

 Atria Institute of Technology
 Department of Information Science and Engineering

Bengaluru-560024

ACADEMIC YEAR: 2021-2022

ODD SEMESTER NOTES

Semester : 5th Semester

Subject Name

: Unix Programming

Subject Code

: 18CS56

Faculty Name

: Mrs. Kavitha Vasanth

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 1

Module-1

Introduction

Unix Components/Architecture

The success of UNIX, according to Thompson and Ritchie, “lies not so much in new inventions

but rather in the full exploitation of a carefully selected set of fertile ideas, and especially in

showing that they can be keys to the implementation of a small and yet powerful operating

system.

Need to understand its software architecture – its foundation.

1. Division of labor: kernel and shell

2. The file and process

3. The system calls

Division of Labor: Kernel and Shell

the division of labor between two agencies—the kernel and the shell. The kernel interacts

with the machine’s hardware, and the shell with the user. You have seen both of them in

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 2

action in the hands-on session, though the kernel wasn’t mentioned by name. Their relationship

is depicted in Fig.

The kernel is the core of the operating system. The system’s bootstrap program (a small piece

of program code) loads the kernel into memory at startup. The kernel comprises a set of

routines mostly written in C that communicate with the hardware directly. User programs

(the applications) that need to access the hardware (like the hard disk or the terminal)

communicate with the kernel using a set of functions called system calls. The kernel has work to

do even if no user program is running. It is often called the operating system—a program’s

gateway to the computer’s resources.

Computers don’t have any inherent ability to translate user commands into action. That requires

an interpreter, and that job in UNIX is handled by the “outer part” of the operating system—the

shell. It is actually the interface between the user and the kernel. Even though there’s only one

kernel running on the system, there could be several shells in action—one for each user who is

logged in. When you enter a command through the keyboard, the shell thoroughly examines the

keyboard input for special characters. If it finds any, it rebuilds a simplified command line, and

finally communicates with the kernel to see that the command is executed.

The File and Process

Two simple entities support the U N I X system — the file and process - “Files have places and

processes have life.” Files are containers for storing static information. Even directories and

devices are considered files. A file is related to another file by being part of a single hierarchical

structure called the file system. The second entity is the process, which represents a program in

execution. Like files, processes also form a hierarchy, and are best understood when we

consider one process as the child of another.

The System Calls

The UNIX system—comprising the kernel, shell, and applications—is written in C.

Though there are over a thousand different commands in the system, they often need to

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 3

carry out certain common tasks—like reading from or writing to disk. The code for performing

disk I/O operations is not built into the programs but is available in the ker-nel. Programs access

these kernel services by invoking special functions called system calls. Often the same system

call can access both a file and a device; the open system call opens both.

POSIX specifies the system calls that all UNIX systems must implement. Once software has

been developed on one UNIX system using the calls mandated by POSIX, it can be easily moved

to another UNIX machine.

Features of Unix

The following sections present the major features of this operating system.

1. A Multiuser System

2. Multitasking System

3. The Building-Block Approach

4. Unix toolkit

5. Pattern Matching

6. Programming Facility

7. Documentation

A Multiuser System – UNIX is a multiprogramming system. It permits multiple programs to

remain in memory and compete for the attention of the CPU. These programs can be run by

different users; UNIX is also a multiuser system. This feature often baffles Windows users as

Windows is essentially a single-user system where the CPU, memory, and hard disk are all

dedicated to a single user.

Multitasking System – UNIX is a multitasking system. It is common for a user to edit a file,

print another one on the printer, send email to a friend, and browse the World Wide Web—all

without leaving any of the applications. The X Window system exploits the multitasking feature

by allowing you to open multiple windows on your desktop. In a multitasking environment, a

user sees one job running in the foreground; the rest run in the background. You can switch jobs

between background and foreground, suspend, or even terminate them.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 4

The Building-Block Approach – A complex task can be broken into a finite number of simple

ones. The shell offers a mechanism called the pipe that allows the output of one command to

serve as input to another. To take advantage of this feature a special set of commands (called

filters) were designed where each command did “one thing well.” By interconnecting these tools

using the piping mechanism, you can solve very complex text manipulation problems.

Unix Toolkit – New tools are being added and the older ones are being removed or modified.

The shell and utilities form part of the POSIX specification. There are open-source version for

most of these utilities.

Pattern Matching – Many commands use filenames as arguments, and these filenames often

have a common string. For instance, all C programs have the .c extension, and to back them up to

tape with the tar command, we need not specify all of their filenames to tar. Instead, we can

simply use a pattern *. c. The * is a special character (known as a metacharacter) that is used by

the shell to match a number of characters.

Programming Facility – The UNIX shell is also a programming language; it was designed for a

programmer, not a casual end user. It has all the necessary ingredients, like control structures,

loops, and variables, that establish it as a powerful programming language in its own right. These

features are used to design shell scripts—programs that run UNIX commands in a batch.

Documentation – The principal online help facility available is the man command, which

remains the most important reference for commands and their configuration files. Apart from the

online documentation, there’s a vast

ocean of UNIX resources available on

the Internet. There are several newsgroups

on UNIX where you can post your

queries in case you are stranded with a

problem.

Unix Environment and Unix

Structure

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 5

Unix is a multiuser, multitasking operating system that was developed by Bell Laboratories in

1969. In a multiuser system, many users can use the system simultaneously. A multitasking

system is capable of doing multiple jobs. Each user interacts with their own shell instance in this

type of operating system and can start applications as required.

Kernel – The kernel provides a bridge between the hardware and the user. It is a software

application that is central to the operating system. The kernel handles the files, memory, devices,

processes and the network for the operating system. It is the responsibility of the kernel to make

sure all the system and user tasks are performed correctly.

Shell - The program between the user and the kernel is known as the shell. It translates the many

commands that are typed into the terminal session. These commands are known as the shell

script. There are two major types of shells in Unix. These are Bourne shell and C Shell. The

Bourne shell is the default shell for version 7 Unix. The character $ is the default prompt for the

Bourne shell. The C shell is a command processor that is run in a text window. The character %

is the default prompt for the C shell.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 6

Applications - The applications and utility layer in Unix includes the word processors, graphics

programs, database management programs, commands etc. The application programs provide an

application to the end users. For example, a web browser is used to find information while

gaming software is used to play games. The requests for service and application communication

systems used in an application by a programmer is known as an application program interface

(API).

Posix and Single Unix Specification

The Dennis Ritchie rewrote UNIX in C to make it portable, that didn’t quite happen. UNIX

fragmentation and the absence of a single conforming standard adversely affected the

development of portable applications. To address the issue, AT&T created the System V

Interface Definition (SVID). Later, X/Open (now The Open Group), a consortium of vendors and

users, created the X/Open Portability Guide (XPG). Products conforming to this specification

were branded UNIX95, UNIX98, or UNIX03 depending on the version of the specification.

Two of the most-cited standards from the POSIX family are known as POSIX.1 and POSIX.2.

POSIX.1 specifies the C application program interface—the system calls. POSIX.2 deals with

the shell and utilities.

The joint initiative of X/Open and IEEE resulted in the unification of the two standards. This is

the Single UNIX Specification, Version 3 (SUSV3) that is also known as IEEE 1003.1:2001

(POSIX.1). The “write once, adopt everywhere” approach to this development means that once

software has been developed on any POSIX-compliant UNIX system, it can be easily ported to

another POSIX-compliant UNIX machine with minimum modifications.

General features of Unix commands / command structure

A command is an instruction given by a user telling a computer to do something, such a run a

single program or a group of linked programs.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 7

commands that had multiple words (like mkdir scripts) and one that had an embedded minus sign

(ls -F). It’s time we subjected a typical UNIX command to a dissective study. The structure of

such a command is shown in Fig. 2.1. This command sequence has five words. The first word is

the command itself and the remaining ones are its arguments. The ls command is specified here

with four arguments. Two of the arguments begin with a hyphen (-l and -t) and are appropriately

called options. The entire line is referred to as the command line. A command line is executed

only after you hit [Enter].

Command arguments and options

Options – ls is a Linux shell command that lists directory contents of files and directories.

Syntax:

 $ls [option] [filename]

ls -t: It sorts the file by modification time, showing the last edited file first. head -1 picks up this

first file. To open the last edited file in the current directory, use the combination of ls and head

commands.

ls -l: To show long listing information about the file/directory.

Filename Arguments – Many Unix commands use a filename as a argument so the command

can take input from file. If a command uses a filename as argument at all, it will generally be its

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 8

last argument – and after all options. It’s also quite common to see many commands working

with multiple filenames as arguments:

ls -lat chap01 chap02 chap03

cp chap01 chap02 cp- copies files

Exception – there are commands (pwd) that don’t accept any arguments, and some (who) that

may or may not be specified with arguments. The ls command can run without arguments (ls),

with only options (ls -l), with only filenames (ls chap01 chap 02), or using a combination of both

(ls -la chap01 chap02).

Basic Unix Commands such as echo, printf, ls, who, date, passwd, cal,

combining commands.

echo command - echo command in linux is used to display line of text/string that are passed

as an argument. This is a built-in command that is mostly used in shell scripts and batch files to

output status text to the screen or a file.

Syntax:

 echo [option] [string]

NOTE: -e here enables the interpretation of backslash escapes

1. \b: it removes all the spaces in between the text.

2. \c: suppress trailing new line with backspace interpreter ‘-e‘ to continue without emitting

new line.

3. \n: this option creates new line from where it is used.

4. \t: this option is used to create horizontal tab spaces.

5. \r: carriage return with backspace interpreter ‘-e‘ to have specified carriage return in

output.

6. \v: this option is used to create vertical tab spaces.

7. \a: alert return with backspace interpreter ‘-e‘ to have sound alert.

8. echo *: this command will print all files/folders, similar to ls command.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 9

9. -n: this option is used to omit echoing trailing newline.

printf command - “printf” command in Linux is used to display the given string, number or

any other format specifier on the terminal window. It works the same way as “printf” works in

programming languages like C.

Syntax:

 $printf [-v var] format [arguments]

Note: printf can have format specifiers, escape sequences or ordinary characters.

Format Specifiers: The most commonly used printf specifiers are %s, %b, %d, %x and %f.

1. %s specifier: It is basically a string specifier for string output.

2. %b specifier: It is same as string specifier but it allows us to interpret escape sequences

with an argument.

3. %d specifier: It is an integer specifier for showing the integral values.

4. %f specifier: It is used for output of floating point values.

5. %x specifier: It is used for output of lowercase hexadecimal values for integers and for

padding the output

ls command - ls is a Linux shell command that lists directory contents of files and directories.

Syntax:

 $ls [option] [filename]

1. ls -t - Open Last Edited File

2. ls -1 - Display One File Per Line

3. ls -l - Display All Information About Files/Directories

4. ls -lh - Display File Size in Human Readable Format

5. ls –ld - Display Directory Information

6. ls -lt - Order Files Based on Last Modified Time

7. ls -ltr - Order Files Based on Last Modified Time (In Reverse Order)

8. ls -a - Display Hidden Files

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 10

9. ls -R - Display Files Recursively

10. ls -i - Display File Inode Number

11. ls -q - Hide Control Characters

12. ls -n - Display File UID and GID

13. ls -F - Visual Classification of Files With Special Characters

14. ls –color=auto - Visual Classification of Files With Colors.

-rw-rw-r– 1 maverick maverick 1176 Feb 16 00:19 1.c

1st Character – File Type: First character specifies the type of the file. In the example above the

hyphen (-) in the 1st character indicates that this is a normal file. Following are the possible file

type options in the 1st character of the ls -l output.

Field Explanation

1. - normal file

2. d : directory

3. s : socket file

4. l : link file

Field 1 – File Permissions: Next 9 character specifies the files permission. The every 3

characters specifies read, write, execute permissions for user(root), group and others respectively

in order. Taking above example, -rw-rw-r– indicates read-write permission for user(root) , read

permission for group, and no permission for others respectively. If all three permissions are

given to user(root), group and others, the format looks like -rwxrwxrwx

Field 2 – Number of links: Second field specifies the number of links for that file. In this

example, 1 indicates only one link to this file.

Field 3 – Owner: Third field specifies owner of the file. In this example, this file is owned by

username ‘maverick’.

Field 4 – Group: Fourth field specifies the group of the file. In this example, this file belongs to

”maverick” group.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 11

Field 5 – Size: Fifth field specifies the size of file in bytes. In this example, ‘1176’ indicates the

file size in bytes.

Field 6 – Last modified date and time: Sixth field specifies the date and time of the last

modification of the file. In this example, ‘Feb 16 00:19’ specifies the last modification time of

the file.

Field 7 – File name: The last field is the name of the file. In this example, the file name is 1.c.

who command - who command is used to find out the following information are:

1. Time of last system boot

2. Current run level of the system

3. List of logged in users and more

Description: The who command is used to get information about currently logged in user on to

system.

 Syntax: $who [options] [filename]

Example:

1. The who command displays the following information for each user currently logged in to the

system if no option is provided :

1. Login name of the users

2. Terminal line numbers

3. Login time of the users in to system

4. Remote host name of the user

$ who

hduser tty7 2018-03-18 19:08 (:0)

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 12

date command - date command is used to display the system date and time. date command is

also used to set date and time of the system. By default the date command displays the date in the

time zone on which unix/linux operating system is configured.

You must be the super-user (root) to change the date and time.

Syntax:

 $date [OPTION]... [+FORMAT] date [-u|--utc|--universal]

[MMDDhhmm[[CC]YY][.ss]]

Options in date command are:

1. date (no option) – With no options, the date command displays the current date and time

2. -u Option – Displays the time in GMT (Greenwich Mean Time)/UTC(Coordinated

Universal Time)time zone.

3. -date or -d Option – Displays the given date string in the format of date. But this will not

affect the system’s actual date and time value.

4. -s or –set Option – To set the system date and time -s or –set option is used.

5. –file or -f Option – This is used to display the date string present at each line of file in the

date and time format.

6. -r Option – This is used to display the last modified timestamp of a datefile.

Cal command - If a user wants a quick view of calendar in Linux terminal, cal is the

command for you. By default, cal command shows current month calendar as output.

cal command is a calendar command in Linux which is used to see the calendar of a specific

month or a whole year.

 Syntax: cal [[month] year]

Rectangular bracket means it is optional, so if used without option, it will display a

calendar of current month and year.

1. cal: Shows current month calendar on the terminal.

2. cal 08 2000: Shows calendar of selected month and year.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 13

3. cal 2018: Shows the whole calendar of the year.

4. cal 2018 | more: But year may not be visible in the same screen use more with cal use

spacebar to scroll down.

5. cal -3: Shows calendar of previous, current and next month.

passwd command – passwd command in Linux is used to change the user account

passwords. The root user reserves the privilege to change the password for any user on the

system, while a normal user can only change the account password for his or her own account.

 Syntax: passwd [options] [username]

Combining commands – Combining two or more commands on the command line is also

known as “command chaining”. We’ll show you different ways you can combine commands on

the command line.

Option One: The Semicolon (;) Operator

The semicolon (;) operator allows you to execute multiple commands in succession, regardless of

whether each previous command succeeds.

 $ls ; pwd ; whoami

 You don’t have to put spaces between the semicolons and the commands, either.

 You can enter the three commands as ls ; pwd ; whoami. However, spaces make the

combined command more readable, which is especially useful if you’re putting a

combined command into a shell script.

Option Two: The Logical AND Operator (&&)

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 14

If you want the second command to only run if the first command is successful, separate the

commands with the logical AND operator, which is two ampersands (&&).

For example, we want to make a directory called MyFolder and then change to that directory–

provided it was successfully created. So, we type the following on the command line and press

Enter.

 $mkdir MyFolder && cd MyFolder

 The folder was successfully created, so the cd command was executed and we are now in

the new folder.

 We recommend using the logical AND operator rather than the semicolon operator most

of the time (;). This ensures that you don’t do anything disastrous.

Option Three: The Logical OR Operator (||)

Sometimes you might want to execute a second command only if the first command

does not succeed. To do this, we use the logical OR operator, or two vertical bars (||).

 $[-d ~/MyFolder] || mkdir ~/MyFolder

Be sure there is a space after the first bracket and before the second bracket or the first command

that checks if the directory exists will not work.

Combining Multiple Operators

You can combine multiple operators on the command line, too. For example, we want to first

check if a file exists ([-f ~/sample.txt]). If it does, we print a message to the screen saying so

(echo “File exists.”). If not, we create the file (touch ~/sample.txt). So, we type the following

at the command prompt and press Enter.

$[-f ~/sample.txt] && echo “File exists.” || touch ~/sample.txt

Here’s a useful summary of each of the operators used to combine commands:

 A ; B – Run A and then B, regardless of the success or failure of A

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 15

 A && B – Run B only if A succeeded

 A || B – Run B only if A failed

Meaning of Internal and External Command

The UNIX system is command-based i.e things happen because of the commands that you key

in. All UNIX commands are seldom more than four characters long.

They are grouped into two categories:

1. Internal Commands: Commands which are built into the shell. For all the shell built-in

commands, execution of the same is fast in the sense that the shell doesn’t have to search

the given path for them in the PATH variable, and also no process needs to be spawned

for executing it.

Examples: source, cd, fg, etc.

2. External Commands: Commands which aren’t built into the shell. When an external

command has to be executed, the shell looks for its path given in the PATH variable, and

also a new process has to be spawned and the command gets executed. They are usually

located in /bin or /usr/bin. For example, when you execute the “cat” command, which

usually is at /usr/bin, the executable /usr/bin/cat gets executed.

Examples: ls, cat etc.

For instance, take echo command:

$type echo

echo is a shell built-in

How to find out whether a command is internal or external?

In addition to this you can also find out about a particular command i.e. whether it is internal or

external with the help of type command :

$type cat

cat is /bin/cat

https://www.geeksforgeeks.org/type-command-in-linux-with-examples/

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 16

//specifying that cat is external type//

$type cd

cd is a shell built-in

//specifying that cd is internal type//

The type command: knowing the type of a command and locating it.

The type command is used to describe how its argument would be translated if used as

commands. It is also used to find out whether it is built-in or external binary file.

Syntax: type [Options] command names

1. type -a - This option is used to find out whether it is an alias, keyword or a function and it

also displays the path of an executable.

2. type -t - This option will display a single word as an output.

Example:

 type -t pwd (Print working directory)

 type -t cp (copy)

 type -t ls (listing the contents of directories)

3. type -p - This option displays the name of the disk file which would be executed by the

shell. It will return nothing if the command is not a disk file.

Root Login and su command

The root is the user name or account that by default has access to all commands and files on a

Linux or other Unix-like operating system. It is also referred to as the root account, root user, and

the superuser.

PRIVILEGES AND PERMISSIONS

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 17

– Root privileges are the powers that the root account has on the system. The root

account is the most privileged on the system and has absolute power over it (i.e.,

complete access to all files and commands). Among root's powers are the ability to

modify the system in any way desired and to grant and revoke access permissions

(i.e., the ability to read, modify and execute specific files and directories) for other

users, including any of those that are by default reserved for root.

– The permissions system in Unix-like operating systems is set by default to prevent

access by ordinary users to critical parts of the system and to files and directories

belonging to other users. This is because it is very easy to damage a Unix-like system

with root access. However, an important principle of Unix-like operating systems is

the provision of maximum flexibility to configure the system, and thus the root user is

fully empowered.

– Linux superuser

In Linux and Unix like computer operating systems, root is the conventional name of

the user who has all rights or permissions (to all files and programs) in all modes

(single- or multi-user). The root user can do many things an ordinary user cannot,

such as changing the ownership of files and binding to ports numbered below 1024.

The etymology of the term may be that root is the only user account with permission

to modify the root directory of a Unix system.

– Linux Login as Superuser

You need to use any one of the following command to log in as superuser / root user

on Linux:

su command – Run a command with substitute user and group ID in Linux

sudo command – Execute a command as another user on Linux.

How to become Superuser in Linux using su

Under Linux (and other Unixish operating systems) you use command called su. It is used is

used to become another user during a login session or to login as super user. If invoked without a

username, su defaults to becoming the super user. It is highly recommend that you use

argument - to su command. It is used to provide an environment similar to what the user root

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 18

would expect had the user logged in directly. Type su command as follows:

 $ su -

Sample outputs:

Password: <TYPE ROOT PASSWORD> #

Exiting from su

You simply need to type the following exit command or logout command:

 $exit

OR

 $logout

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 19

Unix Files

Naming of Files

A filename can consist of up to 255 characters. Files may or may not have extensions, and can

consist of practically any ASCII character except the / and the NULL character (ASCII value 0).

As a general rule you should avoid using unprintable characters in filenames. Further, since the

shell has a special treatment for characters like $, `,?, *, & among others, it is recommended that

only the following characters be used in filenames:

– Alphabetic characters and numerals.

