port number 5001 is chosen by the application.)

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Page 23

The BitTorrent application in a host could also advertise to its tracker that it is available at

(138.76.29.7, 5001). Hence, an external host running BitTorrent can contact the tracker and

learn that BitTorrent application is running at (138.76.29.7, 5001).

The external host can send a TCP SYN packet to (138.76.29.7, 5001). When the NAT

receives the SYN packet, it will change the destination IP address and port number in the

packet to (10.0.0.1, 3345) and forward the packet through the NAT.

UPnP allows external hosts to initiate communication sessions to NATed hosts, using either

TCP or UDP.

Internet Control Message Protocol (ICMP)

ICMP, is used by hosts and routers to communicate network- layer information to each other.

The most typical use of ICMP is for error reporting.

For example, an error message such as “Destination network unreachable.” This message had

its origins in ICMP.

If an IP router is unable to find a path to the host specified in Telnet, FTP, or HTTP

application then router creates a type-3 ICMP message and sends it to host indicating the

error.

ICMP messages are carried inside IP datagrams. That is, ICMP messages are carried as IP

payload, just as TCP or UDP segments are carried as IP payload.

Similarly, when a host receives an IP datagram with ICMP specified as the upper-layer

protocol, it demultiplexes the datagram’s contents to ICMP, just as it would demultiplex a

datagram’s content to TCP or UDP.

ICMP messages have a type and a code field, and contain the header and the first 8 bytes of

the IP datagram that caused the ICMP message to be generated.

ICMP message types are shown in Figure below.

• The well-known ping program sends an ICMP type 8 code 0 message to the specified

host.

• The destination host, seeing the echo request, sends back a type 0 code 0 ICMP echo

reply.

• Client program needs to be able to instruct the operating system to generate an ICMP

message of type 8 code 0.

• ICMP message is the source quench message whose purpose is to perform congestion

control— to allow a congested router to send an ICMP source quench message to a

host to force that host to reduce its transmission rate.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Page 24

• Traceroute program allows to trace a route from a host to any other host in the world.

Traceroute is implemented with ICMP messages.

• To determine the names and addresses of the routers between source and destination,

Traceroute in the source sends a series of ordinary IP datagrams to the destination.

• Each of these datagrams carries a UDP segment with an unlikely UDP port number.

The first of these datagrams has a TTL of 1, the second of 2, the third of 3, and so on.

• The source also starts timers for each of the datagrams.

• When the nth datagram arrives at the nth router, the nth router observes that the TTL

of the datagram has just expired.

• According to the rules of the IP protocol,the router discards the datagram and sends

an ICMP warning message to the source (type 11 code 0). This warning message

includes the name of the router and its IP address.

• When this ICMP message arrives back at the source, the source obtains the round-trip

time from the timer and the name and IP address of the nth router from the ICMP

message.

• Source increments the TTL field for each datagram it sends. Thus, one of the

datagrams will eventually make it all the way to the destination host.

• Because this datagram contains a UDP segment with an unlikely port number, the

destination host sends a port unreachable ICMP message (type 3 code 3) back to the

source.

• When the source host receives this particular ICMP message, it knows it does not

need to send additional probe packets.

• The source host learns the number and the identities of routers that lie between it and

the destination host and the round-trip time between the two hosts.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Page 25

IPv6

IPv6 Datagram Format

The format of the IPv6 datagram is shown in Figure above. The most important changes

introduced in IPv6 are evident in the datagram format:

• Expanded addressing capabilities. IPv6 increases the size of the IP address from 32 to 128

bits.

IPv6 has introduced a new type of address, called an anycast address, which allows a

datagram to be delivered to any one of a group of hosts.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Page 26

• A streamlined 40-byte header. The 40-byte fixed-length header allows for faster processing

of the IP datagram.

• Flow labeling and priority.

IPV6 allows “labelling of packets belonging to particular flows for which the sender requests

special handling, such as a non default quality of service or real-time service.”

For example, audio and video transmission might likely be treated as a flow.

Traditional applications, such as file transfer and e-mail, might not be treated as flows.

The IPv6 header also has an 8-bit traffic class field. This field, like the TOS field in IPv4, can

be used to give priority to certain datagrams within a flow, or it can be used to give priority to

datagrams from certain applications over datagrams from other applications.

The following fields are defined in IPv6:

• Version. This 4-bit field identifies the IP version number. IPv6 carries a value of 6 in this

field.

• Traffic class. This 8-bit field is similar to the TOS field we saw in IPv4.

• Flow label. This 20-bit field is used to identify a flow of datagrams.

• Payload length. This 16-bit value is treated as an unsigned integer giving the number of

bytes in the IPv6 datagram following the fixed-length, 40-byte datagram header.

• Next header. This field identifies the protocol to which the contents (data field) of this

datagram will be delivered. The field uses the same values as the protocol field in the IPv4

header.

• Hop limit. The contents of this field are decremented by one by each router that forwards

the datagram. If the hop limit count reaches zero, the datagram is discarded.

• Source and destination addresses. The various formats of the IPv6 128-bit address

• Data. This is the payload portion of the IPv6 datagram. When the datagram reaches its

destination, the payload will be removed from the IP datagram and passed on to the protocol

specified in the next header field.

Following are the differences between IPV4 & IPV6 :

• Fragmentation/Reassembly. IPv6 does not allow for fragmentation and reassembly at

intermediate routers; these operations can be performed only by the source and destination. If

an IPv6 datagram received by a router is too large to be forwarded over the outgoing link, the

router simply drops the datagram and sends a “Packet Too Big” ICMP error message (see

below) back to the sender.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Page 27

The sender can then resend the data, using a smaller IP datagram size. Fragmentation and

reassembly is a time-consuming operation; removing this functionality from the routers and

placing it squarely in the end systems considerably speeds up IP forwarding within the

network.

• Header checksum. The transport-layer (for example, TCP and UDP) and link-layer (for

example, Ethernet) protocols in the Internet layers perform checksumming, the designers of

IP probably felt that this functionality was sufficiently redundant in the network layer that it

could be removed.

Since the IPv4 header contains a TTL field (similar to the hop limit field in IPv6), the IPv4

header checksum needed to be recomputed at every router. As with fragmentation and

reassembly, was a costly operation in IPv4.

• Options. An options field is no longer a part of the standard IP header. Options field is one

of the possible next headers pointed to from within the IPv6 header. That is, just as TCP or

UDP protocol headers can be the next header within an IP packet. The removal of the options

field results in a fixed-length, 40-byte IP header.

Transitioning from IPV4 to IPV6 :

IPv6-capable nodes has a dual-stack approach, where IPv6 nodes have a complete IPv4

implementation. Such a node, referred to as an IPv6/IPv4 node , has the ability to send and

receive both IPv4 and IPv6 datagrams.

When interoperating with an IPv4 node, an IPv6/IPv4 node can use IPv4 datagrams; when

interoperating with an IPv6 node, it can speak IPv6.

IPv6/IPv4 nodes must have both IPv6 and IPv4 addresses. They will be able to determine

whether the node is IPv6-capable or IPv4-only.

In the dual-stack approach, if either the sender or the receiver is only IPv4- capable, an IPv4

datagram must be used.

It is possible that two IPv6-capable nodes can end up, sending IPv4 datagrams to each other.

This is illustrated in Figure below.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Page 28

Suppose Node A is IPv6-capable and wants to send an IP datagram to Node F, which is also

IPv6-capable. Nodes A and B can exchange an IPv6 datagram.

Node B must create an IPv4 datagram to send to C. Certainly, the data field of the IPv6

datagram can be copied into the data field of the IPv4 datagram and appropriate address

mapping can be done.

In performing the conversion from IPv6 to IPv4, there will be IPv6-specific fields in the IPv6

datagram that have no counterpart in IPv4.

The information in these fields will be lost. Thus, even though E and F can exchange IPv6

datagrams, the arriving IPv4 datagrams at E from D do not contain all of the fields that were

in the original IPv6 datagram sent from A.

An alternative to the dual-stack approach, is known as tunneling.

Tunneling can solve the problem noted above, allowing, for example, E to receive the IPv6

datagram originated by A. The basic idea behind tunneling is the following.

Suppose two IPv6 nodes (for example, B and E in Figure above) want to interoperate using

IPv6 datagrams but are connected to each other by intervening IPv4 routers.

The intervening set of IPv4 routers between two IPv6 routers is referred as a tunnel, as

illustrated in Figure above.

With tunneling, the IPv6 node on the sending side of the tunnel (for example, B) takes the

entire IPv6 datagram and puts it in the data (payload) field of an IPv4 datagram.

This IPv4 datagram is then addressed to the IPv6 node on the receiving side of the tunnel (for

example, E) and sent to the first node in the tunnel (for example, C).

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

The intervening IPv4 routers in the tunnel route this IPv4 datagram among themselves,

unaware that the IPv4 datagram itself contains a complete IPv6 datagram.

The IPv6 node on the receiving side of the tunnel eventually receives the IPv4 datagram,

determines that the IPv4 datagram contains an IPv6 datagram, extracts the IPv6 datagram,

and then routes the IPv6 datagram.

IP Security

IPsec, is a popular secure network-layer protocols .

IPsec has been designed to be backward compatible with IPv4 and IPv6. If two hosts want to

securely communicate, IPsec needs to be available only in those two hosts.

On the sending side, the transport layer passes a segment to IPsec. IPsec then encrypts the

segment, appends additional security fields to the segment, and encapsulates the resulting

payload in an ordinary IP datagram.

The sending host then sends the datagram into the Internet, which transports it to the

destination host. There, IPsec decrypts the segment and passes the unencrypted segment to

the transport layer.

The services provided by an IPsec session include:

• Cryptographic agreement. Mechanisms that allow the two communicating hosts to agree on

cryptographic algorithms and keys.

• Encryption of IP datagram payloads. When the sending host receives a segment from the

transport layer, IPsec encrypts the payload. The payload can only be decrypted by IPsec in

the receiving host.

• Data integrity. IPsec allows the receiving host to verify that the datagram’s header fields

and encrypted payload were not modified while the datagram was in route from source to

destination.

• Origin authentication. When a host receives an IPsec datagram from a trusted source, the

host is assured that the source IP address in the datagram is the actual source of the datagram.

4.5 Routing Algorithms

A host is attached directly to one router, the default router for the host (also called the first-

hop router for the host).

Whenever a host sends a packet, the packet is transferred to its default router. We refer to the

default router of the source host as the source router and the default router of the destination

host as the destination router.

by-Manjunatha T N, Dept. of CSE, EWIT Page 29

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

The purpose of a routing algorithm is : given a set of routers, with links connecting the

routers, a routing algorithm finds a “good” path i.e least cost path from source router to

destination router.

A graph G = (N,E) is a set N of nodes and a collection E of edges, where each edge is a pair

of nodes from N.

In the context of network-layer routing, the nodes in the graph represent routers—the points

at which packet-forwarding decisions are made—and the edges connecting these nodes

represent the physical links between these routers.

An edge’s cost reflects the physical length of the corresponding link .

Consider figure below , For any edge (x,y) in E, we denote c(x,y) as the cost of the edge

between nodes x and y. If the pair (x,y) does not belong to E, we set c(x,y) = ∞.

Only undirected graphs (i.e., graphs whose edges do not have a direction) are considered, so

that edge (x,y) is the same as edge (y,x) and that c(x,y) = c(y,x). Also, a node y is said to be a

neighbor of node x if (x,y) belongs to E.

A path in a graph G = (N,E) is a sequence of nodes (x1, x2,..., xp) such that each of the pairs

(x1,x2), (x2,x3),...,(xp-1,xp) are edges in E.

The cost of a path (x1,x2,..., xp) is the sum of all the edge costs along the path, that is,

c(x1,x2) + c(x2,x3) + ...+ c(xp-1,xp).

Given any two nodes x and y, there are typically many paths between the two nodes, with

each path having a cost. One or more of these paths is a least-cost path. For example, the

least-cost path between source node u and destination node w is (u, x, y, w) with a path cost of

3.

Classification of routing algorithms :

Routing algorithms can be classified according to whether they are global or decentralized.

• A global routing algorithm computes the least-cost path between a source and

destination using complete, global knowledge about the network.

by-Manjunatha T N, Dept. of CSE, EWIT Page 30

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

by-Manjunatha T N, Dept. of CSE, EWIT Page 31

The algorithm takes the connectivity between all nodes and all link costs as inputs.

Algorithms with global state information are referred to as link-state (LS)

algorithms, since the algorithm must be aware of the cost of each link in the network.

• In a decentralized routing algorithm, the calculation of the least-cost path is carried

out in an iterative, distributed manner.

No node has complete information about the costs of all network links.

Each node begins with only the knowledge of the costs of its own directly attached

links.

Through an iterative process of calculation and exchange of information with its

neighboring nodes, a node gradually calculates the least-cost path to a destination or

set of destinations.

The decentralized routing algorithm is called a distance-vector (DV) algorithm,

because each node maintains a vector of estimates of the costs (distances) to all other

nodes in the network.

Routing algorithms is classified according to whether they are static or dynamic.

• In static routing algorithms, routes change very slowly over time, often as a result of

human intervention.

• Dynamic routing algorithms change the routing paths as the network traffic loads or

topology change.

Routing algorithms is classified according to whether they are load sensitive or load-

insensitive.

• In a load-sensitive algorithm, link costs vary dynamically to reflect the current level

of congestion in the underlying link. If a high cost isassociated with a link that is

currently congested, a routing algorithm will tend to choose routes around such a

congested link.

• Internet routing algorithms (such as RIP, OSPF, and BGP) are load-insensitive, as a

link’s cost does not explicitly reflect its current level of congestion.

The Link-State (LS) Routing Algorithm

Link costs are available as input to the LS algorithm. This is accomplished by having each

node broadcast link-state packets to all other nodes in the network, with each link-state

packet containing the identities and costs of its attached links.

The link-state routing algorithm is known as Dijkstra’s algorithm.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

by-Manjunatha T N, Dept. of CSE, EWIT Page 32

Dijkstra’s algorithm is iterative and has the property that after the kth iteration of the

algorithm, the least-cost paths are known to k destination nodes, and among the least-cost

paths to all destination nodes, these k paths will have the k smallest costs.

The following notations are defined:

• D(v): cost of the least-cost path from the source node to destination v as of this iteration of

the algorithm.

• p(v): previous node (neighbor of v) along the current least-cost path from the source to v.

• N_ : subset of nodes; v is in N_ if the least-cost path from the source to v is definitively

known.

The global routing algorithm consists of an initialization step followed by a loop. The number

of times the loop is executed is equal to the number of nodes in the network.

Upon termination, the algorithm will have calculated the shortest paths from the source node

u to every other node in the network.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

by-Manjunatha T N, Dept. of CSE, EWIT Page 33

Consider the network in Figure above and compute the least-cost paths from u to all possible

destinations.

A tabular summary of the algorithm’s computation is shown in Table below, where each line

in the table gives the values of the algorithm’s variables at the end of the iteration.