– The period (.), hyphen (-), and underscore (_).

Example

All file names are case sensitive. So filename vivek.txt Vivek.txt VIVEK.txt all are three

different files.

Most modern Linux and UNIX limit filename to 255 characters (255 bytes). However, some

older version of UNIX system limits filenames to 14 characters only.

A filename must be unique inside its directory. For example, inside /home/vivek directory you

cannot create a demo.txt file and demo.txt directory name. However, other directory may have

files with the same names. For example, you can create demo.txt directory in /tmp.

Basic file types/categories

Types of Unix files – The UNIX files system contains several different types of files:

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 20

1) Ordinary files - An ordinary file is a file on the system that contains data, text, or

program instructions and used to store your information, such as some text you have

written or an image you have drawn. This is the type of file that you usually work with

and always located within/under a directory file.

 In long-format output of ls -l, this type of file is specified by the “-” symbol.

2) Directories – Directories store both special and ordinary files. For users familiar with

Windows or Mac OS, UNIX directories are equivalent to folders. A directory file

contains an entry for every file and subdirectory that it houses. If you have 10 files in a

directory, there will be 10 entries in the directory. Each entry has two components.

– The Filename

– A unique identification number for the file or directory (called the inode

number)

• Branching points in the hierarchical tree.

• Used to organize groups of files.

• May contain ordinary files, special files or other directories.

• Never contain “real” information which you would work with (such as

text). Basically, just used for organizing files.

• All files are descendants of the root directory, (named /) located at the

top of the tree.

• In long-format output of ls –l , this type of file is specified by the “d”

symbol.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 21

3) Special Files – Used to represent a real physical device such as a printer, tape drive or

terminal, used for Input/Output (I/O) operations. Device or special files are used for

device Input/Output(I/O) on UNIX and Linux systems. They appear in a file system just

like an ordinary file or a directory.

On UNIX systems there are two flavors of special files for each device, character special

files and block special files :

• When a character special file is used for device Input/Output(I/O), data is

transferred one character at a time. This type of access is called raw device access.

• When a block special file is used for device Input/Output(I/O), data is transferred

in large fixed-size blocks. This type of access is called block device access.

4) Pipes – UNIX allows you to link commands together using a pipe. The pipe acts a

temporary file which only exists to hold data from one command until it is read by

another. A Unix pipe provides a one-way flow of data. The output or result of the first

command sequence is used as the input to the second command sequence. To make a

pipe, put a vertical bar (|) on the command line between two commands. For

example: who | wc -l

5) Sockets – A Unix socket (or Inter-process communication socket) is a special file which

allows for advanced inter-process communication. A Unix Socket is used in a client-

server application framework. In essence, it is a stream of data, very similar to network

stream (and network sockets), but all the transactions are local to the filesystem.

6) Symbolic Link – Symbolic link is used for referencing some other file of the file system.

Symbolic link is also known as Soft link. It contains a text form of the path to the file it

references. To an end user, symbolic link will appear to have its own name, but when you

try reading or writing data to this file, it will instead reference these operations to the file

it points to. If we delete the soft link itself, the data file would still be there. If we delete

the source file or move it to a different location, symbolic file will not function properly.

In long-format output of ls –l , Symbolic link are marked by the “l” symbol.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 22

Organization of files

Unix file system is a logical method of organizing and storing large amounts of information in

a way that makes it easy to manage. A file is a smallest unit in which the information is stored.

Unix file system has several important features. All data in Unix is organized into files. All files

are organized into directories. These directories are organized into a tree-like structure called the

file system.

Files in Unix System are organized into multi-level hierarchy structure known as a directory tree.

At the very top of the file system is a directory called “root” which is represented by a “/”. All

other files are “descendants” of root.

Hidden files

UNIX allows users to have files which are not listed, by default, by the ls command. These are

called hidden files and are distinguishable from other files by the fact that their filenames begin

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 23

with a dot (.). Such a file is . profile which is executed every time you log in to the system.

Hidden files are listed by adding the -a option to the ls command.

Standard directories

The File system Hierarchy Standard (FHS) defines the structure of file systems on Linux and

other UNIX-like operating systems. However, Linux file systems also contain some directories

that aren’t yet defined by the standard.

1) / – The Root Directory

Everything on your Linux system is located under the / directory, known as the root

directory. You can think of the / directory as being similar to the C:\ directory on

Windows – but this isn’t strictly true, as Linux doesn’t have drive letters.

2) /bin – Essential User Binaries

The /bin directory contains the essential user binaries (programs) that must be present

when the system is mounted in single-user mode. Applications such as Firefox are stored

in /usr/bin, while important system programs and utilities such as the bash shell are

located in /bin.

3) /boot – Static Boot Files

The /boot directory contains the files needed to boot the system – for example, the GRUB

boot loader’s files and your Linux kernels are stored here. The boot loader’s

configuration files aren’t located here, though – they’re in /etc with the other

configuration files.

4) /cdrom – Historical Mount Point for CD-ROMs

The /cdrom directory isn’t part of the FHS standard, but you’ll still find it on Ubuntu and

other operating systems. It’s a temporary location for CD-ROMs inserted in the system.

However, the standard location for temporary media is inside the /media directory.

5) /dev – Device Files

Linux exposes devices as files, and the /dev directory contains a number of special files

that represent devices. These are not actual files as we know them, but they appear as

files – for example, /dev/sda represents the first SATA drive in the system. This directory

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 24

also contains pseudo-devices, which are virtual devices that don’t actually correspond to

hardware.

6) /etc – Configuration Files

The /etc directory contains configuration files, which can generally be edited by hand in a

text editor. Note that the /etc/ directory contains system-wide configuration files – user-

specific configuration files are located in each user’s home directory.

7) /home – Home Folders

The /home directory contains a home folder for each user. For example, if your user

name is bob, you have a home folder located at /home/bob. This home folder contains the

user’s data files and user-specific configuration files. Each user only has write access to

their own home folder and must obtain elevated permissions (become the root user) to

modify other files on the system.

8) /lib – Essential Shared Libraries

The /lib directory contains libraries needed by the essential binaries in the /bin and /sbin

folder. Libraries needed by the binaries in the /usr/bin folder are located in /usr/lib.

9) /lost+found – Recovered Files

Each Linux file system has a lost+found directory. If the file system crashes, a file system

check will be performed at next boot. Any corrupted files found will be placed in the

lost+found directory, so you can attempt to recover as much data as possible.

10) /media – Removable Media

The /media directory contains subdirectories where removable media devices inserted

into the computer are mounted. For example, when you insert a CD into your Linux

system, a directory will automatically be created inside the /media directory. You can

access the contents of the CD inside this directory.

11) /mnt – Temporary Mount Points

Historically speaking, the /mnt directory is where system administrators mounted

temporary file systems while using them. For example, if you’re mounting a Windows

partition to perform some file recovery operations, you might mount it at /mnt/windows.

However, you can mount other file systems anywhere on the system.

12) /opt – Optional Packages

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 25

The /opt directory contains subdirectories for optional software packages. It’s commonly

used by proprietary software that doesn’t obey the standard file system hierarchy – for

example, a proprietary program might dump its files in /opt/application when you install

it.

13) /proc – Kernel & Process Files

The /proc directory similar to the /dev directory because it doesn’t contain standard files.

It contains special files that represent system and process information.

14) /root – Root Home Directory

The /root directory is the home directory of the root user. Instead of being located at

/home/root, it’s located at /root. This is distinct from /, which is the system root directory.

15) /run – Application State Files

The /run directory is fairly new, and gives applications a standard place to store transient

files they require like sockets and process IDs. These files can’t be stored in /tmp because

files in /tmp may be deleted.

16) /sbin – System Administration Binaries

The /sbin directory is similar to the /bin directory. It contains essential binaries that are

generally intended to be run by the root user for system administration.

17) /selinux – SELinux Virtual File System

If your Linux distribution uses SELinux for security (Fedora and Red Hat, for example),

the /selinux directory contains special files used by SELinux. It’s similar to /proc. Ubuntu

doesn’t use SELinux, so the presence of this folder on Ubuntu appears to be a bug.

18) /srv – Service Data

The /srv directory contains “data for services provided by the system.” If you were using

the Apache HTTP server to serve a website, you’d likely store your website’s files in a

directory inside the /srv directory.

19) /tmp – Temporary Files

Applications store temporary files in the /tmp directory. These files are generally deleted

whenever your system is restarted and may be deleted at any time by utilities such as

tmpwatch.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 26

20) /usr – User Binaries & Read-Only Data

The /usr directory contains applications and files used by users, as opposed to

applications and files used by the system. For example, non-essential applications are

located inside the /usr/bin directory instead of the /bin directory and non-essential system

administration binaries are located in the /usr/sbin directory instead of the /sbin directory.

Libraries for each are located inside the /usr/lib directory. The /usr directory also contains

other directories – for example, architecture-independent files like graphics are located in

/usr/share.

21) /var – Variable Data Files

The /var directory is the writable counterpart to the /usr directory, which must be read-

only in normal operation. Log files and everything else that would normally be written to

/usr during normal operation are written to the /var directory. For example, you’ll find log

files in /var/log.

Parent Child Relationship

The implicit feature of unix file system is that there is a top, which serves as a reference point for

all files. This top is called root and is represented by a / (frontslash). root is actually a directory.

It is conceptually different from the user-id root used by the system administrator to log in. The

root directory (/) has a number of subdirectories under it. These subdirectories in turn have more

subdirectories and other files under them. For instance, bin and usr are two directories directly

under /, while a second bin and Romeo are subdirectories under usr.

Thus, the home directory is the parent of Romeo, while / is the parent of home, and the

grandparent of Romeo. If you create a file login.sql under the Romeo directory, then Romeo will

be the parent of this file. In these parent – child relationship, the parent is always a directory.

home and Romeo are both directories as they are both parents of at least one file or directory.

login.sql is simply an ordinary file; it can’t have any directory under it.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 27

 bin - short for binaries, this is the directory where many commonly used executable

commands reside

 dev - contains device specific files

 etc - contains system configuration files

 home - contains user directories and files

 lib - contains all library files

 mnt - contains device files related to mounted devices

 proc - contains files related to system processes

 root - the root users' home directory (note this is different than /)

 sbin - system binary files reside here. If there is no sbin directory on your system, these

files most likely reside in etc

 tmp - storage for temporary files which are periodically removed from the filesystem

 usr - also contains executable commands

The home directory and the HOME variable

A home directory, also called a login directory, is the directory on Unix-like operating

systems that serves as the repository for a user's personal files, directories and programs. It is

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 28

also the directory that a user is first in after logging into the system. A home directory is created

automatically for every ordinary user in the directory called /home. A standard subdirectory of

the root directory, /home has the sole purpose of containing users' home directories. The root

directory, which is designated by a forward slash (/), is the directory that contains all other

directories and their subdirectories as well as all files on the system.

The name of a user's home directory is by default identical to that of the user. Thus, for example,

a user with a user name of mary would typically have a home directory named mary. It would

have an absolute pathname of /home/mary. An absolute pathname is the location of a directory

or file relative to the root directory, and it always starts with the root directory (i.e., with a

forward slash).

The only user that will by default have its home directory in a different location is the root (i.e.,

administrative) user, whose home directory is /root. /root is another standard subdirectory of the

root directory, and it should not be confused with the root directory (although it sometimes is by

new users). For security purposes, even system administrators should have ordinary accounts

with home directories in /home into which they routinely log in, and they should use the root

account only when absolutely necessary.

There are several easy ways for a user to return to its home directory regardless of its current

directory (i.e., the directory in which it is currently working in). The simplest of these is to use

the cd (i.e., change directory) command without any options or arguments (i.e., input files), i.e.,

by merely typing the following and then pressing the ENTER key:

 $cd

The absolute pathname of a user's home directory is stored in that user's $HOME environmental

variable. Environmental variables are a class of variables that tell the shell (i.e., the program that

provides the text-only user interface for entering commands) how to behave as a user works at

the command line (i.e., all-text mode). Thus a third way for a user to return to its home directory

is to use $HOME as an argument to cd, i.e.,

 $cd $HOME

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 29

/home/atria

The PATH variable

The PATH environment variable has a special format. Let's see what it looks like:

 $ echo $PATH /usr/local/bin:/bin:/usr/bin:/sbin:/usr/sbin:.

It's essentially a :-separated list of directories. When you execute a command, the shell searches

through each of these directories, one by one, until it finds a directory where the executable

exists. Remember that we found ls in /bin, right? /bin is the second item in the PATH variable.

So let's remove /bin from PATH. We can do this by using the export command:

 $ export PATH=/usr/local/bin:/usr/bin:/sbin:/usr/sbin:.

Make sure that the variable is set correctly:

 $ echo $PATH /usr/local/bin:/usr/bin:/sbin:/usr/sbin:.

Now, if we try to run ls, the shell no longer knows to look in /bin!

 $ ls

 -bash: ls: command not found

Manipulating your PATH variable

 The PATH variable contains the search path for executing commands and scripts. To see

your PATH, enter:

 $ echo $PATH

/home/khess/.local/bin:/home/khess/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin

Temporarily change your PATH by entering the following command to add /opt/bin:

 $ PATH=$PATH:/opt/bin $ echo $PATH

/home/khess/.local/bin:/home/khess/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/op

t/bin

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 30

The change is temporary for the current session. It isn't permanent because it's not entered into

the .bashrc file. To make the change permanent, enter the command PATH=$PATH:/opt/bin into

your home directory's .bashrc file.

 When you do this, you're creating a new PATH variable by appending a directory to the

current PATH variable, $PATH. A colon (:) separates PATH entries.

Relative and Absolute Pathnames

An absolute path is defined as specifying the location of a file or directory from the root

directory (/). In other words, that an absolute path is a complete path from start of actual file

system from / directory.

Example for Absolute path

$pwd

/home/atria

$cd /home/atria/abc

$pwd

/home/atria/abc

Relative path is defined as the path related to the present working directory(pwd). It starts at your

current directory and never starts with a /.

 Example for Relative path

$pwd

/home/atria

$cd abc

$pwd

/home/atria/abc

Directory commands

• pwd(present or print working directory)

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 31

• cd(current directory)

• mkdir(make a directory)

• rmdir(remove directory)

pwd - pwd stands for Print Working Directory. It prints the path of the working directory,

starting from the root.

– pwd is shell built-in command(pwd) or an actual binary(/bin/pwd).

– $PWD is an environment variable which stores the path of the current directory.

This command has two flags.

pwd -L: Prints the symbolic path.

pwd -P: Prints the actual path.

Built-in pwd - In the given example the directory is a symbolic link for a target directory.

Example for built-in pwd

$ pwd

/home/atria

$ cd /home/atria/abc

$ pwd -L

/home/atria/abc

$ pwd -P /var/abc

Binary pwd (/bin/pwd) - The default behavior of Built-in pwd is same as pwd -L. and the default

behavior of /bin/pwd is same as pwd -P.

Example for binary pwd

$ /bin/pwd

/var/abc

$ /bin/pwd -P

/var/abc

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 32

$ /bin/pwd -L

/home/atria/abc.

cd - cd command in Linux known as change directory command. It is used to change current

working directory.

Syntax:

 $ cd [directory]

To move inside a subdirectory: to move inside a subdirectory in linux we use

 $ cd [directory_name]

Different functionalities of cd command:

– cd /: this command is used to change directory to the root directory, The root directory is

the first directory in your filesystem hierarchy.

 $ cd /

– cd dir_1/dir_2/dir_3: This command is used to move inside a directory from a directory

 $ cd dir_1/dir_2/dir_3

Example – cd /Documents/D1

– cd ~ : this command is used to change directory to the home directory.

 $ cd ~

– cd .. : this command is used to move to the parent directory of current directory, or the

directory one level up from the current directory. “..” represents parent directory.

 $ cd ..

– cd “dir name”: This command is used to navigate to a directory with white spaces.

Instead of using double quotes we can use single quotes then also this command will

work.

 $ cd "dir name"

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 33

mkdir - mkdir command in Linux allows the user to create directories (also referred to as

folders in some operating systems). This command can create multiple directories at once as well

as set the permissions for the directories. It is important to note that the user executing this

command must have enough permissions to create a directory in the parent directory, or he/she

may receive a ‘permission denied’ error.

Syntax:

 $mkdir [options...] [directories ...]

– --version - It displays the version number, some information regarding the license and

exits.

Syntax: $mkdir --version

– --help - It displays the help related information and exits.

Syntax: mkdir –help

– -v or –verbose - It displays a message for every directory created.

Syntax: $mkdir -v [directories]

– -p - A flag which enables the command to create parent directories as necessary. If the

directories exist, no error is specified.

Syntax: $mkdir -p [directories]

– -m - This option is used to set the file modes, i.e. permissions, etc. for the created

directories. The syntax of the mode is the same as the chmod command.

Syntax: $mkdir -m a=rwx [directories]

rmdir - rmdir command is used remove empty directories from the filesystem in Linux. The

rmdir command removes each and every directory specified in the command line only if these

directories are empty. So if the specified directory has some directories or files in it then this

cannot be removed by rmdir command.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 34

Syntax:

$rmdir [-p] [-v | –verbose] [–ignore-fail-on-non-empty] directories …

The above syntax specifies that the directories created give access to all the users to read from,

write to and execute the contents of the created directories. You can use ‘a=r’ to only allow all

the users to read from the directories and so on.

 rmdir -p: In this option each of the directory argument is treated as a pathname of which

all components will be removed, if they are already empty, starting from the last

component.

 rmdir -v, –verbose: This option displays verbose information for every directory being

processed.

 rmdir –ignore-fail-on-non-empty: This option do not report a failure which occurs

solely because a directory is non-empty. Normally, when rmdir is being instructed to

remove a non-empty directory, it simply reports an error. This option consists of all those

error messages.

 rmdir –version: This option is used to display the version information and exit.

The dot(.) and double dot(..) notations to represent present and parent

directories and their usage in relative path names.

unix offers a shortcut – the relative pathname – that uses either the current or parent directory as

reference and specifies the path relative to it. A relative pathname uses one of these cryptic

symbols:

. (a single dot) – this represent the current directory.

.. (two dots) – this represents the parent directory.

Now use the (..) to frame relative pathnames. Assuming that you are placed in

/home/atria/progs/data:

$ pwd

https://media.geeksforgeeks.org/wp-content/uploads/20190306143216/Screenshot-from-2019-03-06-14-29-42.png
https://media.geeksforgeeks.org/wp-content/uploads/20190306143216/Screenshot-from-2019-03-06-14-29-42.png

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 35

/home/atria/progs/data/text

$ cd .. //moves one level up

$ pwd

/home/atria/progs/data

The command cd .. translates to this: “change your directory to the parent of the current

directory.” you can combine any number of such sets of .. separated by /s. however, when a / is

used with .. it acquires a different meaning; instead of moving down a level, it moves one level

up. For instance, to move to /home, you can always use cd /home. Alternatively you can also use

a relative pathname:

$ pwd

/home/atria/abc

$cd ../..

$ pwd

/home

The solitary dot that refers to the current directory. Any command which uses the current

directory as argument can also work with a single dot. This means that the cp command which

also uses a directory as the last argument can be used with a dot:

cp ../abc/.profile . //a filename can begin with a dot.

This copies the file . profile to the current directory (.). note that you didn’t have to specify the

filename of the copy; it’s the same as the original one. This dot is also implicitly included

whenever we use a filename as argument, rather than a pathname. For instance, cd progs is same

as cd ./progs.

File related commands – cat, mv, rm, cp, wc and od commands

cat command

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 36

Cat(concatenate) command is very frequently used in Linux. It reads data from the file and gives

their content as output. It helps us to create, view, concatenate files. So let us see some

frequently used cat commands.

1) To view a single file

Command: $cat filename

Output:

 It will show content of given filename.

2) To view multiple files

Command:

 $cat file1 file2

Output:

This will show the content of file1 and file2.

3) To view contents of a file preceding with line numbers.

Command:

 $cat -n filename

Output:

It will show content with line number

4) Create a file

Command:

 $ cat >newfile

Output:

Will create and a file named newfile

5) Copy the contents of one file to another file.

Command:

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 37

 $cat [filename-whose-contents-is-to-be-copied] > [destination-filename]

Output:

The content will be copied in destination file

6) Cat command can suppress repeated empty lines in output

Command:

 $cat -s geeks.txt

Output:

Will suppress repeated empty lines in output

7) Cat command can append the contents of one file to the end of another file.

Command:

 $cat file1 >> file2

Output:

 Will append the contents of one file to the end of another file

8) Cat command can display content in reverse order using tac command.

Command:

 $tac filename

Output:

 Will display content in reverse order

9) Cat command can highlight the end of line.