Consider the following few first steps:

• In the initialization step, the currently known least-cost paths from u to its directly attached

neighbors, v, x, and w, are initialized to 2, 1, and 5, respectively.

The cost to w is set to 5 since this is the cost of the direct link from u to w. The costs to y and

z are set to infinity because they are not directly connected to u.

• In the first iteration, consider the nodes that are not yet added to the set N_ and find that

node with the least cost as of the end of the previous iteration.

That node is x, with a cost of 1, and thus x is added to the set N_.

Line 12 of the LS algorithm is then performed to update D(v) for all nodes v, yielding the

results shown in the second line (Step 1) in Table. The cost of the path to v is unchanged.

The cost of the path to w (which was 5 at the end of the initialization) through node x is found

to have a cost of 4. Hence this lower-cost path is selected and w’s predecessor along the

shortest path from u is set to x. Similarly, the cost to y (through x) is computed to be 2, and

the table is updated accordingly.

• In the second iteration, nodes v and y are found to have the least-cost paths (2), and we

break the tie arbitrarily and add y to the set N_ so that N_ now contains u, x, and y. The cost

to the remaining nodes not yet in N_, that is, nodes v, w, and z, are updated via line 12 of the

LS algorithm, yielding the results shown in the third row in the Table 4.3.

• And so on. . . .

When the LS algorithm terminates, we have, for each node, its predecessor along the least-

cost path from the source node.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

by-Manjunatha T N, Dept. of CSE, EWIT Page 34

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

The forwarding table in a node, say node u, can then be constructed from this information by

storing, for each destination, the next-hop node on the least-cost path from u to the

destination.

Figure below shows the resulting least-cost paths and forwarding table in u for the network

shown in above figure .

Computational Complexity : In the first iteration, we need to search through all n nodes to

determine the node, w, not in N_ that has the minimum cost.

In the second iteration, we need to check n – 1 nodes to determine the minimum cost;

In the third iteration n – 2 nodes, and so on.

Overall, the total number of nodes searched through over all the iterations is n(n + 1)/2, and

thus the preceding implementation of the LS algorithm has worst-case complexity of order n

squared: O(n2).

Figure below shows a simple network topology where link costs are equal to the load carried

on the link. For example, reflecting the delay that would be experienced. In this example, link

costs are not symmetric; that is, c(u,v) equals c(v,u) only if the load carried on both directions

on the link (u,v) is the same.

In this example, node z originates a unit of traffic destined for w, node x also originates a unit

of traffic destined for w, and node y injects an amount of traffic equal to e, also destined for

w. The initial routing is shown in Figure (a) with the link costs corresponding to the amount

of traffic carried.

When the LS algorithm is next run, node y determines (based on the link costs shown in

Figure (a)) that the clockwise path to w has a cost of 1, while the counter clockwise path to w

(which it had been using) has a cost of 1 + e.

Hence y’s least-cost path to w is now clockwise. Similarly, x determines that its new least-

cost path to w is also clockwise, resulting in costs shown in Figure (b).

When the LS algorithm is run next, nodes x, y, and z all detect a zero-cost path to w in the

counter clockwise direction, and all route their traffic to the counter clockwise routes. The

next time the LS algorithm is run, x, y, and z all then route their traffic to the clockwise

routes.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Solutions to above problem :

• Mandate that link costs not depend on the amount of traffic carried—an unacceptable

solution since one goal of routing is to avoid highly congested links.

• Ensure that not all routers run the LS algorithm at the same time.

The Distance-Vector (DV) Routing Algorithm

Distancevector (DV) algorithm is iterative, asynchronous, and distributed.

Each node receives some information from one or more of its directly attached neighbors,

performs a calculation, and then distributes the results of its calculation back to its neighbors.

It is iterative i.e process continues until no more information is exchanged between

neighbors.

The algorithm is asynchronous i.e it does not require all of the nodes to operate in lockstep

with each other.

Let dx(y) be the cost of the least-cost path from node x to node y. Then the least costs are

related by the Bellman-Ford equation, namely,

by-Manjunatha T N, Dept. of CSE, EWIT Page 35

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

dx(y) = minv{c(x,v) + dv(y)}

where the minv in the equation is taken over all of x’s neighbors.

After traveling from x to v, if we then take the least-cost path from v to y, the path cost will be

c(x,v) + dv(y).

Since we must begin by traveling to some neighbor v, the least cost from x to y is the

minimum of c(x,v) + dv(y) taken over all neighbors v.

Evaluate for source node u and destination node z in Figure . The source node u has three

neighbors: nodes v, x, and w.

dv(z) = 5, dx(z) = 3, and dw(z) = 3.

Substitute these values into Equation above, along with the costs c(u,v) = 2, c(u,x) = 1, and

c(u,w) = 5, gives :

du(z) = min{2 + 5, 5 + 3, 1 + 3} = 4 ;

The basic idea is as follows:

Each node x begins with Dx(y), an estimate of cost of the least-cost path from itself to node

y, for all nodes in N.

Let Dx = [Dx(y): y in N] be node x’s distance vector, which is the vector of cost estimates

from x to all other nodes, y, in N.

With the DV algorithm, each node x maintains the following routing information:

• For each neighbor v, the cost c(x,v) from x to directly attached neighbor, v

• Node x’s distance vector, that is, Dx = [Dx(y): y in N], containing x’s estimate of its cost to

all destinations, y, in N

• The distance vectors of each of its neighbors, that is, Dv = [Dv(y): y in N] for each neighbor

v of x.

Each node sends a copy of its distance vector to each of its neighbors. When a node x

receives a new distance vector from any of its neighbors v, it saves v’s distance vector, and

then uses the Bellman-Ford equation to update its own distance vector as follows:

Dx(y) _ minv{c(x,v) + Dv(y)} for each node y in N

by-Manjunatha T N, Dept. of CSE, EWIT

Page 36

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

by-Manjunatha T N, Dept. of CSE, EWIT Page 37

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

If node x’s distance vector has changed as a result of this update step, node x will then send

its updated distance vector to each of its neighbors, which can update their own distance

vectors.

In the DV algorithm, a node x updates its distance-vector estimate when it either sees a cost

change in one of its directly attached links or receives a distance vector update from some

neighbor.

But to update its own forwarding table for a given destination y, what node x needs to know

is not the shortest-path distance to y but instead the neighboring node v*(y) that is the next-

hop router along the shortest path to y.

The next-hop router v*(y) is the neighbour v that achieves the minimum in Line 14 of the DV

algorithm.

Thus, in Lines 13–14, for each destination y, node x also determines v*(y) and updates its

forwarding table for destination y.

The LS algorithm is a global algorithm in the sense that it requires each node to first obtain a

complete map of the network before running the Dijkstra algorithm.

The DV algorithm is decentralized and does not use such global information.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

by-Manjunatha T N, Dept. of CSE, EWIT Page 38

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Only information a node will have is the costs of the links to its directly attached neighbors

and information it receives from these neighbors. Each node waits for an update from any

neighbor (Lines 10–11), calculates its new distance vector when receiving an update (Line

14), and distributes its new distance vector to its neighbors (Lines 16–17).

Figure below illustrates the operation of the DV algorithm for the simple three node network

shown at the top of the figure. The operation of the algorithm is illustrated in a synchronous

manner, where all nodes simultaneously receive distance vectors from their neighbors,

compute their new distance vectors, and inform their neighbors if their distance vectors have

changed.

The leftmost column of the figure displays three initial routing tables for each of the three

nodes. For example, the table in the upper-left corner is node x’s initial routing table. Within

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

by-Manjunatha T N, Dept. of CSE, EWIT Page 39

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

a specific routing table, each row is a distance vector—specifically, each node’s routing table

includes its own distance vector and that of each of its neighbors. Thus, the first row in node

x’s initial routing table is Dx = [Dx(x), Dx(y), Dx(z)] = [0, 2, 7].

The second and third rows in this table are the most recently received distance vectors from

nodes y and z, respectively. Because at initialization node x has not received anything from

node y or z, the entries in the second and third rows are initialized to infinity.

After initialization, each node sends its distance vector to each of its two neighbors.

This is illustrated in Figure above by the arrows from the first column of tables to the second

column of tables. For example, node x sends its distance vector Dx = [0, 2, 7] to both nodes y

and z. After receiving the updates, each node recomputes its own distance vector.

For example, node x computes

Dx(x) = 0

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)} = min{2 + 0, 7 + 1} = 2

Dx(z) = min{c(x,y) + Dy(z), c(x,z) + Dz(z)} = min{2 + 1, 7 + 0} = 3

The second column therefore displays, for each node, the node’s new distance vector along

with distance vectors just received from its neighbors.

For example, that node x’s estimate for the least cost to node z, Dx(z), has changed from 7 to

3.

For node x, neighboring node y achieves the minimum in line 14 of the DV algorithm; thus at

this stage of the algorithm, we have at node x that v*(y) = y and v*(z) = y.

After the nodes recompute their distance vectors, they again send their updated distance

vectors to their neighbors (if there has been a change).

This is illustrated in Figure above by the arrows from the second column of tables to the third

column of tables.

Only nodes x and z send updates: node y’s distance vector didn’t change so node y doesn’t

send an update. After receiving the updates, the nodes then recompute their distance vectors

and update their routing tables, which are shown in the third column.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

by-Manjunatha T N, Dept. of CSE, EWIT Page 40

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

The process of receiving updated distance vectors from neighbors, recomputing routing table

entries, and informing neighbors of changed costs of the least-cost path to a destination

continues until no update messages are sent. At this point, since no update messages are sent,

no further routing table calculations will occur and the algorithm will enter a quiescent state;

that is, all nodes will be performing the wait in Lines 10–11 of the DV algorithm.

Distance-Vector Algorithm: Link-Cost Changes and Link Failure

When a node running the DV algorithm detects a change in the link cost from itself to a

neighbor (Lines 10–11), it updates its distance vector (Lines 13–14) and, if there’s a change

in the cost of the least-cost path, informs its neighbors (Lines 16–17) of its new distance

vector.

Figure (a) below illustrates a scenario where the link cost from y to x changes from 4 to 1.

Focus is only on y’ and z’s distance table entries to destination x. The DV algorithm causes

the following sequence of events to occur:

• At time t0, y detects the link-cost change (the cost has changed from 4 to 1), updates its

distance vector, and informs its neighbors of this change since its distance vector has

changed.

• At time t1, z receives the update from y and updates its table. It computes a new least cost to

x (it has decreased from a cost of 5 to a cost of 2) and sends its new distance vector to its

neighbors.

• At time t2, y receives z’s update and updates its distance table. y’s least costs do not change

and hence y does not send any message to z. The algorithm comes to a quiescent state.

Thus, only two iterations are required for the DV algorithm to reach a quiescent state.

Consider increase in link cost. Suppose that the link cost between x and y increases from 4 to

60, as shown in Figure (b) below.

1. Before the link cost changes, Dy(x) = 4, Dy(z) = 1, Dz(y) = 1, and Dz(x) = 5. At time t0, y

detects the link-cost change (the cost has changed from 4 to 60) y computes its new

minimum-cost path to x to have a cost of

Dy(x) = min{c(y,x) + Dx(x), c(y,z) + Dz(x)} = min{60 + 0, 1 + 5} = 6.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

New cost via z is wrong. But the only information node y has is that its direct cost to x is 60

and that z has last told y that z could get to x with a cost of 5. So in order to get to x, y would

now route through z, fully expecting that z will be able to get to x with a cost of 5. As of t1, a

routing loop is -- in order to get to x, y routes through z, and z routes through y.

A routing loop is like a black hole—a packet destined for x arriving at y or z as of t1 will

bounce back and forth between these two nodes forever

2. Since node y has computed a new minimum cost to x, it informs z of its new distance

vector at time t1.

3. After t1, z receives y’s new distance vector, which indicates that y’s minimum cost to x is

6. z knows it can get to y with a cost of 1 and hence computes a new least cost to x of Dz(x) =

min{50 + 0,1 + 6} = 7. Since z’s least cost to x has increased, it then informs y of its new

distance vector at t2.

4. In a similar manner, after receiving z’s new distance vector, y determines Dy(x) = 8 and

sends z its distance vector. z then determines Dz(x) = 9 and sends y its distance vector, and so

on.

Distance-Vector Algorithm: Adding Poisoned Reverse

If z routes through y to get to destination x, then z will advertise to y that its distance to x is

infinity, that is, z will advertise to y that Dz(x) = ∞ (even though z knows Dz(x) = 5 in truth).

z will continue telling this to y as long as it routes to x via y. Since y believes that z has no

path to x, y will never attempt to route to x via z, as long as z continues to route to x via y.

Poisoned reverse solves the particular looping problem encountered before in Figure (b)

above. As a result of the poisoned reverse, y’s distance table indicates Dz(x) = ∞.

by-Manjunatha T N, Dept. of CSE, EWIT Page 41

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

When the cost of the (x, y) link changes from 4 to 60 at time t0, y updates its table and

continues to route directly to x, albeit at a higher cost of 60, and informs z of its new cost to x,

that is, Dy(x) = 60.

After receiving the update at t1, z immediately shifts its route to x to be via the direct (z, x)

link at a cost of 50. Since this is a new least-cost path to x, and since the path no longer

passes through y, z now informs y that Dz(x) = 50 at t2.

After receiving the update from z, y updates its distance table with Dy(x) = 51. Also, since z is

now on y’s least-cost path to x, y poisons the reverse path from z to x by informing z at time

t3 that Dy(x) = ∞ (even though y knows that Dy(x) = 51 in truth).

A Comparison of LS and DV Routing Algorithms

In the DV algorithm, each node talks to only its directly connected neighbors, but it provides

its neighbors with least-cost estimates from itself to all the nodes (that it knows about) in the

network.

In the LS algorithm, each node talks with all other nodes (via broadcast), but it tells them

only the costs of its directly connected links.

Differences between LS and DV algorithm :

N is the set of nodes (routers) and E is the set of edges (links).

• Message complexity. LS requires each node to know the cost of each link in the network.

This requires O(|N| |E|) messages to be sent.

If a link cost changes, the new link cost must be sent to all nodes. The DV algorithm requires

message exchanges between directly connected neighbors at each iteration.

The time needed for the algorithm to converge can depend on many factors. When link costs

change, the DV algorithm will propagate the results of the changed link cost only if the new

link cost results in a changed least-cost path for one of the nodes attached to that link.

• Speed of convergence. Complexity of LS is O(|N|2). The DV algorithm can converge

slowly and can have routing loops while the algorithm is converging. DV also suffers from

the count-to-infinity problem.

• Robustness. Under LS, a router could broadcast an incorrect cost for one of its attached

by-Manjunatha T N, Dept. of CSE, EWIT Page 42

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

links (but no others). A node could also corrupt or drop any packets it received as part of an

LS broadcast. But an LS node is computing only its own forwarding tables; other nodes are

performing similar calculations for themselves. This means route calculations are separated

under LS, providing a degree of robustness. Under DV, a node can advertise incorrect least-

cost paths to any or all destinations.

Hierarchical Routing

One router is indistinguishable from another i.e all routers executes the same routing

algorithm to compute routing paths through the entire network.

In practice, this model and its view of a homogenous set of routers all executing the same

routing algorithm is simple for two important reasons:

• Scale. As the number of routers becomes large, the overhead involved in computing, storing

and communicating routing information is prohibitive.

Internet consists of hundreds of millions of hosts. Storing routing information at each of these

hosts would clearly require enormous amounts of memory. The overhead required to

broadcast LS updates among all of the routers in the public Internet would leave no

bandwidth left for sending data packets!

• Administrative autonomy. An organization should be able to run and administer its

network as it wishes, while still being able to connect its network to other outside networks.

Both the above problems can be solved by organizing routers into autonomous systems

(ASs), with each AS consisting of a group of routers that are typically under the same

administrative control .

Routers within the same AS all run the same routing algorithm (for example, an LS or DV

algorithm) and have information about each other.

The routing algorithm running within an autonomous system is called an intraautonomous

system routing protocol. It is necessary, to connect ASs to each other, and thus one or more

of the routers in an AS will have the added task of being responsible for forwarding packets

to destinations outside the AS; these routers are called gateway routers.

Figure below provides a simple example with three ASs: AS1, AS2, and AS3.

by-Manjunatha T N, Dept. of CSE, EWIT Page 43

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

In this figure, the heavy lines represent direct link connections between pairs of routers. The

thinner lines hanging from the routers represent subnets that are directly connected to the

routers. AS1 has four routers—1a, 1b, 1c, and 1d— which run the intra-AS routing protocol

used within AS1.

Thus, each of these four routers knows how to forward packets along the optimal path to any

destination within AS1. Similarly, autonomous systems AS2 and AS3 each have three

routers. Intra-AS routing protocols running in AS1, AS2, and AS3 need not be the same. The

routers 1b, 1c, 2a, and 3a are all gateway routers.

The gateway router, upon receiving the packet, forwards the packet on the one link that leads

outside the AS. The AS on the other side of the link then takes over the responsibility of

routing the packet to its ultimate destination.

As an example, suppose router 2b in Figure above receives a packet whose destination is

outside of AS2. Router 2b will then forward the packet to either router 2a or 2c, as specified

by router 2b’s forwarding table, which was configured by AS2’s intra-AS routing protocol.

The packet will eventually arrive to the gateway router 2a, which will forward the packet to

1b. Once the packet has left 2a, AS2’s job is done with this one packet.

AS1 needs :

(1) to learn which destinations are reachable via AS2 and which destinations are reachable

via AS3.

by-Manjunatha T N, Dept. of CSE, EWIT Page 44

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

(2) to propagate this reachability information to all the routers within AS1, so that each

router can configure its forwarding table to handle external-AS destinations.

These two tasks—obtaining reachability information from neighboring ASs and propagating

the reachability information to all routers internal to the AS—are handled by the inter-AS

routing protocol. Since the inter-AS routing protocol involves communication between two

ASs, the two communicating ASs must run the same inter-AS routing protocol.

Consider a subnet x and suppose that AS1 learns from the inter-AS routing protocol that

subnet x is reachable from AS3 but is not reachable from AS2.

AS1 then propagates this information to all of its routers. When router 1d learns that subnet x

is reachable from AS3, and hence from gateway 1c, it then determines, from the information

provided by the intra-AS routing protocol, the router interface that is on the least-cost path

from router 1d to gateway router 1c. Say this is interface I. The router 1d can then put the

entry (x, I) into its forwarding table.

Hot Potato Routing :

In hot-potato routing, the AS gets rid of the packet (the hot potato) as quickly as possible.

This is done by having a router send the packet to the gateway router that has the smallest

router-to-gateway cost among all gateways with a path to the destination.

Eg : Hot-potato routing, running in 1d, would use information from the intra-AS routing

protocol to determine the path costs to 1b and 1c, and then choose the path with the least cost.

Once this path is chosen, router 1d adds an entry for subnet x in its forwarding table.

Figure below summarizes the actions taken at router 1d for adding the new entry for x to the

forwarding table.

When an AS learns about a destination from a neighboring AS, the AS can advertise this

routing information to some of its other neighboring ASs.

by-Manjunatha T N, Dept. of CSE, EWIT Page 45

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

For example, suppose AS1 learns from AS2 that subnet x is reachable via AS2. AS1 could

then tell AS3 that x is reachable via AS1. In this manner, if AS3 needs to route a packet

destined to x, AS3 would forward the packet to AS1, which would in turn forward the packet

to AS2.

The problems of scale and administrative authority are solved by defining autonomous

systems. Within an AS, all routers run the same intra-AS routing protocol. The ASs run the

same inter-AS routing protocol.

The problem of scale is solved because an intra-AS router need only know about routers

within its AS.

The problem of administrative authority is solved since an organization can run intra-AS

routing protocol it chooses; Each pair of connected ASs needs to run the same inter-AS

routing protocol to exchange reachability information.

Routing in the Internet

Intra-AS Routing in the Internet: RIP

An intra-AS routing protocol is used to determine how routing is performed within an

autonomous system (AS). Intra-AS routing protocols are also known as interior gateway

protocols.

Two routing protocols have been used extensively for routing within an autonomous system

in the Internet: the Routing Information Protocol (RIP) and Open Shortest Path First

(OSPF).

RIP is a distance-vector protocol that operates in a manner very close to the idealized DV

protocol. In RIP (and also in OSPF), costs are from source router to a destination subnet.

RIP uses the term hop, which is the number of subnets traversed along the shortest path from

source router to destination subnet, including the destination subnet. Figure below illustrates

an AS with six leaf subnets. The table in the figure indicates the number of hops from the

source A to each of the leaf subnets.

by-Manjunatha T N, Dept. of CSE, EWIT Page 46

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

The maximum cost of a path is limited to 15, thus limiting the use of RIP to autonomous

systems that are fewer than 15 hops in diameter.

In DV protocols, neighboring routers exchange distance vectors with each other. The distance

vector for any one router is the current estimate of the shortest path distances from that router

to the subnets in the AS.

In RIP, routing updates are exchanged between neighbors approximately every 30 seconds

using a RIP response message.

The response message sent by a router or host contains a list of up to 25 destination subnets

within the AS, as well as the sender’s distance to each of those subnets. Response messages

are also known as RIP advertisements.

Consider the portion of an AS shown in Figure 4.35. In this figure, lines connecting the

routers denote subnets. Only selected routers (A, B, C, and D) and subnets (w, x, y, and z) are

labeled. Dotted lines indicate that the AS continues on;

Each router maintains a RIP table known as a routing table. A router’s routing table includes

both the router’s distance vector and the router’s forwarding table.

Figure below shows the routing table for router D.

by-Manjunatha T N, Dept. of CSE, EWIT Page 47

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

The routing table has three columns :

• The first column is for the destination subnet.

• The second column indicates the identity of the next router along the shortest path to

the destination subnet,

• The third column indicates the number of hops to get to the destination subnet along

the shortest path.

For this example, the table indicates that to send a datagram from router D to destination

subnet w, the datagram should first be forwarded to neighboring router A; the table also

indicates that destination subnet w is two hops away along the shortest path.

Similarly, the table indicates that subnet z is seven hops away via router B. A routing table

will have one row for each subnet in the AS.

Advertisement from D :

Suppose that 30 seconds later, router D receives from router A the advertisement shown in

Figure below. This advertisement is the routing table information from router A!

This information indicates, in particular, that subnet z is only four hops away from router A.

Router D, upon receiving this advertisement, merges the advertisement (Figure below) with

the old routing table (Figure above).

In particular, router D learns that there is now a path through router A to subnet z that is

shorter than the path through router B. Thus, router D updates its routing table to account for

the shorter shortest path, as shown in Figure below.

Advertisement from A :

by-Manjunatha T N, Dept. of CSE, EWIT Page 48

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

RIP routers exchange advertisements approximately every 30 seconds. If a router does not

hear from its neighbor at least once every 180 seconds, that neighbor is considered to be no

longer reachable;

RIP modifies the local routing table and then propagates this information by sending

advertisements to its neighboring routers (the ones that are still reachable). A router can also

request information about its neighbor’s cost to a given destination using RIP’s request

message. Routers send RIP request and response messages to each other over UDP using port

number 520.

RIP uses a transport-layer protocol (UDP) on top of a network layer protocol (IP) to

implement network-layer functionality (a routing algorithm).

Figure below shows RIP implementation in a UNIX system, for example, a UNIX

workstation serving as a router. A process called routed executes RIP, that is, maintains

routing information and exchanges messages with routed processes running in neighboring

routers.

by-Manjunatha T N, Dept. of CSE, EWIT Page 49

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Intra-AS Routing in the Internet: OSPF

OSPF routing is widely used for intra-AS routing in the Internet.

The Open in OSPF indicates that the routing protocol specification is publicly available.

The most recent version of OSPF,version 2.

OSPF is a link-state protocol that uses flooding of link-state information and a Dijkstra least-

cost path algorithm.

With OSPF, a router constructs a complete topological map (that is, a graph) of the entire

autonomous system. The router then locally runs Dijkstra’s shortest-path algorithm to

determine a shortest-path tree to all subnets, with itself as the root node.

Individual link costs are configured by the network administrator. The administrator might

choose to set all link costs to 1, thus achieving minimum-hop routing, or might choose to set

the link weights to be inversely proportional to link capacity.

With OSPF, a router broadcasts routing information to all other routers in the autonomous

system, not just to its neighboring routers.

A router broadcasts link state information whenever there is a change in a link’s state. It also

broadcasts a link’s state periodically (at least once every 30 minutes), even if the link’s state

has not changed.

OSPF advertisements are contained in OSPF messages that are carried directly by IP

by-Manjunatha T N, Dept. of CSE, EWIT Page 50

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

The OSPF protocol also checks that links are operational (via a HELLO message that is sent

to an attached neighbor) and allows an OSPF router to obtain a neighboring router’s database

of network-wide link state.

Some of the advances embodied in OSPF include the following:

• Security. Exchanges between OSPF routers (for example, link-state updates) can be

authenticated. With authentication, only trusted routers can participate in the OSPF protocol

within an AS, thus preventing malicious intruders from injecting incorrect information into

router tables.

By default, OSPF packets between routers are not authenticated and could be forged. Two

types of authentication can be configured—simple and MD5.

Simple authentication: The same password is configured on each router. When a router

sends an OSPF packet, it includes the password in plaintext.

MD5 authentication is based on shared secret keys that are configured in all the routers. For

each OSPF packet that it sends, the router computes the MD5 hash of the content of the

OSPF packet appended with the secret key.

Then the router includes the resulting hash value in the OSPF packet. The receiving router,

using the preconfigured secret key, will compute an MD5 hash of the packet and compare it

with the hash value that the packet carries, thus verifying the packet’s authenticity. Sequence

numbers are also used with MD5 authentication to protect against replay attacks.

Multiple same-cost paths : When multiple paths to a destination have the same cost, OSPF

allows multiple paths to be used.

• Integrated support for unicast and multicast routing. Multicast OSPF (MOSPF) provides

extensions to OSPF to provide for multicast routing

MOSPF uses the existing OSPF link database and adds a new type of link-state advertisement

to the existing OSPF link-state broadcast mechanism.

• Support for hierarchy within a single routing domain. The most significant advance in

OSPF is the ability to structure an autonomous system hierarchically.

An OSPF autonomous system can be configured hierarchically into areas.

by-Manjunatha T N, Dept. of CSE, EWIT Page 51

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

by-Manjunatha T N, Dept. of CSE, EWIT Page 52

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Each area runs its own OSPF link-state routing algorithm, with each router in an area

broadcasting its link state to all other routers in that area.

Within each area, one or more area border routers are responsible for routing packets

outside the area.

Lastly, exactly one OSPF area in the AS is configured to be the backbone area.

The primary role of the backbone area is to route traffic between the other areas in the AS.

The backbone always contains all area border routers in the AS and may contain non border

routers as well.

Inter-area routing within the AS requires that the packet be first routed to an area border

router (intra-area routing), then routed through the backbone to the area border router that is

in the destination area, and then routed to the final destination.

Inter-AS Routing: BGP

The Border Gateway Protocol version 4, is the standard inter-AS routing protocol. It is

referred to as BGP4 or simply as BGP. As an inter-AS routing protocol BGP provides each

AS a means to :

1. Obtain subnet reachability information from neighboring ASs.

2. Propagate the reachability information to all routers internal to the AS.

3. Determine “good” routes to subnets based on the reachability information and on AS

Policy.

BGP allows each subnet to advertise its existence to the rest of the Internet.

BGP Basics

In BGP, pairs of routers exchange routing information over semipermanent TCP connections

using port 179. The semi-permanent TCP connections for the network in graph(refer fig 1 in

hierarchical routing) are shown in Figure below.

There is one such BGP TCP connection for each link that directly connects two routers in two

different ASs;

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

by-Manjunatha T N, Dept. of CSE, EWIT Page 53

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Thus, in Figure below, there is a TCP connection between gateway routers 3a and 1c and

another TCP connection between gateway routers 1b and 2a. There are also semipermanent

BGP TCP connections between routers within an AS.

Figure below displays a common configuration of one TCP connection for each pair of

routers internal to an AS, creating a mesh of TCP connections within each AS.

For each TCP connection, the two routers at the end of the connection are called BGP peers,

and the TCP connection along with all the BGP messages sent over the connection is called a

BGP session.

Furthermore, a BGP session that spans two Ass is called an external BGP (eBGP) session,

and a BGP session between routers in the same AS is called an internal BGP (iBGP)

session. In Figure below, the eBGP sessions are shown with the long dashes; the iBGP

sessions are shown with the short dashes.

BGP allows each AS to learn which destinations are reachable via its neighboring ASs. In

BGP, destinations are not hosts but instead are CIDRized prefixes, with each prefix

representing a subnet or a collection of subnets.

Thus, for example, suppose there are four subnets attached to AS2: 138.16.64/24,

138.16.65/24, 138.16.66/24, and 138.16.67/24. Then AS2 could aggregate the prefixes for

these four subnets and use BGP to advertise the single prefix to 138.16.64/22 to AS1.

Suppose that only the first three of those four subnets are in AS2 and the fourth subnet,

138.16.67/24, is in AS3.

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

Using the eBGP session between the gateway routers 3a and 1c, AS3 sends AS1 the list of

prefixes that are reachable from AS3; and AS1 sends AS3 the list of prefixes that are

reachable from AS1.

Similarly, AS1 and AS2 exchange prefix reachability information through their gateway

routers 1b and 2a. When a gateway router (in any AS) receives eBGP-learned prefixes, the

gateway router uses its iBGP sessions to distribute the prefixes to the other routers in the AS.

Thus, all the routers in AS1 learn about AS3 prefixes, including the gateway router 1b. The

gateway router 1b (in AS1) can therefore re-advertise AS3’s prefixes to AS2. When a router

(gateway or not) learns about a new prefix, it creates an entry for the prefix in its forwarding

table.

Path Attributes and BGP Routes

In BGP, an autonomous system is identified by its globally unique autonomous system

number (ASN) .