Command:

 $cat -E "filename"

Output:

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 38

 Will highlight the end of line

10) If you want to use the -v, -E and -T option together, then instead of writing -vET in

the command, you can just use the -A command line option.

Command

 $cat -A "filename"

11) Cat command to display the content of all text files in the folder.

Command:

 $cat *.txt

Output:

 Will show the content of all text files present in the folder.

mv - mv stands for move. mv is used to move one or more files or directories from one place to

another in file system like UNIX. It has two distinct functions:

(i) It rename a file or folder.

(ii) It moves group of files to different directory.

 No additional space is consumed on a disk during renaming. This command

normally works silently means no prompt for confirmation.

Syntax:

 $mv [Option] source destination

Let us consider 5 files having name a.txt, b.txt and so on till e.txt.

 To rename the file a.txt to geek.txt(not exist):

 $ ls

 a.txt b.txt c.txt d.txt

 $ mv a.txt geek.txt

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 39

 $ ls

 b.txt c.txt d.txt geek.txt

If the destination file doesn’t exist, it will be created. In the above command mv simply replaces

the source filename in the directory with the destination filename(new name). If the destination

file exist, then it will be overwrite and the source file will be deleted.

Let’s try to understand with example, moving geeks.txt to b.txt(exist):

 $ ls $ mv geek.txt b.txt

 b.txt c.txt d.txt geek.txt $ ls

 $ cat geek.txt b.txt c.txt d.txt

 India $ cat b.txt

 $ cat b.txt India

 geeksforgeeks

Options:

1. -i (Interactive): Like in cp, the -i option makes the command ask the user for confirmation

before moving a file that would overwrite an existing file, you have to press y for confirm

moving, any other key leaves the file as it is. This option doesn’t work if the file doesn’t exist, it

simply rename it or move it to new location.

 $ ls

 b.txt c.txt d.txt geek.txt

 $ cat geek.txt

 India

File Related Command: mv

 $ cat b.txt

 geeksforgeeks

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 40

 $ mv -i geek.txt b.txt

 mv: overwrite 'b.txt'? y

 $ ls

 b.txt c.txt d.txt

 $ cat b.txt

 India

rm - rm stands for remove here. rm command is used to remove objects such as files,

directories, symbolic links and so on from the file system like UNIX. To be more precise, rm

removes references to objects from the filesystem, where those objects might have had multiple

references (for example, a file with two different names). By default, it does not remove

directories.

This command normally works silently and you should be very careful while

running rm command because once you delete the files then you are not able to recover the

contents of files and directories.

Syntax:

 $rm [OPTION]... FILE...

 File Related Command: rm

Syntax:

 $rm [OPTION]... FILE...

Let us consider 5 files having name a.txt, b.txt and so on till e.txt.

 $ ls

 a.txt b.txt c.txt d.txt e.txt

File Related Command: rm

Removing one file at a time

 $ rm a.txt

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 41

 $ ls

 b.txt c.txt d.txt e.txt

 Removing more than one file at a time

 $ rm b.txt c.txt $ ls

 d.txt e.txt

Note: No output is produced by rm, since it typically only generates messages in the case of an

error.

File Related Command: rm

Options:

1. -i (Interactive Deletion): Like in cp, the -i option makes the command ask the user for

confirmation before removing each file, you have to press y for confirm deletion, any other key

leaves the file un-deleted.

 $ rm -i d.txt

 rm: remove regular empty file 'd.txt'? y

 $ ls

 e.txt

2. -f (Force Deletion): rm prompts for confirmation removal if a file is write protected. The -

f option overrides this minor protection and removes the file forcefully.

 $ ls -l

 total 0 -r--r--r--+ 1 User User 0 Jan 2 22:56 e.txt

 $ rm e.txt

 rm: remove write-protected regular empty file 'e.txt'? n

 $ ls

 e.txt

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 42

 $ rm -f e.txt

 $ ls

Note: -f option of rm command will not work for write-protect directories.

cp – copy command copies a file or a group of files. It creates an exact image of the file on disk

with a different name.

 $ cp a.txt b.txt

If the destination file(b.txt) doesn’t exist, it will first be created before copying takes place. If not

it will be overwritten. So for that you just check with the ls command whether or not the file

exists.

Options:

1. -i(interactive): i stands for Interactive copying. With this option system first warns the user

before overwriting the destination file. cp prompts for a response, if you press y then it

overwrites the file and with any other option leave it uncopied.

 $ cp -i a.txt b.txt

 cp: overwrite 'b.txt'? y

 $ cat b.txt

 GFG

2. -b(backup): With this option cp command creates the backup of the destination file in the

same folder with the different name and in different format.

 $ ls

 a.txt b.txt

 $ cp -b a.txt b.txt

 $ ls

 a.txt b.txt b.txt~

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 43

3. -r or -R: Copying directory structure. With this option cp command shows its recursive

behavior by copying the entire directory structure recursively.

Suppose we want to copy geeksforgeeks directory containing many files, directories

into gfg directory(not exist).

 $ ls geeksforgeeks/

 a.txt b.txt b.txt~ Folder1 Folder2

 Without -r option, error

 $ cp geeksforgeeks gfg

 cp: -r not specified; omitting directory 'geeksforgeeks' With -r, execute successfully

 $ cp -r geeksforgeeks gfg

 $ ls gfg/

 a.txt b.txt b.txt~ Folder1 Folder2

wc - wc stands for word count. As the name implies, it is mainly used for counting purpose. It is

used to find out number of lines, word count, byte and characters count in the files specified in

the file arguments. By default it displays four-columnar output. First column shows number of

lines present in a file specified, second column shows number of words present in the file, third

column shows number of characters present in file and fourth column itself is the file name

which are given as argument.

Syntax: $wc [OPTION]... [FILE]...

File Related Command: wc

Let us consider two files having name state.txt and capital.txt containing 5 names of the Indian

states and capitals respectively.

 $ cat state.txt

 Andhra Pradesh

 Arunachal Pradesh

 $ cat capital.txt

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 44

 Hyderabad

 Raipur

 Passing only one file name in the argument.

 $ wc state.txt

Passing more than one file name in the argument.

 $ wc state.txt capital.txt

 5 7 63 state.txt

 5 5 45 capital.txt

 10 12 108 total

Note: When more than file name is specified in argument then command will display four-

columnar output for all individual files plus one extra row displaying total number of lines,

words and characters of all the files specified in argument, followed by keyword total.

Options:

1. -l: This option prints the number of lines present in a file.

2. -w: This option prints the number of words present in a file.

3. -c: This option displays count of bytes present in a file.

4. -m: Using -m option ‘wc’ command displays count of characters from a file.

5. -L: The ‘wc’ command allow an argument -L, it can be used to print out the length of

longest (number of characters) line in a file.

6. –version: This option is used to display the version of wc which is currently running on

your system.

Applications of wc Command

1. To count all files and folders present in directory: As we all know ls command in

unix is used to display all the files and folders present in the directory, when it is piped

with wc command with -l option it display count of all files and folders present in current

directory.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 45

2. Display number of word count only of a file: We all know that this can be done

with wc command having -w option, wc -w file_name, but this command shows two-

columnar output one is count of words and other is file name.

od - od command in Linux is used to convert the content of input in different formats with octal

format as the default format. This command is especially useful when debugging Linux scripts

for unwanted changes or characters. If more than one file is specified, od command concatenates

them in the listed order to form the input. It can display output in a variety of other formats,

including hexadecimal, decimal, and ASCII. It is useful for visualizing data that is not in a

human-readable format, like the executable code of a program.

 Syntax:

 $od [OPTION]... [FILE]...

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 1

Module-2: File attributes & permissions

The ls command with options

Display All Information About Files/Directories Using ls -l. The list is preceded by the words of

total 100, which indicates that a total of 100 blocks are occupied by these files on disk, each

block consisting of 512 bytes(1024 in linux).

$ ls -l: To show long listing information about the file/directory.

This option displays most attributes of a file – like its permissions, size and ownership details.

-rw-rw-r– 1 atria atria 1176 Feb 16 00:19 1.c

Field 1 – File Permissions: Next 9 character specifies the files permission. Every 3 characters

specifies read, write, execute permissions for user(root), group and others respectively in order.

Taking above example, -rw-rw-r– indicates read-write permission for user(root), read permission

for group, and no permission for others respectively. If all three permissions are given to

user(root), group and others, the format looks like -rwxrwxrwx

Field 2 – Number of links: Second field specifies the number of links for that file. In this

example, 1 indicates only one link to this file.

Field 3 – Owner: Third field specifies owner of the file. In this example, this file is owned by

username ‘atria’.

Field 4 – Group: Fourth field specifies the group of the file. In this example, this file belongs to

”atria’ group.

Field 5 – Size: Fifth field specifies the size of file in bytes. In this example, ‘1176’ indicates the

file size in bytes.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 2

Field 6 – Last modified date and time: Sixth field specifies the date and time of the last

modification of the file. In this example, ‘Feb 16 00:19’ specifies the last modification time of

the file.

Field 7 – File name: The last field is the name of the file. In this example, the file name is 1.c.

The –d Option: Listing Directory Attributes

The ls, when used with directory names, lists files in the directory rather than the directory itself.

To force ls to list the attributes of a directory, rather than its contents, you need to use the -d

(directory) option:

Directories are easily identified in the listing by the first character of the first column, which here

shows a ‘d’. for ordinary files, this slot always shows a ‘-‘(hyphen), and for device files, either a

b or c. The significance of the attributes of a directory differ a good deal from an ordinary file.

File ownership

The privileges of the group are set by the owner of the file and not by the group member.

When the system administrator creates a user account he has to assign these parameteters.

1. User id (UID)-both its name & numeric representation

2. Group id(GID)- both its name & numeric representation

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 3

File permission

UNIX also provides a way to protect files based on users and groups.

 Three types of permissions:

 read, process may read contents of file

 write, process may write contents of file

 execute, process may execute file

 Three sets of permissions:

 permissions for owner

 permissions for group

 permissions for other

rwx r-x r - -

The first group has all three permission – rwx.

The second group has a ‘-’ in the middle slots which indicates the absence of write permission by

the group owner of the file – r-x.

The third group has write and execute bits absent – r--.

Changing File Permission (Chmod)

They are two types of chmod permission.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 4

1. Relative permissions

2. Absolute Permissions

Relative permission

In relative permission chmod only changes the permission specifying in the command line and

leaves the other permission unchanged.

Syntax:

 Chmod category operation permission filename(s)

Chmod takes as its argument an expression comprising some letters and symbols that completely

describe the user category and the type of permission being assigned or removed.

The expression contains 3 components.

1. User category (user, group, others)

2. The operation to be performed (assign or remove a permission)

3. The type of permission (read, write, execute).

Example:

To assign execute permission to the user of the file 2.c, we need to frame a suitable expression

by using appropriate characters from each of the three columns.

Absolute Permission

The expression used by chmod here is a string of three octal numbers (base 8). Octal numbers

use the base 8, and octal digits have the values 0 to 7. This means that a set of three bits can

represent one octal digit. Represent the permission of each category by one octal digit -

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 5

1. Read permission – 4(octal – 100)

2. Write permission -2(octal – 010)

3. Execute permission -1(octal – 001)

Example:

Recursively changing file permissions

Chmod descent a directory and apply the expression to every file and sub directory it finds.

This is done with the –R option

1. Chmod –R 755 . (works on hidden files also)

2. Chmod –R a+x * (leaves out hidden files)

Example

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 6

Directory permissions

If the default directory permission are not altered, the chmod theory still applies.

mkdir command in Linux allows the user to create directories (also referred to as folders in

some operating systems). This command can create multiple directories at once as well as set the

permissions for the directories. It is important to note that the user executing this command must

have enough permissions to create a directory in the parent directory, or he/she may receive a

‘permission denied’ error.

Example

$mkdir USN; ls –ld USN

drwxr-xr-x 2 atria atria 512 may 9 09:57 USN

the default permissions are different from those of ordinary files. The user has all the permission,

and group and others have read and execute permissions only. The permissions of a directory

also impact the security of its files.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 7

The shells interpretive cycle

Work on Wild cards

The metacharacters that are used to construct the generalized pattern for matching filenames

belong to the category called wildcards.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 8

A wildcard is a character that can be used as a substitute for any of a class of characters in a

search, thereby greatly increasing the flexibility and efficiency of searches.

Work on removing the special meanings of wild cards

Work on Three standard files and redirection

Let’s first understand what the term “ terminal”. In the context of redirection, the terminal is a

generic name that represents the screen, display or keyboard. In command output and error

messages on the terminal(keyboard). The shell associates three files with the terminal- two for

many commands see as input and output. A stream is simply a sequence of bytes.

When a user logs in, the shell makes available three files representing three streams. Each stream

is associated with a default device, and – generically speaking – this device is the terminal:

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 9

1. Standard Input – The file (or stream) representing input, which is connected to the

keyboard.

2. Standard output – the file (or stream) representing output, which is connected to the

display.

3. Standard error – the file (or stream) representing error messages that emanate from the

command or shell. This is also connected to the display.

Work on Pipes

A pipe is a form of redirection (transfer of standard output to some other destination) that is used

in Linux and other Unix-like operating systems to send the output of one

command/program/process to another command/program/process for further processing. The

Unix/Linux systems allow stdout of a command to be connected to stdin of another command.

You can make it do so by using the pipe character ‘|’.

Pipe is used to combine two or more commands, and in this, the output of one command acts as

input to another command, and this command’s output may act as input to the next command

and so on.

Basic and Extended Regular Expression

Based on the use of Meta characters, a regular expression can be divided in two categories; BRE

(Basic Regular Expression) and ERE (Extended Regular Expression). A regular expression is a

string that can be used to describe several sequences of characters. Regular expressions are used

by several different Unix commands, including ed, sed, awk, grep, and to a more limited

extent, vi. Here SED stands for stream editor. This stream-oriented editor was created

exclusively for executing scripts. Thus, all the input you feed into it passes through and goes to

STDOUT and it does not change the input file.

Like the shell’s wild–cards which match similar filenames with a single expression, grep uses an

expression of a different sort to match a group of similar patterns.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 10

• []: Matches any one of a set characters

• [-] with hyphen: Matches any one of a range characters

• ^: The pattern following it must occur at the beginning of each line

• ^ with [] : The pattern must not contain any character in the set specified

• $: The pattern preceding it must occur at the end of each line

• . (dot): Matches any one character

• \ (backslash): Ignores the special meaning of the character following it

• *: zero or more occurrences of the previous character

• (dot).*: Nothing or any numbers of characters.

Extended Regular Expression

An expression which uses the later added Meta characters. To instruct grep command to use later

added characters as Meta characters, an option –E is used. Let's take an example. In original

implementation, the pipe sign (|) is defined as regular character while in new implementation, it

is defined as a Meta character. If we use pipe sign without –E option, grep will treat it as a

regular character. But if we use it with –E option, grep will treat it as a Meta character. As a

Meta character, it is used to search multiple words. Let's search two users' information in

file /etc/passwd with and without –E option.

1. The + and ?

The ERE set includes two special characters, + and?. They are often used in place of the

* to restrict the matching scope. They signify the following:

 + - matches one or more occurrences of the previous character.

 ? – matches zero or one occurrences of the previous character.

In both cases, the emphasis is on the previous character. This means that b+ matches b,

bb, bbb, etc. The expression b? matches either a single instance of b or nothing.

Example- for ? – Aggarwal and Agarwal note that the character g occurs only once or

twice. So, gg? Now restricts the expansion to one or two gs only. The grep’s -E option to

use an ERE.

$ grep -E “[aA]gg?arwal” emp.lst

Aggarwal

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 11

agarwal

2. Matching multiple patterns (|, (and))

Without –E option, grep searched the pattern as a single word sanjay|rick in the

file /etc/passwd. While with –E option, it separated the pattern in two

words sanjay and rick and searched them individually.

The grep

Grep is an acronym that stands for Global Regular Expression Print. Grep is a Linux / Unix

command-line tool used to search for a string of characters in a specified file. The text search

pattern is called a regular expression. When it finds a match, it prints the line with the result. The

grep command is handy when searching through large log files.

The grep command consists of three parts in its most basic form. The first part starts with grep,

followed by the pattern that you are searching for. After the string comes the file name that the

grep searches through.

The simplest grep command syntax looks like this:

The command can contain many options, pattern variations, and file names. Combine as many

options as necessary to get the results you need. Below are the most common grep commands

with examples.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 12

To print any line from a file that contains a specific pattern of characters, in our case phoenix in

the file sample2, run the command:

grep phoenix sample2

Grep will display every line where there is a match for the word phoenix. When executing this

command, you do not get exact matches. Instead, the terminal prints the lines with words

containing the string of characters you entered. Here is an example:

Work on Options used by grep

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 13

The Shell Programming

Ordinary and environment variables

An important Unix concept is the environment, which is defined by environment variables. Some

are set by the system, others by you, yet others by the shell, or any program that loads another

program. A variable is a character string to which we assign a value. The value assigned could be

a number, text, filename, device, or any other type of data.

For example, first we set a variable TEST and then we access its value using the echo command

 $TEST="Unix Programming"

 $echo $TEST - It produces the following result.

 Unix Programming

Note that the environment variables are set without using the $ sign but while accessing them we

use the $ sign as prefix. These variables retain their values until we come out of the shell.When

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 14

you log in to the system, the shell undergoes a phase called initialization to set up the

environment. This is usually a two-step process that involves the shell reading the following files

/etc/profile

profile

The process is as follows −

1) The shell checks to see whether the file /etc/profile exists.

2) If it exists, the shell reads it. Otherwise, this file is skipped. No error message is

displayed.

3) The shell checks to see whether the file .profile exists in your home directory. Your home

directory is the directory that you start out in after you log in.

4) If it exists, the shell reads it; otherwise, the shell skips it. No error message is displayed.

5) As soon as both of these files have been read, the shell displays a prompt − $

This is the prompt where you can enter commands in order to have them executed.

Note − The shell initialization process detailed here applies to all Bourne type shells

The .profile

The file /etc/profile is maintained by the system administrator of your Unix machine and

contains shell initialization information required by all users on a system. The file .profile is

under your control. You can add as much shell customization information as you want to this

file. The minimum set of information that you need to configure includes −

• The type of terminal you are using.

• A list of directories in which to locate the commands.

• A list of variables affecting the look and feel of your terminal.

You can check your .profile available in your home directory. Open it using the vi editor and

check all the variables set for your environment.

Work on read & readonly commands

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 15

 Command line arguments

The Unix shell is used to run commands, and it allows users to pass run time arguments to these

commands. These arguments, also known as command line parameters, that allows the users to

either control the flow of the command or to specify the input data for the command.

$* - it stores the complete set of positional parameters as a single string.

$# - it is set to the number of arguments specified. This lets you design scripts that check

whether the right number of arguments have been entered.

$0 – holds the command name itself. You can link a shell script to be invoked by more than one

name. The script logic can check $0 to behave differently depending on the name by which it is

invoked.

The script, emp2.sh, runs grep with two positional parameters that are set by the script argument

director and emp.lst:

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 16

When arguments are specified in this way, the first word (the command itself) is assigned to $0,

the second word (the first argument) to $1, and the third word (the second argument) to $2. You

can use more positional parameters in this way up to $9. All assignments to positional and

special parameters are made by the shell.

Exit and exit status of command

C programs and shell scripts have a lot in common, and one of them is that they both use the

same command(or function in C) to terminate a program. It has the name exit in the shell and

exit() in C.

The command is generally run with a numeric argument:

 Exit 0 - used when everything went fine

 Exit 1 - used when something went wrong

These are two very common exit values. You don’t need to place this statement at the end of

every shell script because the shell understands when script execution is complete. The shell

offers a variable ($?) and a command (test) that evaluates a command’s exit status.

The parameters $? – the $? Stores the exit status of the last command. It has the value 0 if the

command succeeds and a nonzero value if it fails. This parameter is set by exit’s argument.

If no exit status is specified, then $? Is set to zero(true).

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 17

$grep director emp.lst >/dev/null; echo $?

0 - success

$grep manager emp.lst >/dev/null; echo $?

1 - failure- in finding pattern

Work on Logical operators for conditional execution

The shell provides two operators that allow conditional execution- the && and ||

$ [-d ~/Myfolder] || mkdir ~/Myfolder

The test command and its shortcut

Test is used as part of the conditional execution of shell commands. Test exits with the status

determined by EXPRESSION. Placing the EXPRESSION between square brackets ([and]) is

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 18

the same as testing the EXPRESSION with test. To see the exit status at the command

prompt, echo the value "$?" A value of 0 means the expression evaluated as true, and a value of

1 means the expression evaluated as false.