When a router advertises a prefix across a BGP session, it includes with the prefix a number

of BGP attributes.

Thus, BGP peers advertise routes to each other.

Two of the more important attributes are AS-PATH and NEXT-HOP:

• AS-PATH. This attribute contains the ASs through which the advertisement for the prefix

has passed. When a prefix is passed into an AS, the AS adds its ASN to the ASPATH

attribute.

For example, consider Figure above and suppose that prefix 138.16.64/24 is first advertised

from AS2 to AS1;

if AS1 then advertises the prefix to AS3, AS-PATH would be AS2 AS1. Routers use the AS-

PATH attribute to detect and prevent looping advertisements;

Specifically, if a router sees that its AS is contained in the path list, it will reject the

advertisement.

by-Manjunatha T N, Dept. of CSE, EWIT Page 54

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

• NEXT- HOP : Providing the critical link between the inter-AS and intra-AS routing

protocols, the NEXT-HOP attribute is of important use. The NEXT-HOP is the router

interface that begins the AS-PATH.

Refer above Figure. Consider the gateway router 3a in AS3 when advertises a route to

gateway router 1c in AS1 using eBGP. The route includes the advertised prefix, say x, and an

AS-PATH to the prefix.

This advertisement also includes the NEXT-HOP, which is the IP address of the router 3a

interface that leads to 1c.

Consider when router 1d learns about this route from iBGP.

After learning about this route to x, router 1d may want to forward packets to x along the

route.

Router 1d may want to include the entry (x, l) in its forwarding table, where l is its interface

that begins the least-cost path from 1d towards the gateway router 1c.

To determine l, 1d provides the IP address in the NEXT-HOP attribute to its intra-AS routing

module.

Intra-AS routing algorithm has determined the least-cost path to all subnets attached to the

routers in AS1, including to the subnet for the link between 1c and 3a.

From this least-cost path from 1d to the 1c-3a subnet, 1d determines its router interface l that

begins this path and then adds the entry (x, l) to its forwarding table.

Thus, NEXT-HOP attribute is used by routers to configure their forwarding tables.

• Figure below illustrates another situation where the NEXT-HOP is needed. In this figure,

AS1 and AS2 are connected by two peering links.

A router in AS1 could learn about two different routes to the same prefix x. These two routes

could have the same AS-PATH to x, but could have different NEXT-HOP values

corresponding to the different peering links.

Using the NEXT-HOP values and the intra-AS routing algorithm, the router can determine

the cost of the path to each peering link, and then apply hot-potato routing to determine the

appropriate interface.

by-Manjunatha T N, Dept. of CSE, EWIT Page 55

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

BGP Route Selection

BGP uses eBGP and iBGP to distribute routes to all the routers within ASs.

From this distribution, a router may learn about more than one route to any one prefix, in

which case the router must select one of the possible routes.

The input into this route selection process is the set of all routes that have been learned and

accepted by the router.

If there are two or more routes to the same prefix, then BGP sequentially invokes the

following elimination rules until one route remains:

• Routes are assigned a local preference value as one of their attributes. The local preference

of a route could have been set by the router or could have been learned by another router in

the same AS. The routes with the highest local preference values are selected.

• From the remaining routes (all with the same local preference value), the route with the

shortest AS-PATH is selected. If this rule were the only rule for route selection, then BGP

would be using a DV algorithm for path determination, where the distance metric uses the

number of AS hops rather than the number of router hops.

• From the remaining routes (all with the same local preference value and the same AS-

PATH length), the route with the closest NEXT-HOP router is selected. Here, closest means

by-Manjunatha T N, Dept. of CSE, EWIT Page 56

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

the router for which the cost of the least-cost path, determined by the intra-AS algorithm, is

the smallest. This process is called hot-potato routing.

• If more than one route still remains, the router uses BGP identifiers to select the route;

Routing Policy

Figure above shows six interconnected autonomous systems: A, B, C, W, X, and Y. It is

important to note that A, B, C, W, X, and Y are ASs, not routers.

Assume that autonomous systems W, X, and Yare stub networks and that A, B, and C are

backbone provider networks. Also assume that A, B, and C, all peer with each other, and

provide full BGP information to their customer networks.

All traffic entering a stub network must be destined for that network, and all traffic leaving a

stub network must have originated in that network. W and Y are clearly stub networks.

X is a multihomed stub network, since it is connected to the rest of the network via two

different providers .

However, like Wand Y, X itself must be the source/destination of all traffic leaving/entering

X.

In particular, X will function as a stub network if it advertises (to its neighbors B and C) that

it has no paths to any other destinations except itself.

Even though X may know of a path, say XCY, that reaches network Y, it will not advertise

this path to B.

Since B is unaware that X has a path to Y, B would never forward traffic destined to Y (or C)

via X.

by-Manjunatha T N, Dept. of CSE, EWIT Page 57

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

This simple example illustrates how a selective route advertisement policy can be used to

implement customer/provider routing relationships.

Consider a provider network, say AS B. Suppose that B has learned (from A) that A has a

path AW to W.

B can thus install the route BAW into its routing information base.

Clearly, B also wants to advertise the path BAW to its customer, X, so that X knows that it

can route to W via B.

But if B advertise the path BAW to C then C could route traffic to W via CBAW. If A, B, and

C are all backbone providers, than B might rightly feel that it should not have to shoulder the

burden (and cost!) of carrying transit traffic between A and C.

B might rightly feel that it is A’s and C’s job (and cost!) to make sure that C can route

to/from A’s customers via a direct connection between A and C.

4.7 Broadcast and Multicast Routing

In broadcast routing, the network layer provides a service of delivering a packet sent from a

source node to all other nodes in the network; multicast routing enables a single source node

to send a copy of a packet to a subset of the other network nodes.

4.7.1 Broadcast Routing Algorithms

Perhaps the most straightforward way to accomplish broadcast communication is for the

sending node to send a separate copy of the packet to each destination, as shown in Figure

4.43(a).

• Given N destination nodes, the source node

simply makes N copies of the packet,

addresses each copy to a different

destination, and then transmits the N copies

to the N destinations using unicast routing.

• This N-way unicast approach to

broadcasting is simple—no new network-

layer routing protocol, packet-duplication,

or forwarding functionality is needed.

• There are, however, several drawbacks to

this approach. The first drawback is its inefficiency. If the source node is connected to

the rest of the network via a single link, then N separate copies of the (same) packet

will traverse this single link.

by-Manjunatha T N, Dept. of CSE, EWIT Page 58

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

• It would clearly be more efficient to send only a single copy of a packet over this first

hop and then have the node at the other end of the first hop make and forward any

additional needed copies. That is, it would be more efficient for the network nodes

themselves (rather than just the source node) to create duplicate copies of a packet.

• For example, in Figure 4.43(b), only a single copy of a packet traverses the R1-R2

link. That packet is then duplicated at R2, with a single copy being sent over links R2-

R3 and R2-R4.

• An implicit assumption of N-way-unicast is that broadcast recipients, and their

addresses, are known to the sender. But how is this information obtained? Most likely,

additional protocol mechanisms (such as a broadcast membership or destination-

registration protocol) would be required. This would add more overhead and,

importantly, additional complexity to a protocol that had initially seemed quite

simple.

• A final drawback of N-way-unicast relates to the purposes for which broadcast is to

be used. Link-state routing protocols use broadcast to disseminate the link-state

information that is used to compute unicast routes. Clearly, in situations where

broadcast is used to create and update unicast routes, it would be unwise to rely on the

unicast routing infrastructure to achieve broadcast.

Uncontrolled Flooding

The most noticeable technique for achieving broadcast is a flooding approach in which the

source node sends a copy of the packet to all of its neighbors.

• When a node receives a broadcast packet, it duplicates the packet and forwards it to

all of its neighbors (except the neighbor from which it received the packet).

• Clearly, if the graph is connected, this will eventually deliver a copy of the broadcast

packet to all nodes in the graph.

• Although this scheme is simple and elegant, it has a fatal flaw .

o If the graph has cycles, then one or more copies of each broadcast packet will

cycle indefinitely. For example, in Figure 4.43, R2 will flood to R3, R3 will

flood to R4, R4 will flood to R2, and R2 will flood (again!) to R3, and so on.

This simple scenario results in the endless cycling of two broadcast packets,

one clockwise, and one counter clockwise.

o When a node is connected to more than two other nodes, it will create and

forward multiple copies of the broadcast packet, each of which will create

multiple copies of itself (at other nodes with more than two neighbors), and so

on. This broadcast storm, resulting from the endless multiplication of

broadcast packets, would eventually result in so many broadcast packets being

created that the network would be rendered useless.

Controlled Flooding

The key to avoiding a broadcast storm is for a node to judiciously choose when to flood a

packet and (e.g., if it has already received and flooded an earlier copy of a packet) when not

to flood a packet.

by-Manjunatha T N, Dept. of CSE, EWIT Page 59

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

This can be done in one of several ways.

• In sequence-number-controlled flooding, a source node puts its address (or other

unique identifier) as well as a broadcast sequence number into a broadcast packet,

then sends the packet to all of its neighbours.

▪ Each node maintains a list of the source address and sequence number of each

broadcast packet it has already received, duplicated, and forwarded.

▪ When a node receives a broadcast packet, it first checks whether the packet is

in this list.

▪ If so, the packet is dropped; if not, the packet is duplicated and forwarded to

all the node’s neighbours

▪ The Gnutella protocol, uses sequence-number-controlled flooding to broadcast

queries in its overlay network.

• A second approach to controlled flooding is known as reverse path forwarding

(RPF) [Dalal 1978], also sometimes referred to as reverse path broadcast (RPB).

▪ When a router receives a broadcast packet with a given source address, it

transmits the packet on all of its outgoing links (except the one on which it

was received) only if the packet arrived on the link that is on its own shortest

unicast path back to the source.

▪ Otherwise, the router simply discards the incoming packet without forwarding

it on any of its outgoing links.

▪ Such a packet can be dropped because the router knows it either will receive

or has already received a copy of this packet on the link that is on its own

shortest path back to the sender.

▪ RPF need only know the next neighbor on its unicast shortest path to the

sender; it uses this neighbor’s identity only to determine whether or not to

flood a received broadcast packet.

▪ Figure 4.44 illustrates RPF.

▪ Suppose that the links drawn with thick lines represent the least-cost

paths from the receivers to the source (A).

▪ Node A initially broadcasts a source-A packet to nodes C and B.

▪ Node B will forward the

source-A packet it has

received from A (since

A is on its least-cost

path to A) to both C and

D.

▪ B will ignore (drop,

without forwarding) any

source-A packets it

receives from any other

nodes (for example,

from routers C or D).

▪ Let us now consider node C, which will receive a source-A packet

directly from A as well as from B.

▪ Since B is not on C’s own shortest path back to A, C will ignore any

source-A packets it receives from B.

by-Manjunatha T N, Dept. of CSE, EWIT Page 60

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

▪ On the other hand, when C receives a source-A packet directly from

A, it will forward the packet to nodes B, E, and F.

Spanning-Tree Broadcast

While sequence-number-controlled flooding and RPF avoid broadcast storms, they do not

completely avoid the transmission of redundant broadcast packets. For example, in Figure

4.44, nodes B, C, D, E, and F receive either one or two redundant packets.

Ideally, every node should receive only one copy of the broadcast packet. Examining the tree

consisting of the nodes connected by thick lines in Figure 4.45(a), you can see that if

broadcast packets were forwarded only along links within this tree, each and every network

node would receive exactly one copy of the broadcast packet.This tree is an example of a

spanning tree—a tree that contains each and every node in a graph.

More formally, a spanning tree of a graph G = (N,E) is a graph G` = (N,E`) such that E` is a

subset of E, G` is connected, G` contains no cycles, and G` contains all the original nodes in

G.

▪ If each link has an associated cost and the cost of a tree is the sum of the link costs,

then a spanning tree whose cost is the minimum of all of the graph’s spanning trees is

called a minimum spanning tree.

▪ Thus, another approach to providing broadcast is for the network nodes to first

construct a spanning tree. When a source node wants to send a broadcast packet, it

sends the packet out on all of the incident links that belong to the spanning tree.

▪ A node receiving a broadcast packet then forwards the packet to all its neighbors in

the spanning tree (except the neighbor from which it received the packet). Not only

does spanning tree eliminate redundant broadcast packets, but once in place, the

spanning tree can be used by any node to begin a broadcast, as shown in Figures

4.45(a) and 4.45(b).

▪ Note that a node need not be aware of the entire tree; it simply needs to know which

of its neighbors in G are spanning-tree neighbors.

▪ The main complexity associated with the spanning-tree approach is the creation and

maintenance of the spanning tree.

▪ Numerous distributed spanning-tree algorithms have been developed [Gallager 1983,

Gartner 2003].

o In the center-based approach to building a spanning tree, a center node (also

known as a rendezvous point or a core) is defined.

o Nodes then unicast tree-join messages addressed to the center node.

o A tree-join message is forwarded using unicast routing toward the center until

it either arrives at a node that already belongs to the spanning tree or arrives at

the center.

o In either case, the path that the tree-join message has followed defines the

branch of the spanning tree between the edge node that initiated the tree-join

message and the center.

by-Manjunatha T N, Dept. of CSE, EWIT Page 61

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

o Figure 4.46

illustrates the

construction

of a center-

based

spanning

tree.

▪ Suppo

se that

node

E is

selecte

d as the center of the tree. Suppose that node F first joins the tree and

forwards a tree-join message to E.

▪ The single link EF becomes the initial spanning tree. Node B then joins

the spanning tree by sending its tree-join message to E.

▪ Suppose that the unicast path route to E from B is via D. In this case,

the tree-join message results in the path BDE being grafted onto the

spanning tree.

▪ Node A next joins the spanning group by forwarding its tree-join

message towards E. If A’s unicast path to E is through B, then since B

has already joined the spanning tree, the arrival of A’s tree-join

message at B will result in the AB link being immediately grafted onto

the spanning tree.

▪ Node C joins the spanning tree next by forwarding its tree-join

message directly to E. Finally, because the unicast routing from G to E

must be via node D, when G sends its tree-join message to E, the GD

link is grafted onto the spanning tree at node D.

Broadcast Algorithms in Practice

Broadcast protocols are used in practice at both the application and network layers.

▪ Gnutella [Gnutella 2009] uses application-level broadcast in order to broadcast

queries for content among Gnutella peers.

▪ Here, a link between two distributed application-level peer processes in the Gnutella

network is actually a TCP connection.

▪ Gnutella uses a form of sequence-number-controlled flooding in which a 16bit

identifier and a 16-bit payload descriptor (which identifies the Gnutella message type)

are used to detect whether a received broadcast query has been previously received,

duplicated, and forwarded.

▪ Gnutella also uses a time-to-live (TTL) field to limit the number of hops over which a

flooded query will be forwarded.

▪ When a Gnutella process receives and duplicates a query, it decrements the TTLfield

before forwarding the query.

▪ Thus, a flooded Gnutella query will only reach peers that are within a given number

(the initial value of TTL) of application-level hops from the query initiator.

by-Manjunatha T N, Dept. of CSE, EWIT Page 62

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

▪ Gnutella’s flooding mechanism is thus sometimes referred to as limited-scope

flooding.

▪ A form of sequence-number-controlled flooding is also used to broadcast link-state

advertisements (LSAs) in the OSPF [RFC 2328, Perlman 1999] routing algorithm,

and in the Intermediate-System-to-Intermediate-System (IS-IS) routing algorithm

[RFC 1142, Perlman 1999].

▪ OSPF uses a 32-bit sequence number, as well as a 16-bit age field to identify LSAs.

Recall that an OSPF node broadcasts LSAs for its attached links periodically, when a

link cost to a neighbor changes, or when a link goes up/down.

▪ LSA sequence numbers are used to detect duplicate LSAs, but also serve a second

important function in OSPF. With flooding, it is possible for an LSA generated by the

source at time t to arrive after a newer LSA that was generated by the same source at

time t +d. The sequence numbers used by the source node allow an older LSA to be

distinguished from a newer LSA.

▪ The age field serves a purpose similar to that of a TTL value. The initial age field

value is set to zero and is incremented at each hop as it is flooded, and is also

incremented as it sits in a router’s memory waiting to be flooded.

4.7.2 Multicast

Multicast service is where a multicast packet is delivered to only a subset of network nodes.

▪ A number of emerging network applications require the delivery of packets from one

or more senders to a group of receivers.

▪ These applications include

o bulk data transfer (for example, the transfer of a software upgrade from the

software developer to users needing the upgrade),

o streaming continuous media (for example, the transfer of the audio, video, and

text of a live lecture to a set of distributed lecture participants),

o shared data applications (for example, a whiteboard or teleconferencing

application that is shared among many distributed participants),

o data feeds (for example, stock quotes),

o Web cache updating, and interactive gaming (for example, distributed

interactive virtual environments or multiplayer games).

▪ In multicast communication, we are immediately faced with two problems— how to

identify the receivers of a multicast packet and how to address a packet sent to these

receivers.

▪ In the case of unicast communication, the IP address of the receiver (destination) is

carried in each IP unicast datagram and identifies the single recipient; in the case of

▪ broadcast, all nodes need to receive the broadcast packet, so no destination addresses

are needed. But in the case of multicast, we now have multiple receivers.

by-Manjunatha T N, Dept. of CSE, EWIT Page 63

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

PDF Watermark Remover DEMO : Purchase from www.PDFWatermarkRemover.com to remove the waterm

▪ Does it make sense for each multicast packet to carry the IP addresses of all of the

multiple recipients? While this approach might be workable with a small number of

recipients, it would not scale well to the case of hundreds or thousands of receivers;

the amount of addressing information in

the datagram would swamp the amount

of data actually carried in the packet’s

payload field.

▪ Explicit identification of the receivers

by the sender also requires that the

sender know the identities and addresses

of all of the receivers

▪ A multicast packet is addressed using

address indirection. That is, a single

identifier is used for the group of

receivers, and a copy of the packet that

is addressed to the group using this

single identifier is delivered to all of the

multicast receivers associated with that

group.

▪ In the Internet, the single identifier that represents a group of receivers is a class D

multicast IP address. The group of receivers associated with a class D address is

referred to as a multicast group.

▪ The multicast group abstraction is illustrated in Figure 4.47. Here, four hosts (shown

in shaded color) are associated with the multicast group address of 226.17.30.197 and

will receive all datagrams addressed to that multicast address. The difficulty that we

must still address is the fact that each host has a unique IP unicast address that is

completely independent of the address of the multicast group in which it is

participating.

Internet Group Management Protocol

The IGMP protocol version 3 [RFC 3376] operates between a host and its directly attached

router as shown in Figure 4.48.

Figure 4.48 shows three first-hop multicast

routers, each connected to its attached hosts via

one outgoing local interface. This local

interface is attached to a LAN in this example,

and while each LAN has multiple attached

hosts, at most a few of these hosts will

typically belong to a given multicast group at

any given time.

• IGMP provides the means for a host to inform its attached router that an application

running on the host wants to join a specific multicast group.

• Given that the scope of IGMP interaction is limited to a host and its attached router,

another protocol is clearly required to coordinate the multicast routers (including the

Page 64

http://www.pdfwatermarkremover.com/buy.htm

Module 3 Network Layer

attached routers) throughout the Internet, so that multicast datagrams are routed to

their final destinations.

• This latter functionality is accomplished by network-layer multicast routing

algorithms.

• Network-layer multicast in the Internet thus consists of two complementary

components: IGMP and multicast routing protocols.

• IGMP has only three message types. Like ICMP, IGMP messages are carried

(encapsulated) within an IP datagram, with an IP protocol number of 2.

• The membership_query message is sent by a router to all hosts on an attached

interface (for example, to all hosts on a local area network) to determine the set of all

multicast groups that have been joined by the hosts on that interface.

• Hosts respond to a membership_query message with an IGMP membership_report

message. membership_report messages can also be generated by a host when an

application first joins a multicast group without waiting for a membership_query

message from the router.

• The final type of IGMP message is the leave_group message. This message is

optional. But if it is optional, how does a router detect when a host leaves the

multicast group? The answer to this question is that the router infers that a host is no

longer in the multicast group if it no longer responds to a membership_query message

with the given group address. This is an example of what is sometimes called soft

state in an Internet protocol.

• In a softstate protocol, the state (in this case of IGMP, the fact that there are hosts

joined to a given multicast group) is removed via a timeout event (in this case, via a

periodic membership_query message from the router) if it is not explicitly refreshed

(in this case, by a membership_report message from an attached host).

• The term soft state was coined by Clark [Clark 1988], who described the notion of

periodic state refresh messages being sent by an end system, and suggested that with

such refresh messages, state could be lost in a crash and then automatically restored

by subsequent refresh messages—all transparently to the end system and without

invoking any explicit crash-recovery procedures

• It has been argued that soft-state protocols result in simpler control than hardstate

protocols, which not only require state to be explicitly added and removed, but also

require mechanisms to recover from the situation where the entity responsible for

removing state has

terminated

prematurely or failed.

Multicast Routing

Algorithms

The multicast routing

problem is illustrated in

Figure 4.49.

• Hosts joined to the

multicast group are

shaded in color; their

Page 65

Module 3 Network Layer

66

immediately attached router is also shaded in color.

• As shown in Figure 4.49, only a subset of routers (those with attached hosts that are

joined to the multicast group) actually needs to receive the multicast traffic.

• In Figure 4.49, only routers A, B, E, and F need to receive the multicast traffic.

• Since none of the hosts attached to router D are joined to the multicast group and

since router C has no attached hosts, neither C nor D needs to receive the multicast

group traffic.

• The goal of multicast routing, then, is to find a tree of links that connects all of the

routers that have attached hosts belonging to the multicast group. Multicast packets

will then be routed along this tree from the sender to all of the hosts belonging to the

multicast tree.

• Of course, the tree may contain routers that do not have attached hosts belonging to

the multicast group. Two approaches have been adopted for determining the multicast

routing tree. The two approaches differ according to whether a single group-shared

tree is used to distribute the traffic for all senders in the group, or whether a source-

specific routing tree is constructed for each individual sender.

• Multicast routing using a group-shared tree.

▪ As in the case of spanning-tree broadcast, multicast routing over a group-

shared tree is based on building a tree that includes all edge routers with

attached hosts belonging to the multicast group.

▪ In practice, a center-based approach is used to construct the multicast routing

tree, with edge routers with attached hosts belonging to the multicast group

sending (via unicast) join messages addressed to the center node.

▪ As in the broadcast case, a join message is forwarded using unicast routing

toward the center until it either arrives at a router that already belongs to the

multicast tree or arrives at the center.

▪ All routers along the path that the join message follows will then forward

received multicast packets to the edge router that initiated the multicast join.

▪ Acritical question for center-based tree multicast routing is the process used

to select the center.

• Multicast routing using a source-based tree.

▪ While group-shared tree multicast routing constructs a single, shared routing

tree to route packets from all senders, the second approach constructs a

multicast routing tree for each source in the multicast group.

▪ In practice, an RPF algorithm (with source node x) is used to construct a

multicast forwarding tree for multicast datagrams originating at source x.

▪ The RPF broadcast algorithm we studied earlier requires a bit of tweaking for

use in multicast.

▪ Consider router D in Figure 4.50. Under broadcast RPF, it would forward

packets to router G, even though router G has no attached hosts that are joined

to the multicast group. While this is not so bad for this case where D has only

a single downstream router, G, imagine what would happen if there were

thousands of routers downstream from D! Each of these thousands of routers

would receive unwanted multicast packets.

Module 3 Network Layer

67

▪ The solution to the problem of receiving unwanted multicast packets under

RPF is known as pruning. A multicast router that receives multicast packets

and has no attached hosts joined to that group will send a prune message to its

upstream router. If a router receives prune messages from each of its

downstream routers, then it can forward a prune message upstream.

Multicast Routing in the Internet

The first multicast routing protocol used in the Internet was the Distance-Vector Multicast

Routing Protocol (DVMRP).

▪ DVMRP implements source-based trees with reverse path forwarding and pruning.

▪ DVMRP uses an RPF algorithm with pruning, as discussed above.

▪ Perhaps the most widely used Internet multicast routing protocol is the Protocol-

Independent Multicast (PIM) routing protocol, which explicitly recognizes two

multicast distribution scenarios.

▪ In dense mode [RFC 3973], multicast group members are densely located; that is,

many or most of the routers in the area need to be involved in routing multicast

datagrams. PIM dense mode is a flood-and-prune reverse path forwarding technique

similar in spirit to DVMRP.

▪ In sparse mode [RFC 4601], the number of routers with attached group members is

small with respect to the total number of routers; group members are widely

dispersed. PIM sparse mode uses rendezvous points to set up the multicast

distribution tree.

▪ In source-specific multicast (SSM) [RFC 3569, RFC 4607], only a single sender is

allowed to send traffic into the multicast tree, considerably simplifying tree

construction and maintenance.

▪ When PIM and DVMP are used within a domain, the network operator can configure

IP multicast routers within the domain, in much the same way that intradomain

unicast routing protocols such as RIP, IS-IS, and OSPF can be configured. But what

happens when multicast routes are needed between different domains? Is there a

multicast equivalent of the inter-domain BGP protocol?

▪ The answer is (literally) yes. [RFC 4271] defines multiprotocol extensions to BGP to

allow it to carry routing information for other protocols, including multicast

information.

▪ The Multicast Source Discovery Protocol (MSDP) [RFC 3618, RFC 4611] can be

used to connect together rendezvous points in different PIM sparse mode domains.

Computer Networks & Security
Module 4: Network Security

Page 1

Network Security

Overview of Network Security

• Network security is required by the users to communicate on the network.

• If medium is insecure then an intruder may intercept, read and modify the transmitted-data

from sender to receiver.

Elements of Network Security

1) Confidentiality: Information should be available only to those who have rightful access to it

2) Authenticity and integrity: The sender of a message and the message itself should be

verified at the receiving-point

(a) Message content and sender identity falsified by intruder; (b) a method of applied security

• In figure a, user 1 sends a message ("i am user 1") to user 2. Since the network lacks any

security system, an intruder can receive the message and change its content to a different

message ("hi i am user 1") and send it to user 2. User 2 may not know that this falsified

message is really from user 1(authentication).

• In figure 10.1b, a security block is added to each side of the communication, and a secret key

that only users 1 and 2 would know about is included. Therefore, the message is changed to a

form that cannot be altered by the intruder.

Threats To Network Security

Internet infrastructure attacks are broadly classified into 4 categories

1) DNS hacking

Computer Networks & Security
Module 4: Network Security

Page 2

2) Routing table poisoning

3) Packet mistreatment

4) Denial of Service (DOS)

DNS HACKING ATTACKS

• DNS server is a distributed hierarchical and global directory that translates domain names

into numerical IP address.

• DNS is a critical infrastructure, and all hosts contact DNS to access servers and start

connections.

• Name-resolution services in the modern Internet environment are essential for email

transmission, navigation to web sites, or data transfer. Thus, an attack on DNS can

potentially affect a large portion of the Internet.

• A DNS hacking attack can appear in any of the following forms

1) Masquerading Attack: The attacker poses as a trusted entity and obtains all the secret

information. The attacker can stop any message from being transmitted further or can

change the content or redirect the packet to bogus servers. This action is also known as a

middle-man attack.

2) Domain Highjacking Attack: Whenever a user enters a domain address, he is forced to

enter into the attacker's Web site.

3) Information Leakage Attack: The attacker sends a query to all hosts identifies which IP

addresses are not used and uses those IP address to make other types of attacks

4) Information-Level Attack(Cache Poisoning): This forces a server to correspond with

other than the correct answer. The hacker tricks a remote name-servers into caching the

answer for a third-party domain by providing malicious information and redirects traffic

to a preselected site.

ROUTING TABLE POISONING

• This is the undesired modification of routing tables. This results in a lower throughput of the

network.

• Two types of attacks are: i) link attack and ii)router attack.

Computer Networks & Security
Module 4: Network Security

Page 3

Link Attack

• Link attack occurs when a hacker gets access to a link and thereby intercepts, interrupts or

modifies routing messages. This act similarly on both the link-state and the distance-vector

protocols.

• If an attacker succeeds in placing an attack in a link-state routing protocol, a router may send

incorrect updates about its neighbors or remain silent even if the link state of its neighbor has

changed

Router Attack

• Router Attack may affect the link-state protocol or even the distance-vector protocol.

• In link-state protocol, if routers are attacked, they become malicious. As a result, routers may

add a non existing link to a routing table delete an existing link or change the cost of a link.

• In the distance-vector protocol, an attacker may cause routers to send wrong updates about

any node in the network, thereby misleading a router and resulting in network problems.

PACKET MISTREATMENT ATTACKS

• Packet mistreatment attacks can occur during any data transmission.

• A hacker may capture certain data packets and mistreat them.

• The attack may result in congestion lowering throughput & DOS attacks

• Link-attack causes interruption, modification or replication of data packets. Whereas, a

router-attack can misroute all packets and may result in congestion or DOS

Following are some examples:

1) Interruption: If an attacker intercepts packets, they may not be allowed to be propagated to

their destinations.

2) Modification: Attackers may succeed in accessing the content of a packet. They can then

change the address of the packet or change the data of the packet. This kind of attack can be

detected by digital signature mechanism.

3) Replication: An attacker may trap a packet and duplicate it. This kind of attack can be

detected by using the sequence number for each packet.

4) Malicious Misrouting of Packets: A hacker may attack a router and change its routing table,

resulting in misrouting of data packets.

Computer Networks & Security
Module 4: Network Security

Page 4

5) Ping of death: An attacker may send a ping message, which is large and therefore must be

fragmented for transport. The receiver then starts to reassemble the fragments as the ping

fragments arrive. The total packet length becomes too large and might cause a system crash.