Syntax

 test EXPRESSION

 [EXPRESSION]

The test works in 3 ways

1) Numeric Comparison - Compares two numbers

2) String comparison - Compares two strings

3) File tests - Checks a file attributes.

1) Numeric Comparison – the numeric comparison used by test have a form different from

what you would have seen anywhere. They always begin with a – (hypen), followed by a

two-letter string, and enclosed on either side by whitespace. Here’s a typical operator:

-ne not equal

1) -eq is equal to if ["$a" -eq "$b"]

2) -ne is not equal to if ["$a" -ne "$b"]

3) -gt is greater than if ["$a" -gt "$b"]

4) -ge is greater than or equal to if ["$a" -ge "$b"]

5) -lt is less than if ["$a" -lt "$b"]

6) -le is less than or equal to if ["$a" -le "$b"]

Example:

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 19

2) String comparison

Test can be used to compare strings with yet another set of operators. Equality is performed with

= and inequality with the c-type operator !=. others test checks can be negated by the ! too. Thus

[! -z $string] negates [-z $string].

Example:

3) File tests - Checks a file attributes

Test can be used to test the various file attributes like its type (file, directory or symbolic link) or

its permissions (read, write, execute).

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 20

Example

While looping

The while loop has a similar role to play; it repeatedly iterates the loop as long as the

The general syntax:

while (condition is true)

do

 commands

done

The command enclosed by do and done are executed repeatedly as long as condition remains

true.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 21

if statement

Like any programming language, awk supports conditional structures (the if statement) and loops

(while and for). They all execute a body of statements as long as their control command

evaluates to true. This control command is simply a condition that is specified in the first line of

the construct.

The if statement permits two-way decision making, and its behavior is well known to all

programmers. The construct has also been elaborated in Section 13.6 where it appears in three

forms. The statement in awk takes this form:

syntax:

if command is successful

then

 execute commands

else

 execute commands

fi

if also requires a then. It evaluates the success or failure of the command that is specified in its

“command line”. If command succeeds, the sequence of commands following it is executed. If

command fails, then the else statement (if present) is executed. Every if is closed with a

corresponding fi.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 22

For looping

The shell’s for loop differs in structure from the ones used in other programming languages.

There is no three part structure as used in c, awk and perl.

syntax

for variable in list

do

 commands loop body

done

The loop body also uses the keywords do and done, but the additional parameters here are

variable and list.

Example:

for file in ch1 ch2; do

> cp $file ${file}.bak

> echo $file copied to $file.bak

done

Output:

ch1 copied to ch1.bak

ch2 copied to ch2.bak

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 23

Sources of list -

List from variables: Series of variables are evaluated by the shell before

executing the loop

Example:

$ for var in $PATH $HOME; do echo “$var” ; done

Output:

/bin:/usr/bin;/home/local/bin;

/home/user1

List from command substitution: Command substitution is used for creating a

list. This is used when list is large.

Example:

$ for var in `cat clist`

List from wildcards: Here the shell interprets the wildcards as filenames.

Example:

for file in *.htm *.html ; do

 sed ‘s/strong/STRONG/g

 s/img src/IMG SRC/g’ $file > $$

 mv $$ $file

done

Case control statement

The case statement is the second conditional offered by the shell. It doesn’t have a parallel either

in C (Switch is similar) or perl. The statement matches an expression for more than one

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 24

alternative, and uses a compact construct to permit multiway branching. case also handles string

tests, but in a more efficient manner than if.

Syntax:

case expression in

Pattern 1) commands1 ;;

Pattern 2) commands2 ;;

Pattern3) commands3 ;; …

Esac

Case first matches expression with pattern1. if the match succeeds, then it executes commands1,

which may be one or more commands. If the match fails, then pattern2 is matched and so forth.

Each command list is terminated with a pair of semicolon and the entire construct is closed with

esac (reverse of case).

Example:

#! /bin/sh

#echo “ Menu\n

1. List of files\n2. Processes of user\n3. Today’s Date

4. Users of system\n5.Quit\nEnter your option: \c”

read choice

case “$choice” in

1) ls –l;;

2) ps –f ;;

3) date ;;

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 25

4) who ;;

5) exit ;;

*) echo “Invalid option”

esac

Output

$ menu.sh

Menu

1. List of files

2. Processes of user

3. Today’s Date

4. Users of system

5. Quit

Enter your option: 3

Mon Oct 8 08:02:45 IST 2007

Work on The set & shift commands & handling positional parameters

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 1

Module – 3:Unix File APIs

General File APIs

There are special API’s to create these types of files. There is a set of Generic API’s that can be

used to manipulate and create more than one type of files. These API’s are:

1. Open - This is used to establish a connection between a process and a file i.e. it is used to

open an existing file for data transfer function or else it may be also be used to create a

new file. The returned value of the open system call is the file descriptor (row number of

the file table), which contains the inode information. The prototype of open function is

If successful, open returns a nonnegative integer representing the open file descriptor. If

unsuccessful, open returns –1.

The first argument is the name of the file to be created or opened. This may be an

absolute pathname or relative pathname.

If the given pathname is symbolic link, the open function will resolve the symbolic link

reference to a non symbolic link file to which it refers.

#include<sys/types.h>

#include<sys/fcntl.h>

int open(const char *pathname, int accessmode, mode_t permission);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 2

The second argument is access modes, which is an integer value that specifies how

actually the file should be accessed by the calling process.

Generally, the access modes are specified in <fcntl.h>. Various access modes are:

O_RDONLY - open for reading file only

O_WRONLY - open for writing file only

O_RDWR - opens for reading and writing file.

There are other access modes, which are termed as access modifier flags, and one or

more of the following can be specified by bitwise-ORing them with one of the above

access mode flags to alter the access mechanism of the file.

To illustrate the use of the above flags, the following example statement opens a file

called /usr/abc/usp for read and write in append mode:

If the file is opened in read only, then no other modifier flags can be used. If a file is

opened in write only or read write, then we are allowed to use any modifier flags along

with them.The third argument is used only when a new file is being created. The

symbolic names for file permission are given in the table.

int fd=open(“/usr/abc/usp”,O_RDWR | O_APPEND,0);

O_APPEND - Append data to the end of file.

O_CREAT - Create the file if it doesn’t exist

O_EXCL - Generate an error if O_CREAT is also specified and the file already exists.

O_TRUNC - If file exists discard the file content and set the file size to zero bytes.

O_NONBLOCK - Specify subsequent read or write on the file should be non-blocking.

O_NOCTTY - Specify not to use terminal device file as the calling process control

terminal.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 3

2. Creat - This system call is used to create new regular files. The prototype of creat is

Returns: file descriptor opened for write-only if OK, -1 on error. The first argument

pathname specifies name of the file to be created. The second argument mode_t, specifies

permission of a file to be accessed by owner group and others.The creat function can be

implemented using open function as:

3. Read - The read function fetches a fixed size of block of data from a file referenced by a

given file descriptor. The prototype of read function is:

If successful, read returns the number of bytes actually read. If unsuccessful, read returns

–1.

The first argument is an integer, fdesc that refers to an opened file. The second argument,

buf is the address of a buffer holding any data read. The third argument specifies how

many bytes of data are to be read from the file. The size_t data type is defined in the

#include <sys/types.h>

#include<unistd.h>

int creat(const char *pathname, mode_t mode);

#include<sys/types.h>

#include<unistd.h>

size_t read(int fdesc, void *buf, size_t nbyte);

#define creat(path_name, mode)

open (pathname, O_WRONLY | O_CREAT | O_TRUNC, mode);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 4

<sys/types.h> header and should be the same as unsigned int. There are several cases in

which the number of bytes actually read is less than the amount requested:

• When reading from a regular file, if the end of file is reached before the requested

number of bytes has been read. For example, if 30 bytes remain until the end of

file and we try to read 100 bytes, read returns 30. The next time we call read, it

will return 0 (end of file).

• When reading from a terminal device. Normally, up to one line is read at a time.

• When reading from a network. Buffering within the network may cause less than

the requested amount to be returned.

• When reading from a pipe or FIFO. If the pipe contains fewer bytes than

requested, read will return only what is available.

4. Write - The write system call is used to write data into a file. The write function puts data

to a file in the form of fixed block size referred by a given file descriptor. The prototype

of write is

If successful, write returns the number of bytes actually written.

 If unsuccessful, write returns -1.

The first argument, fdesc is an integer that refers to an opened file.

The second argument, buf is the address of a buffer that contains data to be written.

The third argument, size specifies how many bytes of data are in the buf argument.

The return value is usually equal to the number of bytes of data successfully written to a

file. (size value)

5. Close - The close system call is used to terminate the connection to a file from a process.

The prototype of the close is

#include<sys/types.h>

#include<unistd.h>

ssize_t write(int fdesc, const void *buf, size_t size);

#include<unistd.h>

int close(int fdesc);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 5

If successful, close returns 0. If unsuccessful, close returns –1.

The argument fdesc refers to an opened file.

Close function frees the unused file descriptors so that they can be reused to reference

other files. This is important because a process may open up to OPEN_MAX files at any

time and the close function allows a process to reuse file descriptors to access more than

OPEN_MAX files in the course of its execution. The close function de-allocates system

resources like file table entry and memory buffer allocated to hold the read/write.

6. Fcntl - The fcntl function helps a user to query or set flags and the close-on-exec flag of

any file descriptor. The prototype of fcntl is

The first argument is the file descriptor.

The second argument cmd specifies what operation has to be performed.

The third argument is dependent on the actual cmd value.

The possible cmd values are defined in <fcntl.h> header.

The fcntl function is useful in changing the access control flag of a file descriptor.

For example: after a file is opened for blocking read-write access and the process needs

to change the access to non-blocking and in write-append mode, it can call:

int cur_flags=fcntl(fdesc,F_GETFL);

int rc=fcntl(fdesc,F_SETFL,cur_flag | O_APPEND | O_NONBLOCK);

The following example reports the close-on-exec flag of fdesc, sets it to on afterwards:

cout<<fdesc<<”close-on-exec”<<fcntl(fdesc,F_GETFD)<<endl;

(void)fcntl(fdesc,F_SETFD,1); //turn on close-on-exec flag

#include<fcntl.h>

int fcntl(int fdesc, int cmd, …);

cmd value Use

F_GETFL Returns the access control flags of a file descriptor fdesc

F_SETFL Sets or clears access control flags that are specified in the third argument to
fcntl. The allowed access control flags are O_APPEND & O_NONBLOCK

F_GETFD Returns the close-on-exec flag of a file referenced by fdesc. If a return value is
zero, the flag is off; otherwise on.

F_SETFD Sets or clears the close-on-exec flag of a fdesc. The third argument to fcntl is
an integer value, which is 0 to clear the flag, or 1 to set the flag

F_DUPFD Duplicates file descriptor fdesc with another file descriptor. The third argument
to fcntl is an integer value which specifies that the duplicated file descriptor
must be greater than or equal to that value. The return value of
fcntl is the duplicated file descriptor

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 6

The following statements change the standard input og a process to a file called FOO:

int fdesc=open(“FOO”,O_RDONLY); //open FOO for read

close(0); //close standard input

if(fcntl(fdesc,F_DUPFD,0)==-1)

perror(“fcntl”); //stdin from FOO now

char buf[256];

int rc=read(0,buf,256); //read data from FOO

The dup and dup2 functions in UNIX perform the same file duplication function as fcntl.

They can be implemented using fcntl as:

#define dup(fdesc) fcntl(fdesc, F_DUPFD,0)

#define dup2(fdesc1,fd2) close(fd2),fcntl(fdesc,F_DUPFD,fd2)

7. Lseek - The lseek function is also used to change the file offset to a different value. Thus

lseek allows a process to perform random access of data on any opened file. The

prototype of lseek is

On success it returns new file offset, and –1 on error. The first argument fdesc, is an

integer file descriptor that refer to an opened file. The second argument pos, specifies a

byte offset to be added to a reference location in deriving the new file offset value. The

third argument whence, is the reference location.

They are defined in the <unistd.h> header. If an lseek call will result in a new file offset

that is beyond the current end-of-file, two outcomes possible are:

• If a file is opened for read-only, lseek will fail.

#include <sys/types.h>

#include <unistd.h>

off_t lseek(int fdesc, off_t pos, int whence);

Whence value Reference location

SEEK_CUR Current file pointer address

SEEK_SET The beginning of a file

SEEK_END The end of a file

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 7

• If a file is opened for write access, lseek will succeed.

• The data between the end-of-file and the new file offset address will be initialised

with NULL characters.

8. Link - The link function creates a new link for the existing file. The prototype of the link

function is

If successful, the link function returns 0. If unsuccessful, link returns –1. The first

argument cur_link, is the pathname of existing file. The second argument new_link is a

new pathname to be assigned to the same file. If this call succeeds, the hard link count

will be increased by 1. The UNIX ln command is implemented using the link API.

9. Unlink - The unlink function deletes a link of an existing file. This function decreases the

hard link count attributes of the named file, and removes the file name entry of the link

from directory file. A file is removed from the file system when its hard link count is zero

and no process has any file descriptor referencing that file. The prototype of unlink is

If successful, the unlink function returns 0. If unsuccessful, unlink returns –1. The

argument cur_link is a path name that references an existing file.

ANSI C defines the rename function which does the similar unlink operation. The

prototype of the rename function is:

#include <unistd.h>

int link(const char *cur_link, const char *new_link);

/*test_ln.c*/
#include<iostream.h>

#include<stdio.h>

#include<unistd.h>

int main(int argc, char* argv)

{

if(argc!=3)

{

cerr<<”usage:”<<argv[0]<<”<src_file><dest_file>\n”;

return 0;

}

if(link(argv[1],argv[2])==-1)

{

perror(“link”);

return 1;

}

return 0;

}

#include <unistd.h>

int unlink(const char * cur_link);

#include<stdio.h>

int rename(const char * old_path_name,const char * new_path_name);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 8

The UNIX mv command can be implemented using the link and unlink APIs as shown:

10. Stat, fstat - The stat and fstat function retrieves the file attributes of a given file. The only

difference between stat and fstat is that the first argument of a stat is a file pathname,

where as the first argument of fstat is file descriptor. The prototypes of these functions

are

The second argument to stat and fstat is the address of a struct stat-typed variable which

is defined in the <sys/stat.h> header. Its declaration is as follows:

The return value of both functions is 0 if they succeed and -1 if they fail errno contains an

error status code. The lstat function prototype is the same as that of stat:

We can determine the file type with the macros as shown.

#include <iostream.h>

#include <unistd.h>

#include<string.h>

int main (int argc, char *argv[])

{

if (argc != 3 || strcmp(argv[1],argcv[2]))

cerr<<”usage:”<<argv[0]<<””<old_link><new_link>\n”;

else if(link(argv[1],argv[2]) == 0)

return unlink(argv[1]);

return 1;

}

#include<sys/stat.h>

#include<unistd.h>

int stat(const char *pathname, struct stat *statv);

int fstat(const int fdesc, struct stat *statv);

struct stat

{

dev_t st_dev; /* file system ID */

ino_t st_ino; /* file inode number */

mode_t st_mode; /* contains file type and permission */

nlink_t st_nlink; /* hard link count */

uid_t st_uid; /* file user ID */

gid_t st_gid; /* file group ID */

dev_t st_rdev; /*contains major and minor device#*/

off_t st_size; /* file size in bytes */

time_t st_atime; /* last access time */

time_t st_mtime; /* last modification time */

time_t st_ctime; /* last status change time */

};

 int lstat(const char * path_name, struct stat* statv);

macro Type of file
S_ISREG() regular file
S_ISDIR() directory file
S_ISCHR() character special file
S_ISBLK() block special file
S_ISFIFO() pipe or FIFO
S_ISLNK() symbolic link
S_ISSOCK() socket

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 9

11. access - The access system call checks the existence and access permission of user to a

named file. The prototype of access function is:

On success access returns 0, on failure it returns –1. The first argument is the pathname

of a file. The second argument flag, contains one or more of the following bit flag .

The flag argument value to an access call is composed by bitwise-ORing one or more of

the above bit flags as shown:

example to check whether a file exists:

12. chmod, fchmod - The chmod and fchmod functions change file access permissions for

owner, group & others as well as the set_UID, set_GID and sticky flags. A process must

have the effective UID of either the super-user/owner of the file. The prototypes of these

functions are

The pathname argument of chmod is the path name of a file whereas the fdesc argument

of fchmod is the file descriptor of a file. The chmod function operates on the specified

file, whereas the fchmod function operates on a file that has already been opened. To

change the permission bits of a file, the effective user ID of the process must be equal to

#include<unistd.h>

int access(const char *path_name, int flag);

Bit flag Uses
F_OK Checks whether a named file exist
R_OK Test for read permission
W_OK Test for write permission
X_OK Test for execute permission

int rc=access(“/usr/divya/usp.txt”,R_OK | W_OK);

if(access(“/usr/divya/usp.txt”, F_OK)==-1)

printf(“file does not exists”);

else

printf(“file exists”);

#include<sys/types.h>

#include<sys/stat.h>

#include<unistd.h>

int chmod(const char *pathname, mode_t flag);

int fchmod(int fdesc, mode_t flag);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 10

the owner ID of the file, or the process must have super-user permissions. The mode is

specified as the bitwise OR of the constants shown below

13. chown, fchown, lchow - The chown functions changes the user ID and group ID of files.

The prototypes of these functions are

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 11

The path_name argument is the path name of a file. The uid argument specifies the new

user ID to be assigned to the file. The gid argument specifies the new group ID to be

assigned to the file.

The above program takes at least two command line arguments:

• The first one is the user name to be assigned to files

• The second and any subsequent arguments are file path names.

The program first converts a given user name to a user ID via getpwuid function. If that

succeeds, the program processes each named file as follows: it calls stat to get the file

group ID, then it calls chown to change the file user ID. If either the stat or chown fails,

error is displayed.

#include<unistd.h>

#include<sys/types.h>

int chown(const char *path_name, uid_t uid, gid_t gid);

int fchown(int fdesc, uid_t uid, gid_t gid);

int lchown(const char *path_name, uid_t uid, gid_t gid);

/* Program to illustrate chown function */
#include<iostream.h>

#include<sys/types.h>

#include<sys/stat.h>

#include<unistd.h>

#include<pwd.h>

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 12

14. Utime - The utime function modifies the access time and the modification time stamps of

a file. The prototype of utime function is

On success it returns 0, on failure it returns –1. The path_name argument specifies the

path name of a file. The times argument specifies the new access time and modification

time for the file.

The struct utimbuf is defined in the <utime.h> header as:

The time_t datatype is an unsigned long and its data is the number of the seconds elapsed

since the birthday of UNIX : 12 AM , Jan 1 of 1970. If the times (variable) is specified as

NULL, the function will set the named file access and modification time to the current

time. If the times (variable) is an address of the variable of the type struct utimbuf, the

function will set the file access time and modification time to the value specified by the

variable.

File and Record Locking

Multiple processes performs read and write operation on the same file concurrently. This

provides a means for data sharing among processes, but it also renders difficulty for any process

in determining when the other process can override data in a file. So, in order to overcome this

drawback UNIX and POSIX standard support file locking mechanism. File locking is applicable

for regular files. Only a process can impose a write lock or read lock on either a portion of a file

or on the entire file. The differences between the read lock and the write lock is that when write

lock is set, it prevents the other process from setting any over-lapping read or write lock on the

locked file. Similarly when a read lock is set, it prevents other processes from setting any

overlapping write locks on the locked region. The intension of the write lock is to prevent other

processes from both reading and writing the locked region while the process that sets the lock is

#include<sys/types.h>

#include<unistd.h>

#include<utime.h>

int utime(const char *path_name, struct utimbuf *times);

struct utimbuf

{

time_t actime; /* access time */

time_t modtime; /* modification time */

}

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 13

modifying the region, so write lock is termed as “Exclusive lock”. The use of read lock is to

prevent other processes from writing to the locked region while the process that sets the lock is

reading data from the region. Other processes are allowed to lock and read data from the locked

regions. Hence a read lock is also called as “shared lock “. File lock may be mandatory if they

are enforced by an operating system kernel. If a mandatory exclusive lock is set on a file, no

process can use the read or write system calls to access the data on the locked region. These

mechanisms can be used to synchronize reading and writing of shared files by multiple

processes. If a process locks up a file, other processes that attempt to write to the locked regions

are blocked until the former process releases its lock. Problem with mandatory lock is – if a

runaway process sets a mandatory exclusive lock on a file and never unlocks it, then, no other

process can access the locked region of the file until the runway process is killed or the system

has to be rebooted. If locks are not mandatory, then it has to be advisory lock. A kernel at the

system call level does not enforce advisory locks. This means that even though a lock may be set

on a file, no other processes can still use the read and write functions to access the file. To make

use of advisory locks, process that manipulate the same file must co-operate such that they

follow the given below procedure for every read or write operation to the file.