DOS ATTACKS (DENIAL OF SERVICE)

• DOS is a type of security breach that prohibits a user from accessing normally provided

services.

• DOS can cost the target person a large amount of time and money.

• DOSaffects the destination rather than a data-packet or router.

• They take important servers out of action for few hours, thereby denying service to all users.

Two types of attacks are:

1) Single-source: An attacker sends a large number of packets to a target system to

overwhelm & disable it

2) Distributed: A large number of hosts are used to flood unwanted traffic to a single target.

The target cannot then be accessible to other users in the network.

Overview of Security Methods

Common solutions that can protect computer communication networks from attacks are

classified are cryptographic techniques or authentication techniques(verification).

Cryptographic Techniques

• Cryptography is the process of transforming a piece of information or message shared by two

parties into some sort of code.

• The message is scrambled before transmission so that it is undetectable by outside watchers.

• The scrambled-message needs to be decoded at the receiving-end before any further

processing.

• The main tool used to encrypt a message M is a secret-key K.

• The fundamental operation used to encrypt a message is the exclusive-OR().

• Assume that we have one-bit M and a secret-bit K. A simple encryption is carried out using

M K.

Computer Networks & Security
Module 4: Network Security

Page 5

• To decrypt this message, the second party can detect M by performing the following

operation: (M K) K = M

• In end-to-end encryption, secret coding is carried out at both end systems. In link encryption,

all the traffic passing over that link is secured.

• Two types of encryption techniques are secret-key & public-key encryption

1) In secret-key model, both sender & receiver conventionally use same key for an

encryption process.

2) In public-key model, a sender and a receiver each use a different key.

• The public-key system is more powerful than the secret key system & provides better

security and message privacy.

Drawbacks of public-key system: slow speed and more complex computationally

Authentication Techniques

Encryption methods offer the assurance of message confidentiality. A networking-system must

be able to verify the authenticity of the message and the sender of the message. These forms of

security techniques are known as authentication techniques.

Authentication techniques are categorized as

i) authentication with message digest

ii) authentication with digital signature.

Computer Networks & Security
Module 4: Network Security

Page 6

Secret Key Encryption Protocols

• This is also called as symmetric encryption or single-key encryption.

• Sender and receiver conventionally use the same key for an encryption process.

• This consist of an encryption-algorithm, a key and a decryption-algorithm

• The encrypted-message is called cipher text.

• Two popular protocols are:

1) DES (Data Encryption Standard)

2) AES (Advanced Encryption Standard)

• A shared secret-key between a transmitter and a receiver is assigned at the transmitter and

receiver points.

• At the receiving end, the encrypted information can be transformed back to the original data

by using decryption algorithm and secret key.

DES (Data Encryption Standard)

• Plaintext messages are converted into 64-bit blocks & each block is encrypted using a key.

• The key length is 56 bits.

• DES consists of 16 identical rounds of an operation.

Begin DES Algorithm

1) Initialize. Before round 1 begins, all 64 bits of the message and all 56 bits of the secret key

are separately permuted (shuffled).

Computer Networks & Security
Module 4: Network Security

Page 7

2) Each incoming 64-bit message is broken into two 32-bit halves denoted by Li and Ri

respectively.

3) The 56 bits of the key are also broken into two 28-halves, and each half is rotated one or two

bit positions, depending on the round.

4) All 56 bits of the key are permuted, producing version ki of the key on round i.

5) Li and Ri are determined by

Li = Ri-1

and

Ri = Li-1 F(Ri-1,ki)

6) All 64 bits of a message are permuted.

Operation of function F()

• Out of 56 bits of key ki, function F() chooses 48 bits.

• The 32-bit R i - 1 is expanded from 32 bits to 48 bits so that it can be combined with 48-bit k i .

The expansion of R i - 1 is carried out by first breaking R i - 1 into eight 4-bit chunks and then

expanding each chunk by copying the leftmost bit and the rightmost bit from left and right

adjacent chunks , respectively.

• F() also partitions the 48 bits of ki into eight 6-bit chunks.

• The corresponding eight chunks of Ri-1 and eight chunks of kiare combined as follows

Ri-1 = Ri-1 ki

AES (Advanced Encryption Standard)

• AES has better security strength than DES.

• In AES message is divided into 128-bit block, and it uses 128 or 192 or 256 bit key.

• Based on the key size number of rounds can be 10,12 or 14.

• The plaintext is formed as 16 bytes m0 through m15 and is fed into round 1 after an

initialization stage.

• In this round, substitute-units(S) perform a byte-by-byte substitution of blocks.

• The ciphers move through a permutation-stage to shift rows to mix-columns.

• At the end of this round, all 16 blocks of ciphers are Exclusive-ORed with the 16 bytes of

round 1 key k0(1) through k15(1).

Computer Networks & Security
Module 4: Network Security

Page 8

Public Key Encryption Protocols

• This is also called as asymmetric or two key encryption.

• A sender/receiver pair use different keys.

• This is based on mathematical functions rather than on substitution or permutation.

• Two popular protocols are:

i) RSA protocol

ii) Diffie-Hillman key-exchange protocol.

• Either of the two related keys can be used for encryption; the other one for decryption.

• Each system publishes its encryption key by placing it in a public-register & sorts out key as

public one. The companion key is kept private.

• If A wishes to send a message to B, A encrypts the message by using B's public key.

• At receiving end, B decrypts the message by using its private key.

• No other recipients can decrypt the message, since only B knows its private key.

• The public-key system is more powerful than the secret key system & provides better

• Drawbacks of public-key system:

o slow speed

o more complex computationally

RSA ALGORITHM

• Assume that a plaintext m must be encrypted to a cipher text c.

• This has three phases: key generation, encryption and decryption.

Computer Networks & Security
Module 4: Network Security

Page 9

Key Generation Algorithm

1) Choose two prime numbers a and b and compute n=a.b

2) Find x. Select encryption-key x such that x and (a-1)(b-1) are relatively prime.

3) Find y. Calculate decryption-key y.

xy mod (a-1)(b-1) = 1

4) At this point, a and b can be discarded.

5) The public key = {x, n}

6) The private key = {y, n}

Encryption

1) Both sender and receiver must know the value of n.

2) The sender knows the value of x and only the receiver knows the value of y.

3) Ciphertext c is constructed by

c=mx mod n

Decryption

Given the ciphertext c, the plaintext m is extracted by

m=cy mod n.

DIFFIE-HILLMAN KEY-EXCHANGE PROTOCOL

• Two end users can agree on a shared secret-code without any information shared in advance.

• This protocol is normally used for VPN (virtual private network).

• Assume that user-1 wishes to communicate with user-2.

Key Generation Algorithm

1) User-1 selects a prime number 'a', random integer number 'x1', and a generator 'g'. Then

creates 'y1' such that

y1 = gx1 mod a

2) User-2 performs the same function and creates y2 such that

y2 = gx2 mod a

3) User-1 then sends y1 to user-2. Now, user-1 forms its key k1 using the information its partner

sent as

k1 = y2
x1 mod a

4) User-2 forms its key ka using the information its partner send it as

Computer Networks & Security
Module 4: Network Security

Page 10

k2 = y1
x2 mod a

5) The two keys k1 and k2 are equal. The two users can now encrypt their messages, each using

its own key

AUTHENTICATION

• Message-authentication verifies the authenticity of both the message-sender and themessage-

content.

• Message-sender is authenticated through implementation of a digital signature.

• Message-content is authenticated through implementation of a hash function and encryption

of the resulting message-digest.

• Hash-function is used to produce a "fingerprint" of a message.

• The hash-value is added at the end of message before transmission.

• The receiver re-computes the hash-value from the received message and compares it to the

received hash value.

• If the two hash-values are the same, the message was not altered during transmission.

• Once a hash-function is applied on a message m, the result is known as a message-digest

h(m).

• The hash-function has the following properties

1) Unlike the encryption-algorithm, the authentication algorithm is not required to be

reversible.

2) Given a message-digest h(m),it is computationally infeasible to find m.

3) This is computationally infeasible to find two different messages m1 and m2 such that

h(m1)=h(m2).

• Message-authentication can be implemented by two methods.

1) In first method, a hash-function is applied on a message and then a process of encryption is

implemented. At the receiver site, the received message-digest is decrypted and the comparison

is made between the decrypted h(m) and the message-digest made locally from the received

message. compare it with the one made locally at its site for any judgments on the integrity of the

message.

Computer Networks & Security
Module 4: Network Security

Page 11

2) In second method, no encryption is involved. The two parties share a secret key. Hence, at the

receiving site, the comparison is made between the received h(m) and the message-digest made

locally from the received message.

Secure Hash Algorithm (SHA)

• The Secure Hash Algorithm (SHA) was proposed as part of the digital signature standard.

SHA-1, the first version of this standard, takes messages with a maximum length of 2 24 and

produces a 160-bit digest.

• With this algorithm, SHA-1 uses five registers, R 1 through R 5 , to maintain a "state" of 20

bytes.

• The first step is to pad a message m with length l m . The message length is forced to l m = 448

mod 512. In other words, the length of the padded message becomes 64 bits less than the

multiple of 512 bits.

• After padding, the second step is to expand each block of 512-bit (16 32 bits) words {m0, m1 ,

..., m15 } to words of 80 32 bits using:

And

where j means left rotation by j bits.

• Then, the 80 steps (i = 0, 1, 2, ..., 79) of the four rounds are described as follows

Computer Networks & Security
Module 4: Network Security

Page 12

Where C i is a constant value specified by the standard for round i .

The message digest is produced by concatenation of the values in R 1 through R 5.

Authentication and Digital Signature

• A digital signature on a message is required for the authentication and identification of the

right sender.

• RSA algorithm can be used to implement digital signature.

• The message is encrypted with the sender's private key. Thus, the entire encrypted message

serves as a digital signature.

• At the receiving end, the receiver can decrypt the message using the public key. This

authenticates that the packet comes from the right user.

Firewalls

• Firewall is placed between hosts of a certain network and the outside world.

• Firewall is used to protect the network from unwanted web sites and potential hackers.

• The main objective is to monitor and filter packets coming from unknown sources.

• Firewall can also be used to control data traffic.

• Firewall can be a software program or a hardware device.

1) Software firewalls can be installed in home computers by using an Internet connection

with gateways.

• 2) Hardware firewalls are more secure than software firewalls are not expensive.

Computer Networks & Security
Module 4: Network Security

Page 13

A firewall controls the flow of traffic by one of the following three methods:

1) Packet filtering: A firewall filters those packets that pass through. If packets can get

through the filter, they reach their destinations: otherwise, they are discarded

2) A firewall filters packets based on the source IP address. This filtering is helpful when a

host has to be protected from any unwanted external packets.

3) Denial of Service (DOS). This method controls the number of packets entering a

network.

Module – 5: Multimedia Networking

1

Module – 5

MULTIMEDIA NETWORKING

Multimedia Networking Applications

➔ Properties of Video

• Most salient characteristic of video is its high bit rate.

▪ Video distributed over the Internet typically ranges from 100 kbps for low-quality video

conferencing to over 3 Mbps for streaming high-definition movies.

▪ Video streaming consumes most bandwidth, having a bit rate of more than ten times

greater than that of the normal HTTP and music-streaming applications.

• Video can be compressed.

▪ A video is a sequence of images, typically being displayed at a constant rate, for example,

at 24 or 30 images per second.

▪ An uncompressed, digitally encoded image consists of an array of pixels, with each pixel

encoded into a number of bits to represent luminance and color.

▪ There are two types of redundancy in video, both of which can be exploited by video

compression.

▪ Spatial redundancy is the redundancy within a given image. Intuitively, an image that

consists of mostly white space has a high degree of redundancy and can be efficiently

compressed without significantly sacrificing image quality.

▪ Temporal redundancy reflects repetition from image to subsequent image. If, for

example, an image and the subsequent image are exactly the same, there is no reason to

reencode the subsequent image; it is instead more efficient simply to indicate during

encoding that the subsequent image is exactly the same.

▪ We can also use compression to create multiple versions of the same video, each at a

different quality level. For example, we can use compression to create, say, three versions

of the same video, at rates of 300 kbps, 1 Mbps, and 3 Mbps.

➔ Properties of Audio

• Digital audio has significantly lower bandwidth requirements than video.

Module – 5: Multimedia Networking

2

• Analog audio can be converted to a digital signal using pulse code modulation with the

following steps:

▪ The analog audio signal is sampled at some fixed rate.

▪ Each of the samples is then rounded to one of a finite number of values. This operation is

referred to as quantization. The number of such finite values called quantization values.

▪ Each of the quantization values are encoded by representing with a fixed number of bits.

• PCM-encoded speech and music, however, are rarely used in the Internet. Instead, as with

video, compression techniques are used to reduce the bit rates of the stream.

• A popular compression technique for near CD-quality stereo music is MPEG 1 layer 3, more

commonly known as MP3.

• MP3 encoders can compress to many different rates; 128 kbps is the most common encoding

rate and produces very little sound degradation.

• As with video, multiple versions of a prerecorded audio stream can be created, each at a

different bit rate.

➔ Types of Multimedia Network Applications

Multimedia applications are classified into three broad categories:

(i) Streaming stored audio/video

(ii) Conversational voice/video-over-IP

(iii) Streaming live audio/video

1) Streaming Stored Audio and Video

• In this class of applications, the underlying medium is prerecorded video, such as a movie, a

television show, a prerecorded sporting event, or a prerecorded user generated video (such as

those commonly seen on YouTube).

• These prerecorded videos are placed on servers, and users send requests to the servers to

view the videos on demand.

• Many Internet companies today provide streaming video, including YouTube (Google),

Netflix, and Hulu.

• By some estimates, streaming stored video makes up over 50 percent of the downstream

traffic in the Internet access networks today.

Module – 5: Multimedia Networking

3

Streaming stored video has three key distinguishing features.

• Streaming: In a streaming stored video application, the client typically begins video

playout within a few seconds after it begins receiving the video from the server. This

means that the client will be playing out from one location in the video while at the same

time receiving later parts of the video from the server. This technique, known as

streaming, avoids having to download the entire video file before playout begins.

• Interactivity: Because the media is prerecorded, the user may pause, reposition forward,

reposition backward, fast-forward, and so on through the video content. The time from

when the user makes such a request until the action manifests itself at the client should be

less than a few seconds for acceptable responsiveness.

• Continuous playout: Once playout of the video begins, it should proceed according to

the original timing of the recording. Therefore, data must be received from the server in

time for its playout at the client; otherwise, users experience video frame freezing or

frame skipping.

2) Conversational Voice- and Video-over-IP

• Real-time conversational voice over the Internet is often referred to as Internet telephony. It

is also commonly called Voice-over-IP (VoIP).

• Conversational video is similar, except that it includes the video of the participants as well as

their voices.

• Most of today’s voice and video conversational systems allow users to create conferences

with three or more participants.

• Conversational voice and video are widely used in the Internet today, with the Internet

companies Skype, QQ, and Google Talk boasting hundreds of millions of daily users.

• Timing considerations and tolerance of data loss are important for conversational voice and

video applications.

• Timing considerations are important because audio and video conversational applications are

highly delay-sensitive. For a conversation with two or more interacting speakers, the delay

from when a user speaks or moves until the action is manifested at the other end should be

less than a few hundred milliseconds.

Module – 5: Multimedia Networking

4

• On the other hand, conversational multimedia applications are loss-tolerant— occasional loss

only causes occasional glitches in audio/video playback, and these losses can often be

partially or fully concealed.

3) Streaming Live Audio and Video

• This third class of applications is similar to traditional broadcast radio and television, except

that transmission takes place over the Internet.

• These applications allow a user to receive a live radio or television transmission—such as a

live sporting event or an ongoing news event—transmitted from any corner of the world.

• Today, thousands of radio and television stations around the world are broadcasting content

over the Internet.

• Live, broadcast-like applications often have many users who receive the same audio/video

program at the same time.

• Although the distribution of live audio/video to many receivers can be efficiently

accomplished using the IP multicasting techniques, multicast distribution is more often

accomplished today via application-layer multicast (using P2P networks or CDNs) or

through multiple separate unicast streams.

• As with streaming stored multimedia, the network must provide each live multimedia flow

with an average throughput that is larger than the video consumption rate. Because the event

is live, delay can also be an issue, although the timing constraints are much less stringent

than those for conversational voice.

Streaming Stored Video

• For streaming video applications, prerecorded videos are placed on servers, and users send

requests to these servers to view the videos on demand.

• The user may watch the video from beginning to end without interruption, may stop

watching the video well before it ends, or interact with the video by pausing or repositioning

to a future or past scene.

• Streaming video systems can be classified into three categories:

1. UDP streaming

Module – 5: Multimedia Networking

5

2. HTTP streaming

3. Adaptive HTTP streaming.

• A common characteristic of all three forms of video streaming is the extensive use of client-

side application buffering to mitigate the effects of varying end-to-end delays and varying

amounts of available bandwidth between server and client.

• When the video starts to arrive at the client, the client need not immediately begin playout,

but can instead build up a reserve of video in an application buffer. Once the client has built

up a reserve of several seconds of buffered-but-not-yet-played video, the client can then

begin video playout.

• There are two important advantages provided by such client buffering. First, client side

buffering can absorb variations in server-to-client delay. Second, if the server-to-client

bandwidth briefly drops below the video consumption rate, a use can continue to enjoy

continuous playback, again as long as the client application buffer does not become

completely drained.

➔ UDP Streaming

• With UDP streaming, the server transmits video at a rate that matches the client’s video

consumption rate by clocking out the video chunks over UDP at a steady rate.

• For example, if the video consumption rate is 2 Mbps and each UDP packet carries 8,000 bits

of video, then the server would transmit one UDP packet into its socket every (8000 bits)/(2

Mbps) = 4 msec.

• UDP does not employ a congestion-control mechanism, the server can push packets into the

network at the consumption rate of the video without the rate-control restrictions of TCP.

• Before passing the video chunks to UDP, the server will encapsulate the video chunks within

transport packets specially designed for transporting audio and video, using the Real-Time

Transport Protocol (RTP).

• The client and server also maintain, in parallel, a separate control connection over which the

client sends commands regarding session state changes (such as pause, resume, reposition,

Module – 5: Multimedia Networking

6

and so on). The Real-Time Streaming Protocol is a popular open protocol for such a control

connection.

Limitation:

• Due to the unpredictable and varying amount of available bandwidth between server and

client, constant-rate UDP streaming can fail to provide continuous playout.

• It requires a media control server, such as an RTSP server, to process client-to-server

interactivity requests and to track client state for each ongoing client session.

• Many firewalls are configured to block UDP traffic, preventing the users behind these

firewalls from receiving UDP video.

➔ HTTP Streaming

• In HTTP streaming, the video is simply stored in an HTTP server as an ordinary file with a

specific URL.

• When a user wants to see the video, the client establishes a TCP connection with the server

and issues an HTTP GET request for that URL.

• The server then sends the video file, within an HTTP response message, as quickly as

possible, that is, as quickly as TCP congestion control and flow control will allow.

• On the client side, the bytes are collected in a client application buffer. Once the number of

bytes in this buffer exceeds a predetermined threshold, the client application begins

playback—specifically, it periodically grabs video frames from the client application buffer,

decompresses the frames, and displays them on the user’s screen.

Advantages:

• The use of HTTP over TCP also allows the video to traverse firewalls and NATs more easily.

• Streaming over HTTP also obviates the need for a media control server, such as an RTSP

server, reducing the cost of a large-scale deployment over the Internet.

Limitation and solution:

When transferring a file over TCP, the server-to client transmission rate can vary significantly

due to TCP’s congestion control mechanism. Packets can also be significantly delayed due to

Module – 5: Multimedia Networking

7

TCP’s retransmission mechanism. Because of these characteristics of TCP, it was believed that

video streaming would never work well over TCP. Over time, however, designers of streaming

video systems learned that TCP’s congestion control and reliable-data transfer mechanisms do

not necessarily preclude continuous playout when client buffering and prefetching are used.

Prefetching Video:

The client can attempt to download the video at a rate higher than the consumption rate, thereby

prefetching video frames that are to be consumed in the future. This prefetched video is naturally

stored in the client application buffer.

Client Application Buffer and TCP Buffers:

• Here TCP send buffer is shown to be full, the server is momentarily prevented from sending

more bytes from the video file into the socket.

• On the client side, the client application reads bytes from the TCP receive buffer and places

the bytes into the client application buffer.

• At the same time, the client application periodically grabs video frames from the client

application buffer, decompresses the frames, and displays them on the user’s screen.

• Consider now what happens when the user pauses the video during the streaming process.

During the pause period, bits are not removed from the client application buffer, even though

bits continue to enter the buffer from the server. If the client application buffer is finite, it

may eventually become full, which will cause “back pressure” all the way back to the server.

Module – 5: Multimedia Networking

8

Analysis of Video Streaming:

• Let B denote the size (in bits) of the client’s application buffer, and let Q denote the number

of bits that must be buffered before the client application begins playout.

• Let r denote the video consumption rate—the rate at which the client draws bits out of the

client application buffer during playback.

• Let’s assume that the server sends bits at a constant rate x whenever the client buffer is not

full.

• If x < r (that is, if the server send rate is less than the video consumption rate), then the client

buffer will never become full.

• When the available rate in the network is more than the video rate, after the initial buffering

delay, the user will enjoy continuous playout until the video ends.

Early Termination and Repositioning the Video:

➔ HTTP streaming systems often make use of the HTTP byte-range header in the HTTP GET

request message, which specifies the specific range of bytes the client currently wants to

retrieve from the desired video.

➔ This is particularly useful when the user wants to reposition (that is, jump) to a future point in

time in the video.

➔ When the user repositions to a new position, the client sends a new HTTP request, indicating

with the byte-range header from which byte in the file should the server send data.

➔ When the server receives the new HTTP request, it can forget about any earlier request and

instead send bytes beginning with the byte indicated in the byterange request.

Module – 5: Multimedia Networking

9

➔ Adaptive Streaming and DASH

Shortcoming of HTTP Streaming:

All clients receive the same encoding of the video, despite the large variations in the amount of

bandwidth available to a client, both across different clients and also over time for the same

client.

Solution: DASH

• In DASH - Dynamic Adaptive Streaming over HTTP, the video is encoded into several

different versions, with each version having a different bit rate and, correspondingly, a

different quality level. The client dynamically requests chunks of video segments of a few

seconds in length from the different versions.

• With DASH, each video version is stored in the HTTP server, each with a different URL.

• The HTTP server also has a manifest file, which provides a URL for each version along with

its bit rate.

• The client first requests the manifest file and learns about the various versions.

• The client then selects one chunk at a time by specifying a URL and a byte range in an HTTP

GET request message for each chunk.

• While downloading chunks, the client also measures the received bandwidth and runs a rate

determination algorithm to select the chunk to request next.

• Naturally, if the client has a lot of video buffered and if the measured receive bandwidth is

high, it will choose a chunk from a high-rate version. And naturally if the client has little

video buffered and the measured received bandwidth is low, it will choose a chunk from a

low-rate version.

• By dynamically monitoring the available bandwidth and client buffer level, and adjusting the

transmission rate with version switching, DASH can often achieve continuous playout at the

best possible quality level without frame freezing or skipping.

Content Distribution Networks

• Streaming stored video to locations all over the world while providing continuous playout

and high interactivity is clearly a challenging task.

Module – 5: Multimedia Networking

10

• For an Internet video company, the most straightforward approach to providing streaming

video service is to build a single massive data center which stores all of its videos in the data

center, and stream the videos directly from the data center to clients worldwide.

• But this approach faces some problems:

▪ Single massive date center is single point of failure

▪ It leads long path to distant clients

▪ It may create network congestion.

▪ Popular video will likely be sent many times over the same communication links. Not

only does this waste network bandwidth, but the Internet video company itself will be

paying its provider ISP (connected to the data center) for sending the same bytes into the

Internet over and over again.

• In order to meet the challenge of distributing massive amounts of video data to users

distributed around the world, almost all major video-streaming companies make use of

Content Distribution Networks (CDNs).

• A CDN manages servers in multiple geographically distributed locations, stores copies of the

videos (and other types of Web content, including documents, images, and audio) in its

servers, and attempts to direct each user request to a CDN location that will provide the best

user experience.

• The CDN may be a private CDN,that is, owned by the content provider itself; for example,

Google’s CDN distributes YouTube videos and other types of content.

• The CDN may alternatively be a third-party CDN that distributes content on behalf of

multiple content providers; for example, Akamai’s CDN is a third party CDN that distributes

Netflix and Hulu content, among others.

• CDNs typically adopt one of two different server placement philosophies:

▪ Enter Deep: One philosophy, pioneered by Akamai, is to enter deep into the access

networks of Internet Service Providers, by deploying server clusters in access ISPs all

over the world. The goal is to get close to end users, thereby improving user-perceived

delay and throughput by decreasing the number of links and routers between the end user

and the CDN cluster from which it receives content.

▪ Bring Home: A second design philosophy, taken by Limelight and many other CDN

companies, is to bring the ISPs home by building large clusters at a smaller number (for

Module – 5: Multimedia Networking

11

example, tens) of key locations and connecting these clusters using a private high-speed

network. Instead of getting inside the access ISPs, these CDNs typically place each

cluster at a location that is simultaneously near the PoPs of many tier-1 ISPs

➔ CDN Operation

When a browser in a user’s host is instructed to retrieve a specific video (identified by a URL),

the CDN must intercept the request so that it can

(1) Determine a suitable CDN server cluster for that client at that time.

(2) Redirect the client’s request to a server in that cluster.

1. The user visits the Web page at NetCinema.

2. When the user clicks on the link http://video.netcinema.com/6Y7B23V, the user’s host sends

a DNS query for video.netcinema.com.

3. The user’s Local DNS Server (LDNS) relays the DNS query to an authoritative DNS server

for NetCinema, which observes the string “video” in the hostname video.netcinema.com. To

“hand over” the DNS query to KingCDN, instead of returning an IP address, the NetCinema

authoritative DNS server returns to the LDNS a hostname in the KingCDN’s domain, for

example, a1105.kingcdn.com.

4. From this point on, the DNS query enters into KingCDN’s private DNS infrastructure. The

user’s LDNS then sends a second query, now for a1105.kingcdn.com, and KingCDN’s DNS

system eventually returns the IP addresses of a KingCDN content server to the LDNS. It is

http://video.netcinema.com/6Y7B23V

Module – 5: Multimedia Networking

12

thus here, within the KingCDN’s DNS system, that the CDN server from which the client

will receive its content is specified.

5. The LDNS forwards the IP address of the content-serving CDN node to the user’s host.

6. Once the client receives the IP address for a KingCDN content server, it establishes a direct

TCP connection with the server at that IP address and issues an HTTP GET request for the

video. If DASH is used, the server will first send to the client a manifest file with a list of

URLs, one for each version of the video, and the client will dynamically select chunks from

the different versions.

➔ Cluster Selection Strategies

• Cluster Selection Strategies is a mechanism for dynamically directing clients to a server

cluster or a data center within the CDN.

• The CDN learns the IP address of the client’s LDNS server via the client’s DNS lookup.

After learning this IP address, the CDN needs to select an appropriate cluster based on this IP

address.

• One simple strategy is to assign the client to the cluster that is geographically closest. Using

commercial geo-location databases each LDNS IP address is mapped to a geographic

location. When a DNS request is received from a particular LDNS, the CDN chooses the

geographically closest cluster.

• For some clients, the solution may perform poorly, since the geographically closest cluster

may not be the closest cluster along the network path.

• In order to determine the best cluster for a client based on the current traffic conditions,

CDNs can instead perform periodic real-time measurements of delay and loss performance

between their clusters and clients.

• An alternative to sending extraneous traffic for measuring path properties is to use the

characteristics of recent and ongoing traffic between the clients and CDN servers.

• Such solutions, however, require redirecting clients to (possibly) suboptimal clusters from

time to time in order to measure the properties of paths to these clusters.

• A very different approach to matching clients with CDN servers is to use IP anycast. The

idea behind IP anycast is to have the routers in the Internet route the client’s packets to the

“closest” cluster, as determined by BGP.

Module – 5: Multimedia Networking

13

• During the IP-anycast configuration stage, the CDN company assigns the same IP address to

each of its clusters, and uses standard BGP to advertise this IP address from each of the

different cluster locations.

• When a BGP router receives multiple route advertisements for this same IP address, it treats

these advertisements as providing different paths to the same physical location.

• Following standard operating procedures, the BGP router will then pick the “best” route to

the IP address according to its local route selection mechanism.

• After this initial configuration phase, the CDN can do its main job of distributing content.

When any client wants to see any video, the CDN’s DNS returns the anycast address, no

matter where the client is located.

• When the client sends a packet to that IP address, the packet is routed to the “closest” cluster

as determined by the preconfigured forwarding tables, which were configured with BGP.

➔ Case Studies: Netflix, YouTube, and Kankan

Netflix

• Netflix is the leading service provider for online movies and TV shows in the United States.

• In order to rapidly deploy its large-scale service, Netflix has made extensive use of third-

party cloud services and CDNs. Indeed, Netflix is an interesting example of a company

Module – 5: Multimedia Networking

14

deploying a large-scale online service by renting servers, bandwidth, storage, and database

services from third parties while using hardly any infrastructure of its own.

• Basic Architecture:

• Netflix has four major components: the registration and payment servers, the Amazon cloud,

multiple CDN providers, and clients.

• In its own hardware infrastructure, Netflix maintains registration and payment servers, which

handle registration of new accounts and capture credit-card payment information.

• Netflix runs its online service by employing machines (or virtual machines) in the Amazon

cloud. Some of the functions taking place in the Amazon cloud include:

▪ Content ingestion: Before Netflix can distribute a movie to its customers, it must first

ingest and process the movie. Netflix receives studio master versions of movies and

uploads them to hosts in the Amazon cloud.