• Try to set a lock at the region to be accesses. If this fails, a process can either wait for the

lock request to become successful.

• After a lock is acquired successfully, read or write the locked region.

• Release the lock.

If a process sets a read lock on a file, for example from address 0 to 256, then sets a write lock on

the file from address 0 to 512, the process will own only one write lock on the file from 0 to 512,

the previous read lock from 0 to 256 is now covered by the write lock and the process does not

own two locks on the region from 0 to 256. This process is called “Lock Promotion”.

Furthermore, if a process now unblocks the file from 128 to 480, it will own two write locks on

the file: one from 0 to 127 and the other from 481 to 512. This process is called “Lock Splitting”.

UNIX systems provide fcntl function to support file locking. By using fcntl it is possible to

impose read or write locks on either a region or an entire file.

The prototype of fcntl is

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 14

The first argument specifies the file descriptor. The second argument cmd_flag specifies what

operation has to be performed. If fcntl is used for file locking then it can values as

For file locking purpose, the third argument to fctnl is an address of a struct flock type variable.

This variable specifies a region of a file where lock is to be set, unset or queried.

The l_type field specifies the lock type to be set or unset. The possible values, which are defined

in the <fcntl.h> header, and their uses are

The l_whence, l_start & l_len define a region of a file to be locked or unlocked. The possible

values of l_whence and their uses are

#include<fcntl.h>

int fcntl(int fdesc, int cmd_flag,);

F_SETLK sets a file lock, do not block if this cannot succeed immediately.
F_SETLKW sets a file lock and blocks the process until the lock is acquired.
F_GETLK queries as to which process locked a specified region of file.

struct flock

{

short l_type; /* what lock to be set or to unlock file */

short l_whence; /* Reference address for the next field */

off_t l_start ; /*offset from the l_whence reference addr*/

off_t l_len ; /*how many bytes in the locked region */

pid_t l_pid ; /*pid of a process which has locked the file */

};

l_type value Use

F_RDLCK Set a read lock on a specified region

F_WRLCK Set a write lock on a specified region

F_UNLCK Unlock a specified region

l_whence value Use

SEEK_CUR The l_start value is added to current file pointer address

SEEK_SET The l_start value is added to byte 0 of the file

SEEK_END The l_start value is added to the end of the file

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 15

 A lock set by the

fcntl API is an advisory lock but we can also use fcntl for mandatory locking purpose with the

following attributes set before using fcntl

• Turn on the set-GID flag of the file.

• Turn off the group execute right permission of the file.

In the given example program we have performed a read lock on a file “divya” from the 10th

byte to 25th byte.

Directory File APIs

A Directory file is a record-oriented file, where each record stores a file name and the inode

number of a file that resides in that directory. Directories are created with the mkdir API and

deleted with the rmdir API. The prototype of mkdir is

The first argument is the path name of a directory file to be created. The second argument mode,

specifies the access permission for the owner, groups and others to be assigned to the file. This

function creates a new empty directory. The entries for “.” and “..” are automatically created.

The specified file access permission, mode, are modified by the file mode creation mask of the

Example Program
#include <unistd.h>

#include<fcntl.h>

int main ()

{

int fd;

struct flock lock;

fd=open(“divya”,O_RDONLY);

lock.l_type=F_RDLCK;

lock.l_whence=0;

lock.l_start=10;

lock.l_len=15;

fcntl(fd,F_SETLK,&lock);

}

#include<sys/stat.h>

#include<unistd.h>

int mkdir(const char *path_name, mode_t mode);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 16

process. To allow a process to scan directories in a file system independent manner, a directory

record is defined as struct dirent in the <dirent.h> header for UNIX. Some of the functions that

are defined for directory file operations in the above header are

The uses of these functions are

An empty directory is deleted with the rmdir API. The prototype of rmdir is

If the link count of the directory becomes 0, with the call and no other process has the directory

open then the space occupied by the directory is freed. UNIX systems have defined additional

functions for random access of directory file records.

#include<sys/types.h>

#if defined (BSD)&&!_POSIX_SOURCE

#include<sys/dir.h>

typedef struct direct Dirent;

#else

#include<dirent.h>

typedef struct direct Dirent;

#endif

DIR *opendir(const char *path_name);

Dirent *readdir(DIR *dir_fdesc);

int closedir(DIR *dir_fdesc); void

rewinddir(DIR *dir_fdsec);

Function Use

opendir Opens a directory file for read-only. Returns a file handle dir * for future
reference of the file.

readdir Reads a record from a directory file referenced by dir-fdesc and returns that
record information.

rewinddir Resets the file pointer to the beginning of the directory file referenced by dir-
fdesc. The next call to readdir will read the first record from the file.

closedir closes a directory file referenced by dir-fdesc.

#include<unistd.h>

int rmdir (const char * path_name);

Function Use

telldir Returns the file pointer of a given dir_fdesc

seekdir Changes the file pointer of a given dir_fdesc to a specified address

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 17

Device File APIs

Device files are used to interface physical device with application programs. A process with

superuser privileges to create a device file must call the mknod API. The user ID and group ID

attributes of a device file are assigned in the same manner as for regular files. When a process

reads or writes to a device file, the kernel uses the major and minor device numbers of a file to

select a device driver function to carry out the actual data transfer. Device file support is

implementation dependent. UNIX System defines the mknod API to create device files. The

prototype of mknod is

The first argument pathname is the pathname of a device file to be created. The second argument

mode specifies the access permission, for the owner, group and others, also S_IFCHR or

S_IBLK flag to be assigned to the file. The third argument device_id contains the major and

minor device number.

Example

The above function creates a block device file “abc”, to which all the three i.e. read, write and

execute permission is granted for user, group and others with major number as 8 and minor

number 3. On success mknod API returns 0 , else it returns -1. The following test_mknod.C

program illustrates the use of the mknod, open, read, write and close APIs on a block device file.

#include<sys/stat.h>

#include<unistd.h>

int mknod(const char* path_name, mode_t mode, int device_id);

mknod(“SCSI5”,S_IFBLK | S_IRWXU | S_IRWXG | S_IRWXO,(15<<8) | 3);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 18

FIFO File APIs

FIFO files are sometimes called named pipes. Pipes can be used only between related processes

when a common ancestor has created the pipe. Creating a FIFO is similar to creating a file.

Indeed the pathname for a FIFO exists in the file system. The prototype of mkfifo is

The first argument pathname is the pathname(filename) of a FIFO file to be created. The second

argument mode specifies the access permission for user, group and others and as well as the

S_IFIFO flag to indicate that it is a FIFO file. On success it returns 0 and on failure it returns –1.

Example

#include<iostream.h>

#include<stdio.h>

#include<stdlib.h>

#include<sys/types.h>

#include<unistd.h>

#include<fcntl.h>

#include<sys/stat.h>

int main(int argc, char* argv[])

{

if(argc!=4)

{

cout<<"usage:"<<argv[0]<<"<file><major_no><minor_no>";

return 0;

}

int major=atoi(argv[2],minor=atoi(argv[3]);

(void) mknod(argv[1], S_IFCHR | S_IRWXU | S_IRWXG | S_IRWXO, (major<<8) | minor);

int rc=1,fd=open(argv[1],O_RDW | O_NONBLOCK | O_NOCTTY);

char buf[256];

while(rc && fd!=-1)

if((rc=read(fd,buf,sizeof(buf)))<0)

perror("read");

else if(rc)

cout<<buf<<endl;

close(fd);

}

#include<sys/types.h>

#include<sys/stat.h>

#include<unistd.h>

int mkfifo(const char *path_name, mode_t mode);

mkfifo(“FIFO5”,S_IFIFO | S_IRWXU | S_IRGRP | S_ROTH);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 19

The above statement creates a FIFO file “divya” with read-write-execute permission for user and

only read permission for group and others. Once we have created a FIFO using mkfifo, we open

it using open. Indeed, the normal file I/O functions (read, write, unlink etc) all work with FIFOs.

When a process opens a FIFO file for reading, the kernel will block the process until there is

another process that opens the same file for writing. Similarly whenever a process opens a FIFO

file write, the kernel will block the process until another process opens the same FIFO for

reading. This provides a means for synchronization in order to undergo inter-process

communication. If a particular process tries to write something to a FIFO file that is full, then

that process will be blocked until another process has read data from the FIFO to make space for

the process to write. Similarly, if a process attempts to read data from an empty FIFO, the

process will be blocked until another process writes data to the FIFO. From any of the above

condition if the process doesn’t want to get blocked then we should specify O_NONBLOCK in

the open call to the FIFO file. If the data is not ready for read/write then open returns –1 instead

of process getting blocked. If a process writes to a FIFO file that has no other process attached to

it for read, the kernel will send SIGPIPE signal to the process to notify that it is an illegal

operation. Another method to create FIFO files (not exactly) for inter-process communication is

to use the pipe system call. The prototype of pipe is

Returns 0 on success and –1 on failure. If the pipe call executes successfully, the process can

read from fd[0] and write to fd[1]. A single process with a pipe is not very useful. Usually a

parent process uses pipes to communicate with its children.

The following test_fifo.C example illustrates the use of mkfifo, open, read, write and close APIs

for a FIFO file:

#include <unistd.h>

int pipe(int fds[2]);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 20

Symbolic Link File APIs

A symbolic link is an indirect pointer to a file, unlike the hard links which pointed directly to the

inode of the file.

Symbolic links are developed to get around the limitations of hard links:

1) Symbolic links can link files across file systems.

2) Symbolic links can link directory files

3) Symbolic links always reference the latest version of the files to which they link

#include<iostream.h>

#include<stdio.h>

#include<sys/types.h>

#include<unistd.h>

#include<fcntl.h>

#include<sys/stat.h>

#include<string.h>

#include<errno.h>

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 21

4) There are no file system limitations on a symbolic link and what it points to and anyone

can create a symbolic link to a directory.

5) Symbolic links are typically used to move a file or an entire directory hierarchy to some

other location on a system.

6) A symbolic link is created with the symlink.

The prototype is

The org_link and sym_link arguments to a sym_link call specify the original file path name and

the symbolic link path name to be created.

The Environment of a Unix Process

Introduction

#include<unistd.h>

#include<sys/types.h>

#include<sys/stat.h>

int symlink(const char *org_link, const char *sym_link);

int readlink(const char* sym_link,char* buf,int size);

int lstat(const char * sym_link, struct stat* statv);

/* Program to illustrate symlink function */

#include<unistd.h>

#include<sys/types.h>

#include<string.h>

int main(int argc, char *argv[])

{

char *buf [256], tname [256];

if (argc ==4)

return symlink(argv[2], argv[3]); /* create a symbolic link */

else

return link(argv[1], argv[2]); /* creates a hard link */

}

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 22

A Process is a program under execution in a UNIX or POSIX system.

main Function

A C program starts execution with a function called main. The prototype for the main function is

where argc is the number of command-line arguments, and argv is an array of pointers to the

arguments. When a C program is executed by the kernel by one of the exec functions, a special

start-up routine is called before the main function is called. The executable program file specifies

this routine as the starting address for the program; this is set up by the link editor when it is

invoked by the C compiler. This start-up routine takes values from the kernel, the command-line

arguments and the environment and sets things up so that the main function is called.

Process Termination

There are eight ways for a process to terminate. Normal termination occurs in five ways:

1) Return from main

2) Calling exit

3) Calling _exit or _Exit

4) Return of the last thread from its start routine

5) Calling pthread_exit from the last thread

Abnormal termination occurs in three ways:

6) Calling abort

7) Receipt of a signal

8) Response of the last thread to a cancellation request

Exit Functions

Three functions terminate a program normally: _exit and _Exit, which return to the kernel

immediately, and exit, which performs certain cleanup processing and then returns to the kernel.

int main(int argc, char *argv[]);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 23

All three exit functions expect a single integer argument, called the exit status. Returning an

integer value from the main function is equivalent to calling exit with the same value. Thus

exit(0); is the same as return(0); from the main function.

In the following situations the exit status of the process is undefined.

• any of these functions is called without an exit status.

• main does a return without a return value

• main “falls off the end”, i.e if the exit status of the process is undefined.

Example:

atexit Function

With ISO C, a process can register up to 32 functions that are automatically called by exit. These

are called exit handlers and are registered by calling the atexit function.

Returns: 0 if OK, nonzero on error. This declaration says that we pass the address of a function

as the argument to atexit. When this function is called, it is not passed any arguments and is not

expected to return a value. The exit function calls these functions in reverse order of their

registration. Each function is called as many times as it was registered.

Example of exit handlers

$ cc hello.c

$./a.out hello, world //print the exit status

$ echo $? 13

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 24

The below figure summarizes how a C program is started and the various ways it can terminate.

#include "apue.h"

static void my_exit1(void);

static void my_exit2(void);

int main(void)

{

if (atexit(my_exit2) != 0)

err_sys("can't register my_exit2");

if (atexit(my_exit1) != 0)

err_sys("can't register my_exit1");

if (atexit(my_exit1) != 0)

err_sys("can't register my_exit1");

printf("main is done\n");

return(0);

}

static void

my_exit1(void)

{

printf("first exit handler\n");

}

static void

my_exit2(void)

{

printf("second exit handler\n");

}

Output:

$./a.out

main is done

first exit handler

first exit handler

second exit handler

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 25

Command-Line Arguments

When a program is executed, the process that does the exec can pass command-line arguments to

the new program.

Example: Echo all command-line arguments to standard output

Environment List

#include "apue.h"

int main(int argc, char *argv[])

{

int i;

for (i = 0; i < argc; i++) /* echo all command-line args */

printf("argv[%d]: %s\n", i, argv[i]);

exit(0);

}

Output:

$./echoarg arg1 TEST foo

argv[0]: ./echoarg

argv[1]: arg1

argv[2]: TEST

argv[3]: foo

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 26

Each program is also passed an environment list. Like the argument list, the environment list is

an array of character pointers, with each pointer containing the address of a null-terminated C

string. The address of the array of pointers is contained in the global variable environ:

extern char **environ;

Figure: Environment consisting of five C character strings

Generally, any environmental variable is of the form: name=value.

Memory Layout of a C Program

Historically, a C program has been composed of the following pieces:

1) Text segment, the machine instructions that the CPU executes. Usually, the text segment

is sharable so that only a single copy needs to be in memory for frequently executed

programs, such as text editors, the C compiler, the shells, and so on. Also, the text

segment is often read-only, to prevent a program from accidentally modifying its

instructions.

2) Initialized data segment, usually called simply the data segment, containing variables

that are specifically initialized in the program. For example, the C declaration

int maxcount =99;

appearing outside any function causes this variable to be stored in the initialized data

segment with its initial value.

3) Uninitialized data segment, often called the "bss" segment, named after an ancient

assembler operator that stood for "block started by symbol." Data in this segment is

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 27

initialized by the kernel to arithmetic 0 or null pointers before the program starts

executing. The C declaration

long sum[1000];

appearing outside any function causes this variable to be stored in the uninitialized data

segment.

4) Stack, where automatic variables are stored, along with information that is saved each

time a function is called. Each time a function is called, the address of where to return to

and certain information about the caller's environment, such as some of the machine

registers, are saved on the stack. The newly called function then allocates room on the

stack for its automatic and temporary variables. This is how recursive functions in C can

work. Each time a recursive function calls itself, a new stack frame is used, so one set of

variables doesn't interfere with the variables from another instance of the function.

5) Heap, where dynamic memory allocation usually takes place. Historically, the heap has

been located between the uninitialized data and the stack.

Shared Libraries

Nowadays most UNIX systems support shared libraries. Shared libraries remove the common

library routines from the executable file, instead maintaining a single copy of the library routine

somewhere in memory that all processes reference. This reduces the size of each executable file

but may add some runtime overhead, either when the program is first executed or the first time

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 28

each shared library function is called. Another advantage of shared libraries is that, library

functions can be replaced with new versions without having to re-link, edit every program that

uses the library. With cc compiler we can use the option –g to indicate that we are using shared

library.

Memory Allocation

ISO C specifies three functions for memory allocation:

1) malloc, which allocates a specified number of bytes of memory. The initial value of the

memory is indeterminate.

2) calloc, which allocates space for a specified number of objects of a specified size. The

space is initialized to all 0 bits.

3) realloc, which increases or decreases the size of a previously allocated area. When the

size increases, it may involve moving the previously allocated area somewhere else, to

provide the additional room at the end. Also, when the size increases, the initial value of

the space between the old contents and the end of the new area is indeterminate.

All three return: non-null pointer if OK, NULL on error

The pointer returned by the three allocation functions is guaranteed to be suitably aligned so that

it can be used for any data object. Because the three alloc functions return a generic void *

pointer, if we #include<stdlib.h> (to obtain the function prototypes), we do not explicitly have to

cast the pointer returned by these functions when we assign it to a pointer of a different type. The

function free causes the space pointed to by ptr to be deallocated. This freed space is usually put

into a pool of available memory and can be allocated in a later call to one of the three alloc

functions. The realloc function lets us increase or decrease the size of a previously allocated area.

void free(void *ptr);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 29

For example, if we allocate room for 512 elements in an array that we fill in at runtime but find

that we need room for more than 512 elements, we can call realloc. If there is room beyond the

end of the existing region for the requested space, then realloc doesn't have to move anything; it

simply allocates the additional area at the end and returns the same pointer that is large enough,

copies the existing 512-element array to the new area, frees the old area, and returns the pointer

to the new area.

The allocation routines are usually implemented with the sbrk(2) system call. Although sbrk can

expand or contract the memory of a process, most versions of malloc and free never decrease

their memory size. The space that we free is available for a later allocation, but the freed space is

not usually returned to the kernel; that space is kept in the malloc pool.

It is important to realize that most implementations allocate a little more space than is requested

and use the additional space for record keeping the size of the allocated block, a pointer to the

next allocated block, and the like. This means that writing past the end of an allocated area could

overwrite this record-keeping information in a later block. These types of errors are often

catastrophic, but difficult to find, because the error may not show up until much later. Also, it is

possible to overwrite this record keeping by writing before the start of the allocated area.

Because memory allocation errors are difficult to track down, some systems provide versions of

these functions that do additional error checking every time one of the three alloc functions or

free is called. These versions of the functions are often specified by including a special library

for the link editor. There are also publicly available sources that you can compile with special

flags to enable additional runtime checking.

Alternate Memory Allocators

Many replacements for malloc and free are available.

1) libmalloc

SVR4-based systems, such as Solaris, include the libmalloc library, which provides a set of

interfaces matching the ISO C memory allocation functions. The libmalloc library includes

mallopt, a function that allows a process to set certain variables that control the operation of the

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 30

storage allocator. A function called mallinfo is also available to provide statistics on the memory

allocator.

2) vmalloc

Vo describes a memory allocator that allows processes to allocate memory using different

techniques for different regions of memory. In addition to the functions specific to vmalloc, the

library also provides emulations of the ISO C memory allocation functions.

3) quick-fit

Historically, the standard malloc algorithm used either a best-fit or a first-fit memory allocation

strategy. Quick-fit is faster than either, but tends to use more memory. Free implementations of

malloc and free based on quick-fit are readily available from several FTP sites.

4) alloca Function

The function alloca has the same calling sequence as malloc; however, instead of allocating

memory from the heap, the memory is allocated from the stack frame of the current function.

The advantage is that we don't have to free the space; it goes away automatically when the

function returns. The alloca function increases the size of the stack frame. The disadvantage is

that some systems can't support alloca, if it's impossible to increase the size of the stack frame

after the function has been called.

Environment Variables

The environment strings are usually of the form: name=value. The UNIX kernel never looks at

these strings; their interpretation is up to the various applications. The shells, for example, use

numerous environment variables. Some, such as HOME and USER, are set automatically at login,

and others are for us to set. We normally set environment variables in a shell start-up file to control

the shell’s actions. The functions that we can use to set and fetch values from the variables are

setenv, putenv, and getenv functions. The prototype of these functions are

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 31

Returns: pointer to value associated with name, NULL if not found.

Note that this function returns a pointer to the value of a name=value string. We should always

use getenv to fetch a specific value from the environment, instead of accessing environ directly.

In addition to fetching the value of an environment variable, sometimes we may want to set an

environment variable. We may want to change the value of an existing variable or add a new

variable to the environment. The prototypes of these functions are

All return: 0 if OK, nonzero on error.

• The putenv function takes a string of the form name=value and places it in the

environment list. If name already exists, its old definition is first removed.

• The setenv function sets name to value. If name already exists in the environment, then

a) if rewrite is nonzero, the existing definition for name is first removed;

b) if rewrite is 0, an existing definition for name is not removed, name is not set to the

new value, and no error occurs.

• The unsetenv function removes any definition of name. It is not an error if such a

definition does not exist. Note the difference between putenv and setenv. Whereas setenv

must allocate memory to create the

name=value string from its arguments, putenv is free to place the string passed to it directly into

the environment.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 32

NOTE:

➢ If we're modifying an existing name:

a) If the size of the new value is less than or equal to the size of the existing value, we

can just copy the new string over the old string.

b) If the size of the new value is larger than the old one, however, we must malloc to

obtain room for the new string, copy the new string to this area, and then replace the

old pointer in the environment list for name with the pointer to this allocated area.

➢ If we're adding a new name, it's more complicated. First, we have to call malloc to

allocate room for the name=value string and copy the string to this area.

a) Then, if it's the first time we've added a new name, we have to call malloc to obtain

room for a new list of pointers. We copy the old environment list to this new area and

Environment variables defined in the Single UNIX Specification

Variable Description

COLUMNS terminal width

DATEMSK getdate(3) template file pathname

HOME home directory

LANG name of locale

LC_ALL name of locale

LC_COLLATE name of locale for collation

LC_CTYPE name of locale for character classification

LC_MESSAGES name of locale for messages

LC_MONETARY name of locale for monetary editing

LC_NUMERIC name of locale for numeric editing

LC_TIME name of locale for date/time formatting

LINES terminal height

LOGNAME login name

MSGVERB fmtmsg(3) message components to process

NLSPATH sequence of templates for message catalogs

PATH list of path prefixes to search for executable file

PWD absolute pathname of current working directory

SHELL name of user's preferred shell

TERM terminal type

TMPDIR pathname of directory for creating temporary files

TZ time zone information

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 33

store a pointer to the name=value string at the end of this list of pointers. We also

store a null pointer at the end of this list, of course. Finally, we set environ to point to

this new list of pointers.

b) If this isn't the first time, we've added new strings to the environment list, then we

know that we've already allocated room for the list on the heap, so we just call realloc

to allocate room for one more pointer. The pointer to the new name=value string is

stored at the end of the list (on top of the previous null pointer), followed by a null

pointer.

setjmp and longjmp Functions

In C, we can't goto a label that's in another function. Instead, we must use the setjmp and

longjmp functions to perform this type of branching. As we'll see, these two functions are useful

for handling error conditions that occur in a deeply nested function call.

Returns: 0 if called directly, nonzero if returning from a call to longjmp

void longjmp(jmp_buf env, int val);

The setjmp function records or marks a location in a program code so that later when the

longjmp function is called from some other function, the execution continues from the location

onwards. The env variable(the first argument) records the necessary information needed to

continue execution. The env is of the jmp_buf defined in <setjmp.h> file, it contains the task.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 34

• The setjmp function always returns ‘0’ on its success when it is called directly in a

process (for the first time).

• The longjmp function is called to transfer a program flow to a location that was stored in

the env argument.

• The program code marked by the env must be in a function that is among the callers of

the current function.

• When the process is jumping to the target function, all the stack space used in the current

function and its callers, upto the target function are discarded by the longjmp function.

• The process resumes execution by re-executing the setjmp statement in the target

function that is marked by env. The return value of setjmp function is the value(val), as

specified in the longjmp function call.

• The ‘val’ should be nonzero, so that it can be used to indicate where and why the longjmp

function was invoked and process can do error handling accordingly.

Note: The values of automatic and register variables are indeterminate when the longjmp is

called but static and global variable are unaltered. The variables that we don’t want to roll back

after longjmp are declared with keyword ‘volatile’.

Example of setjmp and longjmp

#include "apue.h"

#include <setjmp.h>

#define TOK_ADD 5

jmp_buf jmpbuffer;

int main(void)

{

char line[MAXLINE];

if (setjmp(jmpbuffer) != 0)

printf("error");

while (fgets(line, MAXLINE, stdin) != NULL)

do_line(line);

exit(0);

}

...

void cmd_add(void)

{

int token;

token = get_token();

if (token < 0) /* an error has occurred */

longjmp(jmpbuffer, 1);

/* rest of processing for this command */

}

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 35

getrlimit and setrlimit Function

Every process has a set of resource limits, some of which can be queried and changed by the

getrlimit and setrlimit functions.

Both return: 0 if OK, nonzero on error

Each call to these two functions specifies a single resource and a pointer to the following

structure:

Three rules govern the changing of the resource limits.

• A process can change its soft limit to a value less than or equal to its hard limit.

• A process can lower its hard limit to a value greater than or equal to its soft limit. This

lowering of the hard limit is irreversible for normal users.

• Only a superuser process can raise a hard limit.

An infinite limit is specified by the constant RLIM_INFINITY.

struct rlimit

{

rlim_t rlim_cur; /* soft limit: current limit */

rlim_t rlim_max; /* hard limit: maximum value for rlim_cur */

};

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 36

The resource limits affect the calling process and are inherited by any of its children. This means
that the setting of resource limits needs to be built into the shells to affect all our future

processes.

RLIMIT_AS The maximum size in bytes of a process's total available memory.

RLIMIT_CORE The maximum size in bytes of a core file. A limit of 0 prevents the creation of a core file.

RLIMIT_CPU The maximum amount of CPU time in seconds. When the soft limit is exceeded, the SIGXCPU
signal is sent to the process.

RLIMIT_DATA The maximum size in bytes of the data segment: the sum of the initialized data, uninitialized
data, and heap.

RLIMIT_FSIZE The maximum size in bytes of a file that may be created. When the soft limit is exceeded, the

process is sent the SIGXFSZ signal.

RLIMIT_LOCKS The maximum number of file locks a process can hold.

RLIMIT_MEMLOCK The maximum amount of memory in bytes that a process can lock into memory using

mlock(2).

RLIMIT_NOFILE The maximum number of open files per process. Changing this limit affects the value returned

by the sysconf function for its _SC_OPEN_MAX argument

RLIMIT_NPROC The maximum number of child processes per real user ID. Changing this limit affects the value

returned for _SC_CHILD_MAX by the sysconf function

RLIMIT_RSS Maximum resident set size (RSS) in bytes. If available physical memory is low, the kernel
takes memory from processes that exceed their RSS.

RLIMIT_SBSIZE The maximum size in bytes of socket buffers that a user can consume at any given time.

RLIMIT_STACK The maximum size in bytes of the stack.

RLIMIT_VMEM This is a synonym for RLIMIT_AS.

Example: Print the current resource limits

#include "apue.h"

#if defined(BSD) || defined(MACOS)

#include <sys/time.h>

#define FMT "%10lld "

#else

#define FMT "%10ld "

#endif

#include <sys/resource.h>

#define doit(name) pr_limits(#name, name)

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 37

Unix Kernel Support for Process

The data structure and execution of processes are dependent on operating system

implementation.

A UNIX process consists minimally of a text segment, a data segment and a stack segment. A

segment is an area of memory that is managed by the system as a unit.

static void pr_limits(char *, int);

int main(void)

{

#ifdef RLIMIT_AS

doit(RLIMIT_AS);

#endif

doit(RLIMIT_CORE);

doit(RLIMIT_CPU);

doit(RLIMIT_DATA);

doit(RLIMIT_FSIZE);

#ifdef RLIMIT_LOCKS

doit(RLIMIT_LOCKS);

#endif

#ifdef RLIMIT_MEMLOCK

doit(RLIMIT_MEMLOCK);

#endif

doit(RLIMIT_NOFILE);

#ifdef RLIMIT_NPROC

doit(RLIMIT_NPROC);

#endif

#ifdef RLIMIT_RSS

doit(RLIMIT_RSS);

#endif

#ifdef RLIMIT_SBSIZE

doit(RLIMIT_SBSIZE);

#endif

doit(RLIMIT_STACK);

#ifdef RLIMIT_VMEM

doit(RLIMIT_VMEM);

#endif

exit(0);

}

static void pr_limits(char *name, int resource)

{

struct rlimit limit;

if (getrlimit(resource, &limit) < 0)

err_sys("getrlimit error for %s", name);

printf("%-14s ", name);

if (limit.rlim_cur == RLIM_INFINITY)

printf("(infinite) ");

else

printf(FMT, limit.rlim_cur);

if (limit.rlim_max == RLIM_INFINITY)

printf("(infinite)");

else

printf(FMT, limit.rlim_max);

putchar((int)'\n');

}

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 38

• A text segment consists of the program text in machine executable instruction code

format.

• The data segment contains static and global variables and their corresponding data.

• A stack segment contains runtime variables and the return addresses of all active

functions for a process.

UNIX kernel has a process table that keeps track of all active process present in the system.

Some of these processes belongs to the kernel and are called as “system process”. Every entry in

the process table contains pointers to the text, data and the stack segments and also to U-area of a

process. U-area of a process is an extension of the process table entry and contains other process

specific data such as the file descriptor table, current root and working directory inode numbers

and set of system-imposed process limits.

All processes in UNIX system expect the process that is created by the system boot code, are

created by the fork system call. After the fork system call, once the child process is created, both

the parent and child processes resumes execution. When a process is created by fork, it contains

duplicated copies of the text, data and stack segments of its parent as shown in the Figure below.

also it has a file descriptor table, which contains reference to the same opened files as the parent,

such that they both share the same file pointer to each opened files.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 39

Figure: Parent & child relationship after fork

The process will be assigned with attributes, which are either inherited from its parent or will be

set by the kernel.

• A real user identification number (rUID): the user ID of a user who created the parent

process.

• A real group identification number (rGID): the group ID of a user who created that parent

process.

• An effective user identification number (eUID): this allows the process to access and

create files with the same privileges as the program file owner.

• An effective group identification number (eGID): this allows the process to access and

create files with the same privileges as the group to which the program file belongs.

• Saved set-UID and saved set-GID: these are the assigned eUID and eGID of the process

respectively.

• Process group identification number (PGID) and session identification number (SID):

these identify the process group and session of which the process is member.

• Supplementary group identification numbers: this is a set of additional group IDs for a

user who created the process.

• Current directory: this is the reference (inode number) to a working directory file.

• Root directory: this is the reference to a root directory.

• Signal handling: the signal handling settings.

• Signal mask: a signal mask that specifies which signals are to be blocked.

• Unmask: a file mode mask that is used in creation of files to specify which accession

rights should be taken out.

• Nice value: the process scheduling priority value.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 40

• Controlling terminal: the controlling terminal of the process.

In addition to the above attributes, the following attributes are different between the parent and

child processes:

• Process identification number (PID): an integer identification number that is unique per

process in an entire operating system.

• Parent process identification number (PPID): the parent process PID.

• Pending signals: the set of signals that are pending delivery to the parent process.

• Alarm clock time: the process alarm clock time is reset to zero in the child process.

• File locks: the set of file locks owned by the parent process is not inherited by the chid

process.

• fork and exec are commonly used together to spawn a sub-process to execute a different

program. The advantages of this method are:

A process can create multiple processes to execute multiple programs concurrently.

Because each child process executes in its own virtual address space, the parent process

is not affected by the execution status of its child process.

Process Control

Introduction

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 41

Process control is concerned about creation of new processes, program execution, and process

termination.

Process Identifiers

#include <unistd.h>

pid_t getpid(void);

Returns: process ID of calling process

pid_t getppid(void);

Returns: parent process ID of calling process

uid_t getuid(void);

Returns: real user ID of calling process

uid_t geteuid(void);

Returns: effective user ID of calling process

gid_t getgid(void);

Returns: real group ID of calling process

gid_t getegid(void);

Returns: effective group ID of calling process

fork Function

An existing process can create a new one by calling the fork function.

Returns: 0 in child, process ID of child in parent, 1 on error.

The new process created by fork is called the child process. This function is called once but

returns twice. The only difference in the returns is that the return value in the child is 0, whereas

the return value in the parent is the process ID of the new child. The reason the child's process ID

is returned to the parent is that a process can have more than one child, and there is no function

that allows a process to obtain the process IDs of its children. The reason fork returns 0 to the

child is that a process can have only a single parent, and the child can always call getppid to

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 42

obtain the process ID of its parent. (Process ID 0 is reserved for use by the kernel, so it's not

possible for 0 to be the process ID of a child.) Both the child and the parent continue executing

with the instruction that follows the call to fork. The child is a copy of the parent. For example,

the child gets a copy of the parent's data space, heap, and stack. Note that this is a copy for the

child; the parent and the child do not share these portions of memory. The parent and the child

share the text segment.

Example programs:

Program 1

Note: The statement hello USP is executed twice as both the child and parent have executed that

instruction.

Program 2

/* Program to demonstrate fork function Program name – fork1.c */

#include<sys/types.h>

#include<unistd.h>

int main()

{

fork();

printf(“\n hello USP”);

}

Output :

$ cc fork1.c

$./a.out

hello USP

hello USP

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 43

Note: The statement 6 sem is executed only once by the parent because it is called before fork

and statement hello USP is executed twice by child and parent.

File Sharing

Consider a process that has three different files opened for standard input, standard output, and

standard error. On return from fork, we have the arrangement shown in Figure 8.2.

Figure 8.2 Sharing of open files between parent and child after fork

It is important that the parent and the child share the same file offset. Consider a process that forks

a child, then waits for the child to complete. Assume that both processes write to standard output

/* Program name – fork2.c */

#include<sys/types.h>

#include<unistd.h>

int main()

{

printf(“\n 6 sem “);

fork();

printf(“\n hello USP”);

}

Output :

$ cc fork1.c

$./a.out

6 sem

hello USP

hello USP

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 44

as part of their normal processing. If the parent has its standard output redirected (by a shell,

perhaps) it is essential that the parent's file offset be updated by the child when the child writes to

standard output. In this case, the child can write to standard output while the parent is waiting for

it; on completion of the child, the parent can continue writing to standard output, knowing that its

output will be appended to whatever the child wrote. If the parent and the child did not share the

same file offset, this type of interaction would be more difficult to accomplish and would require

explicit actions by the parent.

There are two normal cases for handling the descriptors after a fork.

• The parent waits for the child to complete. In this case, the parent does not need to do

anything with its descriptors. When the child terminates, any of the shared descriptors that

the child read from or wrote to will have their file offsets updated accordingly.

• Both the parent and the child go their own ways. Here, after the fork, the parent closes the

descriptors that it doesn't need, and the child does the same thing. This way, neither

interferes with the other's open descriptors. This scenario is often the case with network

servers.

There are numerous other properties of the parent that are inherited by the child:

• Real user ID, real group ID, effective user ID, effective group ID

• Supplementary group IDs

• Process group ID

• Session ID

• Controlling terminal

• The set-user-ID and set-group-ID flags

• Current working directory

• Root directory

• File mode creation mask

• Signal mask and dispositions

• The close-on-exec flag for any open file descriptors

• Environment

• Attached shared memory segments

• Memory mappings

• Resource limits

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 45

The differences between the parent and child are

a) The return value from fork

b) The process IDs are different

c) The two processes have different parent process IDs: the parent process ID of the child is

the parent; the parent process ID of the parent doesn't change

d) The child's tms_utime, tms_stime, tms_cutime, and tms_cstime values are set to 0 File

locks set by the parent are not inherited by the child

e) Pending alarms are cleared for the child

f) The set of pending signals for the child is set to the empty set

The two main reasons for fork to fail are

• if too many processes are already in the system, which usually means that something else

is wrong, or

• if the total number of processes for this real user ID exceeds the system's limit.

There are two uses for fork:

a) When a process wants to duplicate itself so that the parent and child can each execute

different sections of code at the same time. This is common for network servers, the

parent waits for a service request from a client. When the request arrives, the parent calls

fork and lets the child handle the request. The parent goes back to waiting for the next

service request to arrive.

b) When a process wants to execute a different program. This is common for shells. In this

case, the child does an exec right after it returns from the fork.

vfork Function

The function vfork has the same calling sequence and same return values as fork. The vfork

function is intended to create a new process when the purpose of the new process is to exec a new

program. The vfork function creates the new process, just like fork, without copying the address

space of the parent into the child, as the child won't reference that address space; the child simply

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 46

calls exec (or exit) right after the vfork. Instead, while the child is running and until it calls either

exec or exit, the child runs in the address space of the parent. This optimization provides an

efficiency gain on some paged virtual-memory implementations of the UNIX System. Another

difference between the two functions is that vfork guarantees that the child runs first, until the

child calls exec or exit. When the child calls either of these functions, the parent resumes.

Example of vfork function

exit Functions

A process can terminate normally in five ways:

1. Executing a return from the main function.

2. Calling the exit function.

3. Calling the _exit or _Exit function.

In most UNIX system implementations, exit(3) is a function in the standard C library,

whereas _exit(2) is a system call.

4. Executing a return from the start routine of the last thread in the process. When the last

thread returns from its start routine, the process exits with a termination status of 0.

5. Calling the pthread_exit function from the last thread in the process.

The three forms of abnormal termination are as follows:

#include "apue.h"

int glob = 6; /* external variable in initialized data */

int main(void)

{

int var; /* automatic variable on the stack */

pid_t pid;

var = 88;

printf("before vfork\n"); /* we don't flush stdio */

if ((pid = vfork()) < 0) {

err_sys("vfork error");

} else if (pid == 0) { /* child */

glob++; /* modify parent's variables */

var++;

_exit(0); /* child terminates */

}

/*

* Parent continues here.

*/

printf("pid = %d, glob = %d, var = %d\n", getpid(), glob, var);

exit(0);

}

Output:

$./a.out

before vfork

pid = 29039, glob = 7, var = 89

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 47

1) Calling abort. This is a special case of the next item, as it generates the SIGABRT signal.

2) When the process receives certain signals. Examples of signals generated by the kernel

include the process referencing a memory location not within its address space or trying

to divide by 0.

3) The last thread responds to a cancellation request. By default, cancellation occurs in a

deferred manner: one thread requests that another be canceled, and sometime later, the

target thread terminates.

wait and waitpid Functions

When a process terminates, either normally or abnormally, the kernel notifies the parent by sending

the SIGCHLD signal to the parent. Because the termination of a child is an asynchronous event -

it can happen at any time while the parent is running - this signal is the asynchronous notification

from the kernel to the parent. The parent can choose to ignore this signal, or it can provide a

function that is called when the signal occurs: a signal handler.

A process that calls wait or waitpid can:

1) Block, if all of its children are still running

2) Return immediately with the termination status of a child, if a child has terminated and is

waiting for its termination status to be fetched

3) Return immediately with an error, if it doesn't have any child processes.

Both return: process ID if OK, 0 (see later), or 1 on error.

The differences between these two functions are as follows.

1) The wait function can block the caller until a child process terminates, whereas waitpid has

an option that prevents it from blocking.

2) The waitpid function doesn't wait for the child that terminates first; it has a number of

options that control which process it waits for.

If a child has already terminated and is a zombie, wait returns immediately with that child's status.

Otherwise, it blocks the caller until a child terminates. If the caller blocks and has multiple

children, wait returns when one terminates.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 48

For both functions, the argument statloc is a pointer to an integer. If this argument is not a null

pointer, the termination status of the terminated process is stored in the location pointed to by the

argument.

Print a description of the exit status

Program to Demonstrate various exit statuses

#include "apue.h"

#include <sys/wait.h>

Int main(void)

{

pid_t pid;

int status;

if ((pid = fork()) < 0)

err_sys("fork error");

else if (pid == 0) /* child */

exit(7);

if (wait(&status) != pid) /* wait for child */

err_sys("wait error");

pr_exit(status); /* and print its status */

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 49

The interpretation of the pid argument for waitpid depends on its value:

if ((pid = fork()) < 0)

err_sys("fork error");

else if (pid == 0) /* child */

abort(); /* generates SIGABRT */

if (wait(&status) != pid) /* wait for child */

err_sys("wait error");

pr_exit(status); /* and print its status */

if ((pid = fork()) < 0)

err_sys("fork error");

else if (pid == 0) /* child */

status /= 0; /* divide by 0 generates SIGFPE */

if (wait(&status) != pid) /* wait for child */

err_sys("wait error");

pr_exit(status); /* and print its status */

exit(0);

}

pid == 1 Waits for any child process. In this respect, waitpid is equivalent to wait.

pid > 0 Waits for the child whose process ID equals pid.

pid == 0 Waits for any child whose process group ID equals that of the calling process.

pid < 1 Waits for any child whose process group ID equals the absolute value of pid.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 50

The waitpid function provides three features that aren't provided by the wait function.

1) The waitpid function lets us wait for one particular process, whereas the wait function

returns the status of any terminated child. We'll return to this feature when we discuss the

popen function.

2) The waitpid function provides a nonblocking version of wait. There are times when we

want to fetch a child's status, but we don't want to block.

3) The waitpid function provides support for job control with the WUNTRACED and

WCONTINUED options.