▪ Content processing: The machines in the Amazon cloud create many different formats

for each movie, suitable for a diverse array of client video players running on desktop

computers, smartphones, and game consoles connected to televisions. A different version

is created for each of these formats and at multiple bit rates, allowing for adaptive

streaming over HTTP using DASH.

Module – 5: Multimedia Networking

15

▪ Uploading versions to the CDNs: Once all of the versions of a movie have been created,

the hosts in the Amazon cloud upload the versions to the CDNs.

• The Web pages for browsing the Netflix video library are served from servers in the Amazon

cloud.

• When the user selects a movie to “Play Now,” the user’s client obtains a manifest file, also

from servers in the Amazon cloud. The manifest file includes a variety of information,

including a ranked list of CDNs and the URLs for the different versions of the movie, which

are used for DASH playback.

• The ranking of the CDNs is determined by Netflix, and may change from one streaming

session to the next.

• Typically the client will select the CDN that is ranked highest in the manifest file.

• After the client selects a CDN, the CDN leverages DNS to redirect the client to a specific

CDN server.

• The client and that CDN server then interact using DASH.

Youtube:

• With approximately half a billion videos in its library and half a billion video views per day,

YouTube is indisputably the world’s largest video-sharing site.

• YouTube began its service in April 2005 and was acquired by Google in November 2006.

• Google does not employ third-party CDNs but instead uses its own private CDN to distribute

• YouTube videos.

• Google has installed server clusters in many hundreds of different locations. From a subset of

about 50 of these locations, Google distributes YouTube video.

• Google uses DNS to redirect a customer request to a specific cluster.

• Most of the time,

• Google’s cluster selection strategy directs the client to the cluster for which the RTT between

client and cluster is the lowest; however, in order to balance the load across clusters,

sometimes the client is directed (via DNS) to a more distant cluster.

• If a cluster does not have the requested video, instead of fetching it from somewhere else and

relaying it to the client, the cluster may return an HTTP redirect message, thereby redirecting

the client to another cluster.

Module – 5: Multimedia Networking

16

• YouTube employs HTTP streaming. YouTube often makes a small number of different

versions available for a video, each with a different bit rate and corresponding quality level.

• YouTube processes each video it receives, converting it to a YouTube video format and

creating multiple versions at different bit rates. This processing takes place entirely within

Google data centers.

Kankan

• Kankan allows the service provider to significantly reduce its infrastructure and

bandwidth costs.

• This approach uses P2P delivery instead of client-server (via CDNs) delivery. P2P video

delivery is used with great success by several companies in China, including Kankan

(owned and operated by Xunlei), PPTV (formerly PPLive), and PPs (formerly PPstream).

• Kankan, currently the leading P2P-based video-on-demand provider in China, has over

20 million unique users viewing its videos every month.

• At a high level, P2P video streaming is very similar to BitTorrent file downloading.

• When a peer wants to see a video, it contacts a tracker (which may be centralized or peer-

based using a DHT) to discover other peers in the system that have a copy of that video.

• This peer then requests chunks of the video file in parallel from these other peers that

have the file.

• Different from downloading with BitTorrent, however, requests are preferentially made

for chunks that are to be played back in the near future in order to ensure continuous

playback.

• The Kankan design employs a tracker and its own DHT for tracking content.

Network Support for Multimedia

There exist three broad approaches towards providing network-level support for multimedia

applications.

Module – 5: Multimedia Networking

17

• Making the best of best-effort service: The application-level mechanisms and infrastructure

can be successfully used in a well-dimensioned network where packet loss and excessive end-

to-end delay rarely occur. When demand increases are forecasted, the ISPs deploy additional

bandwidth and switching capacity to continue to ensure satisfactory delay and packet-loss

performance.

• Differentiated service: With differentiated service, one type of traffic might be given strict

priority over another class of traffic when both types of traffic are queued at a router.

• Per-connection Quality-of-Service (QoS) Guarantees: With per-connection QoS

guarantees, each instance of an application explicitly reserves end-to-end bandwidth and thus

has a guaranteed end-to-end performance. A hard guarantee means the application will

receive its requested quality of service (QoS) with certainty. A soft guarantee means the

application will receive its requested quality of service with high probability.

➔ Dimensioning Best-Effort Networks

• A first approach to improving the quality of multimedia applications is through providing

enough link capacity throughout the network so that network congestion, and its consequent

Module – 5: Multimedia Networking

18

packet delay and loss, never (or only very rarely) occurs. With enough link capacity, packets

could zip through today’s Internet without queuing delay or loss.

• Challenges:

▪ The question of how much capacity to provide at network links in a given topology to

achieve a given level of performance is often known as bandwidth provisioning.

▪ The even more complicated problem of how to design a network topology (where to

place routers, how to interconnect routers with links, and what capacity to assign to links)

to achieve a given level of end-to-end performance is a network design problem often

referred to as network dimensioning.

➔ Providing Multiple Classes of Service

The simplest enhancement to the one-size-fits-all best-effort service in today’s Internet is to

divide traffic into classes, and provide different levels of service to these different classes of

traffic.

The type-of-service (ToS) field in the IPv4 header can be used for this purpose.

Motivating Scenarios

Here H1 and H3 are using audio application, H2 and H4 are using HTTP web application.

• In the best-effort Internet, the audio and HTTP packets are mixed in the output queue at R1

and (typically) transmitted in a first-in-first-out (FIFO) order.

Module – 5: Multimedia Networking

19

• In this scenario, a burst of packets from the Web server could potentially fill up the queue,

causing IP audio packets to be excessively delayed or lost due to buffer overflow at R1.

• Solution for this is differentiating traffic class and assigning suitable priority to it.

• Packet marking allows a router to distinguish among packets belonging to different classes

of traffic.

• Now suppose that the router is configured to give priority to packets marked as belonging to

the 1 Mbps audio application. Since the outgoing link speed is 1.5 Mbps, even though the

HTTP packets receive lower priority, they can still, on average, receive 0.5 Mbps of

transmission service. But if the audio application starts sending packets at a rate of 1.5 Mbps

or higher, the HTTP packets will starve, that is, they will not receive any service on the R1-

to-R2 link.

• Therefore it is desirable to provide a degree of traffic isolation among classes so that one

class is not adversely affected by another class of traffic that misbehaves.

• If a traffic class or flow must meet certain criteria, then a policing mechanism can be put into

place to ensure that these criteria are indeed observed. If the policed application misbehaves,

the policing mechanism will take some action so that the traffic actually entering the network

conforms to the criteria.

• A complementary approach for providing isolation among traffic classes is for the link-level

packet-scheduling mechanism to explicitly allocate a fixed amount of link bandwidth to each

class.

• While providing isolation among classes or flows, it is desirable to use resources (for

example, link bandwidth and buffers) as efficiently as possible.

➔ Scheduling Mechanisms

First-In-First-Out (FIFO)

The FIFO (also known as first-come-first-served, or FCFS) scheduling discipline selects packets

for link transmission in the same order in which they arrived at the output link queue.

Module – 5: Multimedia Networking

20

Priority Queuing

Under priority queuing, packets arriving at the output link are classified into priority classes at

the output queue.

Each priority class typically has its own queue. When choosing a packet to transmit, the priority

queuing discipline will transmit a packet from the highest priority class that has a nonempty

queue. The choice among packets in the same priority class is typically done in a FIFO manner.

Module – 5: Multimedia Networking

21

Round Robin

Under the round robin queuing discipline, packets are sorted into classes as with priority

queuing.

However, rather than there being a strict priority of service among classes, a round robin

scheduler alternates service among the classes.

In the simplest form of round robin scheduling, a class 1 packet is transmitted, followed by a

class 2 packet, followed by a class 1 packet, followed by a class 2 packet, and so on.

A work-conserving round robin discipline that looks for a packet of a given class but finds none

will immediately check the next class in the round robin sequence.

Weighted Fair Queuing (WFQ)

A generalized abstraction of round robin queuing that has found considerable use in QoS

architectures is weighted fair queuing (WFQ) discipline.

Here arriving packets are classified and queued in the appropriate per-class waiting area. As in

round robin scheduling, a WFQ scheduler will serve classes in a circular manner—first serving

class 1, then serving class 2, then serving class 3, and then (assuming there are three classes)

repeating the service pattern.

WFQ is also a work-conserving queuing discipline and thus will immediately move on to the

next class in the service sequence when it finds an empty class queue.

Module – 5: Multimedia Networking

22

➔ Policing: The Leaky Bucket

Three important policing criteria:

• Average rate: The network may wish to limit the long-term average rate (packets per time

interval) at which a flow’s packets can be sent into the network. A crucial issue here is the

interval of time over which the average rate will be policed.

• Peak rate: While the average-rate constraint limits the amount of traffic that can be sent into

the network over a relatively long period of time, a peak-rate constraint limits the maximum

number of packets that can be sent over a shorter period of time.

• Burst size: The network may also wish to limit the maximum number of packets (the “burst”

of packets) that can be sent into the network over an extremely short interval of time.

The leaky bucket mechanism is an abstraction that can be used to characterize these policing

limits.

• A leaky bucket consists of a bucket that can hold up to b tokens.

• Tokens are added to this bucket as follows. New tokens, which may potentially be added to

the bucket, are always being generated at a rate of r tokens per second.

• If the bucket is filled with less than b tokens when a token is generated, thenewly generated

token is added to the bucket; otherwise the newly generated token is ignored, and the token

bucket remains full with b tokens.

• Suppose that before a packet is transmitted into the network, it must first remove a token

from the token bucket. If the token bucket is empty, the packet must wait for a token.

Module – 5: Multimedia Networking

23

• Because there can be at most b tokens in the bucket, the maximum burst size for a leaky-

bucket policed flow is b packets. Furthermore, because the token generation rate is r, the

maximum number of packets that can enter the network of any interval of time of length t is

rt + b.

• Leaky Bucket + Weighted Fair Queuing = Provable Maximum Delay in a Queue

➔ Diffserv

Diffserv provides service differentiation—that is, the ability to handle different classes of traffic

in different ways within the Internet in a scalable manner.

The need for scalability arises from the fact that millions of simultaneous source-destination

traffic flows may be present at a backbone router.

The Diffserv architecture consists of two sets of functional elements:

1) Edge functions: packet classification and traffic conditioning. At the incoming edge of the

network arriving packets are marked. The mark that a packet receives identifies the class of

traffic to which it belongs. Different classes of traffic will then receive different service within

the core network.

2) Core function: forwarding. When a DS-marked packet arrives at a Diffserv capable router,

the packet is forwarded onto its next hop according to the so-called per-hop behavior (PHB)

associated with that packet’s class. The per-hop behavior influences how a router’s buffers and

link bandwidth are shared among the competing classes of traffic.

Module – 5: Multimedia Networking

24

• Packets arriving to the edge router are first classified. The classifier selects packets based on

the values of one or more packet header fields (for example, source address, destination

address, source port, destination port, and protocol ID) and steers the packet to the

appropriate marking function.

• In some cases, an end user may have agreed to limit its packet-sending rate to conform to a

declared traffic profile. The traffic profile might contain a limit on the peak rate, as well as

the burstiness of the packet flow.

• As long as the user sends packets into the network in a way that conforms to the negotiated

traffic profile, the packets receive their priority marking and are forwarded along their route

to the destination.

• On the other hand, if the traffic profile is violated, out-of-profile packets might be marked

differently, might be shaped (for example, delayed so that a maximum rate constraint would

be observed), or might be dropped at the network edge.

• The role of the metering function, is to compare the incoming packet flow with the

negotiated traffic profile and to determine whether a packet is within the negotiated traffic

profile.

• The second key component of the Diffserv architecture involves the per-hop behavior (PHB)

performed by Diffserv-capable routers. PHB is rather cryptically, but carefully, defined as “a

Module – 5: Multimedia Networking

25

description of the externally observable forwarding behavior of a Diffserv node applied to a

particular Diffserv behavior aggregate”.

• A PHB can result in different classes of traffic receiving different performance.

• The expedited forwarding PHB specifies that the departure rate of a class of traffic from a

router must equal or exceed a configured rate.

• The assured forwarding PHB divides traffic into four classes, where each AF class is

guaranteed to be provided with some minimum amount of bandwidth and buffering.

Per-Connection Quality-of-Service (QoS) Guarantees: Resource

Reservation and Call Admission

Consider two 1 Mbps audio applications transmitting their packets over the 1.5 Mbps link. The

combined data rate of the two flows (2 Mbps) exceeds the link capacity.

There is simply not enough bandwidth to accommodate the needs of both applications at the

same time. If the two applications equally share the bandwidth, each application would lose 25

percent of its transmitted packets.

Module – 5: Multimedia Networking

26

If sufficient resources will not always be available, and QoS is to be guaranteed, a call admission

process is needed in which flows declare their QoS requirements and are then either admitted to

the network (at the required QoS) or blocked from the network (if the required QoS cannot be

provided by the network).

The process of having a flow declare its QoS requirement, and then having the network either

accept the flow (at the required QoS) or block the flow is referred to as the call admission

process.

Resource reservation: The only way to guarantee that a call will have the resources (link

bandwidth, buffers) needed to meet its desired QoS is to explicitly allocate those resources to the

call—a process known in networking parlance as resource reservation. Once resources are

reserved, the call has on-demand access to these resources throughout its duration, regardless of

the demands of all other calls. If a call reserves and receives a guarantee of x Mbps of link

bandwidth, and never transmits at a rate greater than x, the call will see loss- and delay-free

performance.

Call admission: If resources are to be reserved, then the network must have a mechanism for

calls to request and reserve resources. Since resources are not infinite, a call making a call

admission request will be denied admission, that is, be blocked, if the requested resources are not

available. Such a call admission is performed by the telephone network—we request resources

when we dial a number. If the circuits (TDMA slots) needed to complete the call are available,

the circuits are allocated and the call is completed. If the circuits are not available, then the call is

blocked, and we receive a busy signal. A blocked call can try again to gain admission to the

network, but it is not allowed to send traffic into the network until it has successfully completed

the call admission process. Of course, a router that allocates link bandwidth should not allocate

more than is available at that link. Typically, a call may reserve only a fraction of the link’s

bandwidth, and so a router may allocate link bandwidth to more than one call. However, the sum

of the allocated bandwidth to all calls should be less than the link capacity if hard quality of

service guarantees are to be provided.

Call setup signaling: The call admission process described above requires that a call be able to

reserve sufficient resources at each and every network router on its source-to-destination path to

ensure that its end-to-end QoS requirement is met. Each router must determine the local

resources required by the session, consider the amounts of its resources that are already

Module – 5: Multimedia Networking

27

committed to other ongoing sessions, and determine whether it has sufficient resources to satisfy

the per-hop QoS requirement of the session at this router without violating local QoS guarantees

made to an already-admitted session. A signaling protocol is needed to coordinate these various

activities—the per-hop allocation of local resources, as well as the overall end-to-end decision of

whether or not the call has been able to reserve sufficient resources at each and every router on

the end-to-end path. The RSVP protocol was proposed for this purpose within an Internet

architecture for providing qualityof- service guarantees.