Program to Avoid zombie processes by calling fork twice

The options constants for waitpid

Constant Description

WCONTINUED If the implementation supports job control, the status of any child specified by pid that has been
continued after being stopped, but whose status has not yet been reported, is returned.

WNOHANG The waitpid function will not block if a child specified by pid is not immediately available. In this
case, the return value is 0.

WUNTRACED If the implementation supports job control, the status of any child specified by pid that has stopped,
and whose status has not been reported since it has stopped, is returned. The WIFSTOPPED macro
determines whether the return value corresponds to a stopped child process.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 51

waitid Function

The waitid function is similar to waitpid, but provides extra flexibility.

Returns: 0 if OK, -1 on error

The idtype constants for waited are as follows:

#include "apue.h"

#include <sys/wait.h>

Int main(void)

{

pid_t pid;

if ((pid = fork()) < 0) {

err_sys("fork error");

} else if (pid == 0) { /* first child */

if ((pid = fork()) < 0)

err_sys("fork error");

else if (pid > 0)

exit(0); /* parent from second fork == first child */

/*

* We're the second child; our parent becomes init as soon
* as our real parent calls exit() in the statement above.
* Here's where we'd continue executing, knowing that when
* we're done, init will reap our status.
*/

sleep(2);

printf("second child, parent pid = %d\n", getppid());

exit(0);

}

if (waitpid(pid, NULL, 0) != pid) /* wait for first child */

err_sys("waitpid error");

/*

* We're the parent (the original process); we continue executing,
* knowing that we're not the parent of the second child.
*/

exit(0);

}

Output:
$./a.out

$ second child, parent pid = 1

Constant Description

P_PID Wait for a particular process: id contains the process ID of the child to wait for.

P_PGID Wait for any child process in a particular process group: id contains the process group ID of the children
to wait for.

P_ALL Wait for any child process: id is ignored.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 52

The options argument is a bitwise OR of the flags as shown below: these flags indicate which

state changes the caller is interested in.

wait3 and wait4 Functions

The only feature provided by these two functions that isn't provided by the wait, waitid, and

waitpid functions is an additional argument that allows the kernel to return a summary of the

resources used by the terminated process and all its child processes.

The prototypes of these functions are:

Both return: process ID if OK,-1 on error

The resource information includes such statistics as the amount of user CPU time, the amount of

system CPU time, number of page faults, number of signals received etc. the resource

information is available only for terminated child process not for the process that were stopped

due to job control.

Race Conditions

A race condition occurs when multiple processes are trying to do something with shared data and

the final outcome depends on the order in which the processes run.

Example: The program below outputs two strings: one from the child and one from the parent.

The program contains a race condition because the output depends on the order in which the

processes are run by the kernel and for how long each process runs.

Constant Description

WCONTINUED Wait for a process that has previously stopped and has been continued, and whose status has not
yet been reported.

WEXITED Wait for processes that have exited.

WNOHANG Return immediately instead of blocking if there is no child exit status available.

WNOWAIT Don't destroy the child exit status. The child's exit status can be retrieved by a subsequent call to
wait, waitid,or waitpid.

WSTOPPED Wait for a process that has stopped and whose status has not yet been reported.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 53

program modification to avoid race condition

#include "apue.h"

static void charatatime(char *);

int main(void)

{

pid_t pid;

if ((pid = fork()) < 0) {

err_sys("fork error");

} else if (pid == 0) {

charatatime("output from child\n");

} else {

charatatime("output from parent\n");

}

exit(0);

}

static void

charatatime(char *str)

{

char *ptr;

int c;

setbuf(stdout, NULL); /* set unbuffered */

for (ptr = str; (c = *ptr++) != 0;)

putc(c, stdout);

}

Output:

$./a.out

ooutput from child

utput from parent

$./a.out

ooutput from child

utput from parent

$./a.out

output from child

output from parent

#include "apue.h"

static void charatatime(char *);

int main(void)

{

pid_t pid;

+ TELL_WAIT();

+

if ((pid = fork()) < 0) {

err_sys("fork error");

} else if (pid == 0) {

+ WAIT_PARENT(); /* parent goes first */

charatatime("output from child\n");

} else {

charatatime("output from parent\n");

+ TELL_CHILD(pid);

}

exit(0);

}

static void

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 54

When we run this program, the output is as we expect; there is no intermixing of output from the

two processes.

exec Functions

When a process calls one of the exec functions, that process is completely replaced by the new

program, and the new program starts executing at its main function. The process ID does not

change across an exec, because a new process is not created; exec merely replaces the current

process - its text, data, heap, and stack segments - with a brand new program from disk.

There are 6 exec functions:

All six return: -1 on error, no return on success.

1) The first difference in these functions is that the first four take a pathname argument,

whereas the last two take a filename argument. When a filename argument is specified

• If filename contains a slash, it is taken as a pathname.

• Otherwise, the executable file is searched for in the directories specified by the PATH

environment variable.

2) The next difference concerns the passing of the argument list (l stands for list and v stands

for vector). The functions execl, execlp, and execle require each of the command-line

arguments to the new program to be specified as separate arguments. For the other three

functions (execv, execvp, and execve), we have to build an array of pointers to the

arguments, and the address of this array is the argument to these three functions.

charatatime(char *str)

{

char *ptr;

int c;

setbuf(stdout, NULL); /* set unbuffered */

for (ptr = str; (c = *ptr++) != 0;)

putc(c, stdout);

}

#include <unistd.h>

int execl(const char *pathname, const char *arg0,... /* (char *)0 */);

int execv(const char *pathname, char *const argv []);

int execle(const char *pathname, const char *arg0,... /*(char *)0, char

*const envp */);

int execve(const char *pathname, char *const argv[], char *const envp[]);

int execlp(const char *filename, const char *arg0, ... /* (char *)0 */);

int execvp(const char *filename, char *const argv []);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 55

3) The final difference is the passing of the environment list to the new program. The two

functions whose names end in an e (execle and execve) allow us to pass a pointer to an

array of pointers to the environment strings. The other four functions, however, use the

environ variable in the calling process to copy the existing environment for the new

program.

Example of exec functions

#include "apue.h"

#include <sys/wait.h>

char *env_init[] = { "USER=unknown", "PATH=/tmp", NULL };

int main(void)

{

pid_t pid;

if ((pid = fork()) < 0) {

err_sys("fork error");

} else if (pid == 0) { /* specify pathname, specify environment */

if (execle("/home/sar/bin/echoall", "echoall", "myarg1",

"MY ARG2", (char *)0, env_init) < 0)

err_sys("execle error");

}

if (waitpid(pid, NULL, 0) < 0)

err_sys("wait error");

if ((pid = fork()) < 0) {

err_sys("fork error");

} else if (pid == 0) { /* specify filename, inherit environment */

if (execlp("echoall", "echoall", "only 1 arg", (char *)0) < 0)

err_sys("execlp error");

}

exit(0);

}

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 56

Note that the shell prompt appeared before the printing of argv[0] from the second exec. This

is because the parent did not wait for this child process to finish.

Output:

$./a.out

argv[0]: echoall

argv[1]: myarg1

argv[2]: MY ARG2

USER=unknown

PATH=/tmp

$ argv[0]: echoall argv[1]: only 1 arg USER=sar LOGNAME=sar

SHELL=/bin/bash

HOME=/home/sar

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 1

Module – 4

Changing User IDs and Group IDs

When our programs need additional privileges or need to gain access to resources that they

currently aren't allowed to access, they need to change their user or group ID to an ID that has the

appropriate privilege or access. Similarly, when our programs need to lower their privileges or

prevent access to certain resources, they do so by changing either their user ID or group ID to an

ID without the privilege or ability access to the resource.

Both return: 0 if OK, 1 on error

There are rules for who can change the IDs. Let's consider only the user ID for now. (Everything

we describe for the user ID also applies to the group ID.)

• If the process has superuser privileges, the setuid function sets the real user ID, effective

user ID, and saved set-user-ID to uid.

• If the process does not have superuser privileges, but uid equals either the real user ID or

the saved set-user- ID, setuid sets only the effective user ID to uid. The real user ID and

the saved set-user-ID are not changed.

• If neither of these two conditions is true, errno is set to EPERM, and 1 is returned.

We can make a few statements about the three user IDs that the kernel maintains.

1. Only a superuser process can change the real user ID. Normally, the real user ID is set by

the login(1) program when we log in and never changes. Because login is a superuser

process, it sets all three user IDs when it calls setuid.

2. The effective user ID is set by the exec functions only if the set-user-ID bit is set for the

program file. If the set-user-ID bit is not set, the exec functions leave the effective user ID

#include <unistd.h>

int setuid(uid_t uid);

int setgid(gid_t gid);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 2

3. as its current value. We can call setuid at any time to set the effective user ID to either the

real user ID or the saved set-user-ID. Naturally, we can't set the effective user ID to any

random value.

4. The saved set-user-ID is copied from the effective user ID by exec. If the file's set-user-ID

bit is set, this copy is saved after exec stores the effective user ID from the file's user ID.

The above figure summarises the various ways these three user IDs can be changed

 The above figure summarises the various ways these three user IDs can be changed

setreuid and setregid Functions

Swapping of the real user ID and the effective user ID with the setreuid function.

Both return : 0 if OK, -1 on error

We can supply a value of 1 for any of the arguments to indicate that the corresponding ID should

remain unchanged. The rule is simple: an unprivileged user can always swap between the real

user ID and the effective user ID. This allows a set-user-ID program to swap to the user’s normal

permissions and swap back again later for set-user- ID operations.

seteuid and setegid functions

POSIX.1 includes the two functions seteuid and setegid. These functions are similar to setuid and

setgid, but only the effective user ID or effective group ID is changed.

Both return : 0 if OK, 1 on error

#include <unistd.h>

int setreuid(uid_t ruid, uid_t euid);

int setregid(gid_t rgid, gid_t egid);

#include <unistd.h>

int seteuid(uid_t uid);

int setegid(gid_t gid);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 3

An unprivileged user can set its effective user ID to either its real user ID or its saved set-user-

ID. For a privileged user, only the effective user ID is set to uid. (This differs from the setuid

function, which changes all three user IDs.)

Figure: Summary of all the functions that set the various user Ids

Interpreter Files

These files are text files that begin with a line of the form

#! pathname [optional-argument]

The space between the exclamation point and the pathname is optional. The most common of

these interpreter files begin with the line

#!/bin/sh

The pathname is normally an absolute pathname, since no special operations are performed on it

(i.e., PATH is not used). The recognition of these files is done within the kernel as part of

processing the exec system call. The actual file that gets executed by the kernel is not the

interpreter file, but the file specified by the pathname on the first line of the interpreter file. Be

sure to differentiate between the interpreter filea text file that begins with #!and the interpreter,

which is specified by the pathname on the first line of the interpreter file.

Be aware that systems place a size limit on the first line of an interpreter file. This limit includes

the #!, the pathname, the optional argument, the terminating newline, and any spaces.

A program that execs an interpreter file

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 4

System Function

If cmdstring is a null pointer, system returns nonzero only if a command processor is

available. This feature

determines whether the system function is supported on a given operating system. Under

the UNIX System,

system is always available.

Because system is implemented by calling fork, exec, and waitpid, there are three types of return

values.

• If either the fork fails or waitpid returns an error other than EINTR, system returns 1 with

errno set to indicate the error.

• If the exec fails, implying that the shell can't be executed, the return value is as if the

shell had executed exit(127).

• Otherwise, all three functions fork, exec, and waitpid succeed, and the return value from

system is the termination status of the shell, in the format specified for waitpid.

#include "apue.h"

#include <sys/wait.h>

Int main(void)

{

pid_t pid;

if ((pid = fork()) < 0) {

err_sys("fork error");

} else if (pid == 0) { /* child */

if (execl("/home/sar/bin/testinterp",

"testinterp", "myarg1", "MY ARG2", (char *)0) < 0)

err_sys("execl error");

}

if (waitpid(pid, NULL, 0) < 0) /* parent */

err_sys("waitpid error");

exit(0);

}

Output:

$ cat /home/sar/bin/testinterp

#!/home/sar/bin/echoarg foo

$./a.out

argv[0]: /home/sar/bin/echoarg

argv[1]: foo

argv[2]: /home/sar/bin/testinterp

argv[3]: myarg1

argv[4]: MY ARG2

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 5

Program: The system function, without signal handling

Program: Calling the system function

Program: Execute the command-line argument using system

#include <sys/wait.h>

#include <errno.h>

#include <unistd.h>

Int system(const char *cmdstring) /* version without signal handling */

{

pid_t pid;

int status;

if (cmdstring == NULL)

return(1); /* always a command processor with UNIX */

if ((pid = fork()) < 0) {

status = -1; /* probably out of processes */

} else if (pid == 0) { /* child */

execl("/bin/sh", "sh", "-c", cmdstring, (char *)0);

_exit(127); /* execl error */

} else { /* parent */

while (waitpid(pid, &status, 0) < 0) {

if (errno != EINTR) {

status = -1; /* error other than EINTR from waitpid() */

break;

}

}

}

return(status);

}

#include "apue.h"

#include <sys/wait.h>

Int main(void)

{

int status;

if ((status = system("date")) < 0)

err_sys("system() error");

pr_exit(status);

if ((status = system("nosuchcommand")) < 0)

err_sys("system() error");

pr_exit(status);

if ((status = system("who; exit 44")) < 0)

err_sys("system() error");

pr_exit(status);

exit(0);

}

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 6

Program: Print real and effective user IDs

Process Accounting

Most UNIX systems provide an option to do process accounting. When enabled, the kernel writes

an accounting record each time a process terminates. These accounting records are typically a

small amount of binary data with the name of the command, the amount of CPU time used, the

user ID and group ID, the starting time, and so on. A superuser executes accton with a pathname

argument to enable accounting. The accounting records are written to the specified file, which is

usually /var/account/acct. Accounting is turned off by executing accton without any arguments.

The data required for the accounting record, such as CPU times and number of characters

transferred, is kept by the kernel in the process table and initialized whenever a new process is

created, as in the child after a fork. Each accounting record is written when the process terminates.

This means that the order of the records in the accounting file corresponds to the termination order

of the processes, not the order in which they were started. The accounting records correspond to

processes, not programs. A new record is initialized by the kernel for the child after a fork, not

#include "apue.h"

Int main(int argc, char *argv[])

{

int status;

if (argc < 2)

err_quit("command-line argument required");

if ((status = system(argv[1])) < 0)

err_sys("system() error");

pr_exit(status);

exit(0);

}

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 7

when a new program is executed. The structure of the accounting records is defined in the header

<sys/acct.h> and looks something like

Values for ac_flag from accounting record

Program to generate accounting data

typedef u_short comp_t; /* 3-bit base 8 exponent; 13-bit fraction */

struct acct

{

char ac_flag; /* flag */

char ac_stat; /* termination status (signal & core flag only) */

/* (Solaris only) */

uid_t ac_uid; /* real user ID */

gid_t ac_gid; /* real group ID */

dev_t ac_tty; /* controlling terminal */

time_t ac_btime; /* starting calendar time */

comp_t ac_utime; /* user CPU time (clock ticks) */

comp_t ac_stime; /* system CPU time (clock ticks) */

comp_t ac_etime; /* elapsed time (clock ticks) */

comp_t ac_mem; /* average memory usage */

comp_t ac_io; /* bytes transferred (by read and write) */

/* "blocks" on BSD systems */

comp_t ac_rw; /* blocks read or written */

/* (not present on BSD systems) */

char ac_comm[8]; /* command name: [8] for Solaris, */

/* [10] for Mac OS X, [16] for FreeBSD, and */

/* [17] for Linux */

};

ac_flag Description

AFORK process is the result of fork, but never called exec

ASU process used superuser privileges

ACOMPAT process used compatibility mode

ACORE process dumped core

AXSIG process was killed by a signal

AEXPND expanded accounting entry

#include "apue.h"

Int main(void)

{

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 8

Process structure for accounting example

User Identification

pid_t pid;

if ((pid = fork()) < 0)

err_sys("fork error");

else if (pid != 0) { /* parent */

sleep(2);

exit(2); /* terminate with exit status 2 */

}

/* first child */

if ((pid = fork()) < 0)

err_sys("fork error");

else if (pid != 0) {

sleep(4);

abort(); /* terminate with core dump */

}

/* second child */

if ((pid = fork()) < 0)

err_sys("fork error");

else if (pid != 0) {

execl("/bin/dd", "dd", "if=/etc/termcap", "of=/dev/null", NULL);

exit(7); /* shouldn't get here */

}

/* third child */

if ((pid = fork()) < 0)

err_sys("fork error");

else if (pid != 0) {

sleep(8);

exit(0); /* normal exit */

}

/* fourth child */

sleep(6);

kill(getpid(), SIGKILL); /* terminate w/signal, no core dump */

exit(6); /* shouldn't get here */

}

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 9

Any process can find out its real and effective user ID and group ID. Sometimes, however, we

want to find out the login name of the user who's running the program. We could call

getpwuid(getuid()), but what if a single user has multiple login names, each with the same user

ID? (A person might have multiple entries in the password file with the same user ID to have a

different login shell for each entry.) The system normally keeps track of the name we log in and

the getlogin function provides a way to fetch that login name.

Returns : pointer to string giving login name if OK, NULL on error

This function can fail if the process is not attached to a terminal that a user logged in to.

Process Times

We describe three times that we can measure: wall clock time, user CPU time, and system CPU

time. Any process can call the times function to obtain these values for itself and any terminated

children.

Returns: elapsed wall clock time in clock ticks if OK, 1 on error

This function fills in the tms structure pointed to by buf:

Note that the structure does not contain any measurement for the wall clock time. Instead, the

function returns the wall clock time as the value of the function, each time it's called. This value

is measured from some arbitrary point in the past, so we can't use its absolute value; instead, we

use its relative value.

I/O Redirection

struct tms {

clock_t tms_utime; /* user CPU time */

clock_t tms_stime; /* system CPU time */

clock_t tms_cutime; /* user CPU time, terminated children */

clock_t tms_cstime; /* system CPU time, terminated children */

};

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 10

The Shell input/output redirections. Most Unix system commands take input from your terminal

and send the resulting output back to your terminal. A command normally reads its input from the

standard input, which happens to be your terminal by default. Similarly, a command normally

writes its output to standard output, which is again your terminal by default.

Output Redirection

The output from a command normally intended for standard output can be easily diverted to a file

instead. This capability is known as output redirection. If the notation > file is appended to any

command that normally writes its output to standard output, the output of that command will be

written to file instead of your terminal. Check the following who command which redirects the

complete output of the command in the users file.

Notice that no output appears at the terminal. This is because the output has been redirected from

the default standard output device (the terminal) into the specified file. You can check the users

file for the complete content –

If a command has its output redirected to a file and the file already contains some data, that data

will be lost. Consider the following example –

You can use >> operator to append the output in an existing file as follows –

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 11

Input Redirection

Just as the output of a command can be redirected to a file, so can the input of a command be

redirected from a file. As the greater-than character > is used for output redirection, the less-than

character < is used to redirect the input of a command.

The commands that normally take their input from the standard input can have their input

redirected from a file in this manner. For example, to count the number of lines in the file users

generated above, you can execute the command as follows −

Upon execution, you will receive the following output. You can count the number of lines in the

file by redirecting the standard input of the wc command from the file users –

Note that there is a difference in the output produced by the two forms of the wc command. In the

first case, the name of the file users is listed with the line count; in the second case, it is not. In the

first case, wc knows that it is reading its input from the file users. In the second case, it only knows

that it is reading its input from standard input so it does not display file name.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 12

Overview of IPC Methods

Pipes

Pipes are the oldest form of UNIX System IPC. Pipes have two limitations.

1. Historically, they have been half duplex (i.e., data flows in only one direction).

2. Pipes can be used only between processes that have a common ancestor. Normally, a pipe

is created by a process, that process calls fork, and the pipe is used between the parent and

the child.

A pipe is created by calling the pipe function.

Returns: 0 if OK, 1 on error.

Two file descriptors are returned through the filedes argument: filedes[0] is open for reading, and

filedes[1] is open for writing. The output of filedes[1] is the input for filedes[0].

Two ways to picture a half-duplex pipe are shown in Figure-1. The left half of the figure shows

the two ends of the pipe connected in a single process. The right half of the figure emphasizes that

the data in the pipe flows through the kernel.

#include <unistd.h>

int pipe(int filedes[2]);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 13

Fig-1: Two ways to view a half-duplex pipe

A pipe in a single process is next to useless. Normally, the process that calls pipe then calls fork,

creating an IPC channel from the parent to the child or vice versa. Figure-2 shows this scenario.

 Fig-2: Half-duplex pipe after a fork

What happens after the fork depends on which direction of data flow we want. For a pipe from the

parent to the child, the parent closes the read end of the pipe (fd[0]), and the child closes the write

end (fd[1]). Figure-3 shows the resulting arrangement of descriptors.

 Fig-3: Pipe from parent to child

For a pipe from the child to the parent, the parent closes fd[1], and the child closes fd[0]. When

one end of a pipe is closed, the following two rules apply.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 14

• If we read from a pipe whose write end has been closed, read returns 0 to indicate an end

of file after all the data has been read.

• If we write to a pipe whose read end has been closed, the signal SIGPIPE is generated. If

we either ignore the signal or catch it and return from the signal handler, write returns 1

with errno set to EPIPE.

Program: shows the code to create a pipe between a parent and its child and to send data down

the pipe.

Popen and Pclose Function

Since a common operation is to create a pipe to another process, to either read its output or send it

input, the standard I/O library has historically provided the popen and pclose functions. These two

functions handle all the dirty work that we've been doing ourselves: creating a pipe, forking a child,

closing the unused ends of the pipe, executing a shell to run the command, and waiting for the

command to terminate.

Returns: file pointer if OK, NULL on error

Returns: termination status of cmdstring, or 1 on error

#include "apue.h"

int

main(void)

{

int n;

int fd[2];

pid_t pid;

char line[MAXLINE];

if (pipe(fd) < 0)

err_sys("pipe error");

if ((pid = fork()) < 0) {

err_sys("fork error");

} else if (pid > 0) { /* parent */

close(fd[0]);

write(fd[1], "hello world\n", 12);

} else { /* child */

close(fd[1]);

n = read(fd[0], line, MAXLINE);

write(STDOUT_FILENO, line, n);

}

exit(0);

}

#include <stdio.h>

FILE *popen(const char *cmdstring, const char *type);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 15

The function popen does a fork and exec to execute the cmdstring, and returns a standard I/O file

pointer. If type is "r", the file pointer is connected to the standard output of cmdstring.

 Fig-1: Result of fp = popen(cmdstring, "r")

If type is "w", the file pointer is connected to the standard input of cmdstring, as shown:

Coprocesses

A UNIX system filter is a program that reads from standard input and writes to standard output.

Filters are normally connected linearly in shell pipelines. A filter becomes a coprocess when the

same program generates the filter's input and reads the filter's output. A coprocess normally runs

in the background from a shell, and its standard input and standard output are connected to another

program using a pipe.

The process creates two pipes: one is the standard input of the coprocess, and the other is the

standard output of the coprocess. Figure shows this arrangement.

Figure- Driving a coprocess by writing its standard input and reading its standard output

Program: Simple filter to add two numbers

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 16

FIFOs

FIFOs are sometimes called named pipes. Pipes can be used only between related processes when

a common ancestor has created the pipe.

Returns: 0 if OK, 1 on error

Once we have used mkfifo to create a FIFO, we open it using open. When we open a FIFO, the

nonblocking flag (O_NONBLOCK) affects what happens.

In the normal case (O_NONBLOCK not specified), an open for read-only blocks until some other

process opens the FIFO for writing. Similarly, an open for write-only blocks until some other

process opens the FIFO for reading.

If O_NONBLOCK is specified, an open for read-only returns immediately. But an open for write-

only returns 1 with errno set to ENXIO if no process has the FIFO open for reading.

There are two uses for FIFOs.

1. FIFOs are used by shell commands to pass data from one shell pipeline to another without

creating intermediate temporary files.

2. FIFOs are used as rendezvous points in client-server applications to pass data between the

clients and the servers.

Example Using FIFOs to Duplicate Output Streams

#include "apue.h"

Int main(void)

{

int n, int1, int2;

char line[MAXLINE];

while ((n = read(STDIN_FILENO, line, MAXLINE)) > 0) {

line[n] = 0; /* null terminate */

if (sscanf(line, "%d%d", &int1, &int2) == 2) {

sprintf(line, "%d\n", int1 + int2);

n = strlen(line);

if (write(STDOUT_FILENO, line, n) != n)

err_sys("write error");

} else {

if (write(STDOUT_FILENO, "invalid args\n", 13) != 13)

err_sys("write error");

}

}

exit(0);

}

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 17

FIFOs can be used to duplicate an output stream in a series of shell commands. This prevents

writing the data to an intermediate disk file. Consider a procedure that needs to process a filtered

input stream twice. Figure shows this arrangement.

 Figure- Procedure that processes a filtered input stream twice

With a FIFO and the UNIX program tee(1), we can accomplish this procedure without using a

temporary file. (The tee program copies its standard input to both its standard output and to the file

named on its command line.)

We create the FIFO and then start prog3 in the background, reading from the FIFO. We then start

prog1 and use tee to send its input to both the FIFO and prog2. Figure shows the process

arrangement.

FIGURE: Using a FIFO and tee to send a stream to two different processes

Example Client-Server Communication Using a FIFO

1. FIFO’s can be used to send data between a client and a server. If we have a server that is

contacted by numerous clients, each client can write its request to a well-known FIFO

that the server creates. Since there are multiple writers for the FIFO, the requests sent by

the clients to the server need to be less than PIPE_BUF bytes in size.

2. This prevents any interleaving of the client writes. The problem in using FIFOs for this

type of client server communication is how to send replies back from the server to each

client.

mkfifo fifo1

prog3 < fifo1 &

prog1 < infile | tee fifo1 | prog2

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 18

3. A single FIFO can’t be used, as the clients would never know when to read their response

versus responses for other clients. One solution is for each client to send its process ID

with the request. The server then creates a unique FIFO for each client, using a pathname

based on the client’sprocess ID.

4. For example, the server can create a FIFO with the name /vtu/ ser.XXXXX, where

XXXXX is replaced with the client’s process ID. This arrangement works, although it is

impossible for the server to tell whether a client crashes. This causes the client-specific

FIFOs to be left in the file system.

5. The server also must catch SIGPIPE, since it’s possible for a client to send a request and

terminate before reading the response, leaving the client-specific FIFO with one writer

(the server) and no reader.

 Figure Clients sending requests to a server using a FIFO

 Figure 15.23. Client-server communication using FIFOs

XSI IPC

1. Identifiers and Keys

2. Permission Structure

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 19

3. Configuration Limits

1) Identifiers and Keys

Each IPC structure (message queue, semaphore, or shared memory segment) in the kernel is

referred to by a non- negative integer identifier. The identifier is an internal name for an IPC

object. Cooperating processes need an external naming scheme to be able to rendezvous

using the same IPC object. For this purpose, an IPC object is associated with a key that acts

as an external name.

Whenever an IPC structure is being created, a key must be specified. The data type of this

key is the primitive system data type key_t, which is often defined as a long integer in the

header <sys/types.h>. This key is converted into an identifier by the kernel.

There are various ways for a client and a server to rendezvous at the same IPC structure.

• The server can create a new IPC structure by specifying a key of IPC_PRIVATE and

store the returned identifier somewhere (such as a file) for the client to obtain. The

key IPC_PRIVATE guarantees that the server creates a new IPC structure. The

disadvantage to this technique is that file system operations are required for the server

to write the integer identifier to a file, and then for the clients to retrieve this identifier

later.

• The IPC_PRIVATE key is also used in a parent-child relationship. The parent creates

a new IPC structure specifying IPC_PRIVATE, and the resulting identifier is then

available to the child after the fork. The child can pass the identifier to a new program

as an argument to one of the exec functions.

• The client and the server can agree on a key by defining the key in a common header,

for example. The server then creates a new IPC structure specifying this key. The

problem with this approach is that it's possible for the key to already be associated

with an IPC structure, in which case the get function (msgget, semget, or shmget)

returns an error. The server must handle this error, deleting the existing IPC structure,

and try to create it again.

• The client and the server can agree on a pathname and project ID (the project ID is a

character value between 0 and 255) and call the function ftok to convert these two

values into a key. This key is then used in step 2. The only service provided by ftok is

a way of generating a key from a pathname and project ID.

Returns: key if OK, (key_t)-1 on error

The path argument must refer to an existing file. Only the lower 8 bits of id are used when

generating the key.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 20

The key created by ftok is usually formed by taking parts of the st_dev and st_ino fields in the

stat structure corresponding to the given pathname and combining them with the project ID. If

two pathnames refer to two different files, then ftok usually returns two different keys for the

two pathnames. However, because both i-node numbers and keys are often stored in long

integers, there can be information loss creating a key. This means that two different pathnames to

different files can generate the same key if the same project ID is used.

2) Permission Structure

XSI IPC associates an ipc_perm structure with each IPC structure. This structure defines the

permissions and owner and includes at least the following members:

All the fields are initialized when the IPC structure is created. At a later time, we can modify

the uid, gid, and mode fields by calling msgctl, semctl, or shmctl. To change these values, the

calling process must be either the creator of the IPC structure or the superuser. Changing these

fields is similar to calling chown or chmod for a file.

Figure XSI IPC permissions

3) Configuration Limits

All three forms of XSI IPC have built-in limits that we may encounter. Most of these limits

can be changed by reconfiguring the kernel. We describe the limits when we describe each of

the three forms of IPC.

Advantages and Disadvantages

1. A fundamental problem with XSI IPC is that the IPC structures are systemwide and do not

have a reference count. For example, if we create a message queue, place some messages

on the queue, and then terminate, the message queue and its contents are not deleted. They

remain in the system until specifically read or deleted by some process calling msgrcv or

msgctl, by someone executing the ipcrm(1) command, or by the system being rebooted.

Compare this with a pipe, which is completely removed when the last process to reference

struct ipc_perm

{

uid_t uid; /* owner's effective user id */

gid_t gid; /* owner's effective group id */

uid_t cuid; /* creator's effective user id */

gid_t cgid; /* creator's effective group id */

mode_t mode; /* access modes */

.

.

.

}

Permission Bit

user-read 0400

user-write (alter) 0200

group-read 0040

group-write (alter) 0020

other-read 0004

other-write (alter) 0002

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 21

it terminates. With a FIFO, although the name stays in the file system until explicitly

removed, any data left in a FIFO is removed when the last process to reference the FIFO

terminates.

2. Another problem with XSI IPC is that these IPC structures are not known by names in the

file system. We can't access them and modify their properties with the functions. Almost a

dozen new system calls (msgget, semop, shmat, and so on) were added to the kernel to

support these IPC objects. We can't see the IPC objects with an ls command, we can't

remove them with the rm command, and we can't change their permissions with the chmod

command. Instead, two new commands ipcs(1) and ipcrm(1)were added.

3. Since these forms of IPC don't use file descriptors, we can't use the multiplexed I/O

functions (select and poll) with them. This makes it harder to use more than one of these

IPC structures at a time or to use any of these IPC structures with file or device I/O. For

example, we can't have a server wait for a message to be placed on one of two message

queues without some form of busywait loop.

Message Queues

A message queue is a linked list of messages stored within the kernel and identified by a message

queue identifier. We'll call the message queue just a queue and its identifier a queue ID.

A new queue is created or an existing queue opened by msgget. New messages are added to the

end of a queue by msgsnd. Every message has a positive long integer type field, a non-negative

length, and the actual data bytes (corresponding to the length), all of which are specified to msgsnd

when the message is added to a queue. Messages are fetched from a queue by msgrcv. We don't

have to fetch the messages in a first-in, first-out order. Instead, we can fetch messages based on

their type field.

Each queue has the following msqid_ds structure associated with it:

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 22

This structure defines the current status of the queue.

The first function normally called is msgget to either open an existing queue or create a new queue.

Returns: message queue ID if OK, 1 on error

When a new queue is created, the following members of the msqid_ds structure are initialized.

1. The ipc_perm structure is initialized. The mode member of this structure is set to the

corresponding permission bits of flag.

2. msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are all set to 0.

3. msg_ctime is set to the current time.

4. msg_qbytes is set to the system limit.

On success, msgget returns the non-negative queue ID. This value is then used with the other three

message queue functions.

The msgctl function performs various operations on a queue.

Returns: 0 if OK, 1 on error.

The cmd argument specifies the command to be performed on the queue specified by msqid.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 23

Data is placed onto a message queue by calling msgsnd.

Returns: 0 if OK, 1 on error.

Each message is composed of a positive long integer type field, a non-negative length (nbytes),

and the actual data bytes (corresponding to the length). Messages are always placed at the end of

the queue.

The ptr argument points to a long integer that contains the positive integer message type, and it is

immediately followed by the message data. (There is no message data if nbytes is 0.) If the largest

message we send is 512 bytes, we can define the following structure:

The ptr argument is then a pointer to a mymesg structure. The message type can be used by the

receiver to fetch messages in an order other than first in, first out.

Messages are retrieved from a queue by msgrcv.

Messages are retrieved from a queue by msgrcv.

Returns: size of data portion of message if OK, 1 on error.

The type argument lets us specify which message we want.

#include <sys/msg.h>

int msgsnd(int msqid, const void *ptr, size_t nbytes, int flag);

struct mymesg

{

long mtype; /* positive message type */

char mtext[512]; /* message data, of length nbytes */

};

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 24

Semaphores

A semaphore is a counter used to provide access to a shared data object for multiple processes.

To obtain a shared resource, a process needs to do the following:

1. Test the semaphore that controls the resource.

2. If the value of the semaphore is positive, the process can use the resource. In this case,

the process decrements the semaphore value by 1, indicating that it has used one unit of

the resource.

3. Otherwise, if the value of the semaphore is 0, the process goes to sleep until the

semaphore value is greater than 0. When the process wakes up, it returns to step 1.

When a process is done with a shared resource that is controlled by a semaphore, the semaphore

value is incremented by 1. If any other processes are asleep, waiting for the semaphore, they are

awakened.

A common form of semaphore is called a binary semaphore. It controls a single resource, and its

value is initialized to 1. In general, however, a semaphore can be initialized to any positive value,

with the value indicating how many units of the shared resource are available for sharing.

XSI semaphores are, unfortunately, more complicated than this. Three features contribute to this

unnecessary complication.

1. A semaphore is not simply a single non-negative value. Instead, we have to define a

semaphore as a set of one or more semaphore values. When we create a semaphore, we

specify the number of values in the set.

2. The creation of a semaphore (semget) is independent of its initialization (semctl). This is

a fatal flaw, since we cannot atomically create a new semaphore set and initialize all the

values in the set.

3. Since all forms of XSI IPC remain in existence even when no process is using them, we

have to worry about a program that terminates without releasing the semaphores it has

been allocated. The undo feature that we describe later is supposed to handle this.

The kernel maintains a semid_ds structure for each semaphore set:

type == 0 The first message on the queue is returned.

type > 0 The first message on the queue whose message type equals type is returned.

type < 0 The first message on the queue whose message type is the lowest value less than or equal to the
absolute value of type is returned.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 25

Each semaphore is represented by an anonymous structure containing at least the following

members:

The first function to call is semget to obtain a semaphore ID.

Returns: semaphore ID if OK, 1 on error

When a new set is created, the following members of the semid_ds structure are initialized.

• The ipc_perm structure is initialized. The mode member of this structure is set to the

corresponding permission bits of flag.

• sem_otime is set to 0.

• sem_ctime is set to the current time.

• sem_nsems is set to nsems.

The number of semaphores in the set is nsems. If a new set is being created (typically in the

server), we must specify nsems. If we are referencing an existing set (a client), we can specify

nsems as 0.

The semctl function is the catchall for various semaphore operations.

The fourth argument is optional, depending on the command requested, and if present, is of type

semun, a union of various command-specific arguments:

struct semid_ds {
struct ipc_perm sem_perm; /* see Section 15.6.2 */

unsigned short sem_nsems; /* # of semaphores in set */

time_t sem_otime; /* last-semop() time */

time_t sem_ctime; /* last-change time */

.

.

.

};

struct {

unsigned short semval; /* semaphore value, always >= 0 */

pid_t sempid; /* pid for last operation */

unsigned short semncnt; /* # processes awaiting semval>curval */

unsigned short semzcnt; /* # processes awaiting semval==0 */

.

.

.

};

#include <sys/sem.h>

int semget(key_t key, int nsems, int flag);

#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd,... /* union semun arg */);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 26

The cmd argument specifies one of the above ten commands to be performed on the set specified

by semid. The function semop atomically performs an array of operations on a semaphore set.

Returns: 0 if OK, 1 on error.

The semoparray argument is a pointer to an array of semaphore operations, represented by sembuf

structures:

The nops argument specifies the number of operations (elements) in the array.

The sem_op element operations are values specifying the amount by which the semaphore value

is to be changed.

union semun

{

int val; /* for SETVAL */

struct semid_ds *buf; /* for IPC_STAT and IPC_SET */

unsigned short *array; /* for GETALL and SETALL */

};

 #include <sys/sem.h>

struct sembuf {

unsigned short sem_num; /* member # in set (0, 1, ..., nsems-1) */

short sem_op; /* operation (negative, 0, or positive) */

short sem_flg; /* IPC_NOWAIT, SEM_UNDO */

};

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 27

1. If sem_op is an integer greater than zero, semop adds the value to the corresponding

semaphore element value and awakens all processes that are waiting for the element to

increase.

2. If sem_op is 0 and the semaphore element value is not 0, semop blocks the calling process

(waiting for 0) and increments the count of processes waiting for a zero value of that

element.

3. If sem_op is a negative number, semop adds the sem_op value to the corresponding

semaphore element value provided that the result would not be negative. If the operation

would make the element value negative, semop blocks the process on the event that the

semaphore element value increases. If the resulting value is 0, semop wakes the processes

waiting for 0.

Shared Memory

Client-Server Properties

The properties of clients and servers that are affected by the various types of IPC used between

them. The simplest type of relationship is to have the client fork and exec the desired server. Two

half-duplex pipes can be created before the fork to allow data to be transferred in both directions.

Figure is an example of this. The server that is executed can be a set-user-ID program, giving it

special privileges. Also, the server can determine the real identity of the client by looking at its

real user ID.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 28

 Parent pipe1 Child(coprocess)

 pipe2

With this arrangement, we can build an open server. It opens files for the client instead of the client

calling the open function. This way, additional permission checking can be added, above and

beyond the normal UNIX system user/group/other permissions. Then assume that the server is a

set-user-ID program, giving it additional permissions (root permission, perhaps). The server uses

the real user ID of the client to determine whether to give it access to the requested file. This way,

can build a server that allows certain users permissions that they don't normally have.

In this example, since the server is a child of the parent, all the server can do is pass back the

contents of the file to the parent. Although this works fine for regular files, it can't be used for

special device files, for example. We would like to be able to have the server open the requested

file and pass back the file descriptor. Whereas a parent can pass a child an open descriptor, a child

cannot pass a descriptor back to the parent.

The next type of server is a daemon process that is contacted using some form of IPC by all clients.

We can't use pipes for this type of clientserver. A form of named IPC is required, such as FIFOs

or message queues. With FIFOs, we saw that an individual per client FIFO is also required if the

server is to send data back to the client. If the clientserver application sends data only from the

client to the server, a single well-known FIFO suffices.

Multiple possibilities exist with message queues.

1. A single queue can be used between the server and all the clients, using the type field of

each message to indicate the message recipient. For example, the clients can send their

requests with a type field of 1. Included in the request must be the client's process ID. The

server then sends the response with the type field set to the client's process ID. The server

receives only the messages with a type field of 1 (the fourth argument for msgrcv), and the

clients receive only the messages with a type field equal to their process IDs.

2. Alternatively, an individual message queue can be used for each client. Before sending the

first request to a server, each client creates its own message queue with a key of

IPC_PRIVATE. The server also has its own queue, with a key or identifier known to all

clients. The client sends its first request to the server's well-known queue, and this request

fd1[1]

fd2[0]

Stdin

stdout

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 29

must contain the message queue ID of the client's queue. The server sends its first response

to the client's queue, and all future requests and responses are exchanged on this queue.

One problem with this technique is that each client-specific queue usually has only a single

message on it: a request for the server or a response for a client. This seems wasteful of a limited

systemwide resource (a message queue), and a FIFO can be used instead. Another problem is that

the server has to read messages from multiple queues. Neither select nor poll works with message

queues.

Either of these two techniques using message queues can be implemented using shared memory

segments and a synchronization method (a semaphore or record locking).

Stream Pipes

A STREAMS-based pipe ("STREAMS pipe," for short) is a bidirectional (full-duplex) pipe. To

obtain bidirectional data flow between a parent and a child, only a single STREAMS pipe is

required. STREAMS pipes are supported by Solaris and are available in an optional add-on

package with Linux. Figure1 shows the two ways to view a STREAMS pipe.

Figure1- Two ways to view a Streams pipe

If we look inside a STREAMS pipe Figure2, we see that it is simply two stream heads, with each

write queue (WQ) pointing at the other's read queue (RQ). Data written to one end of the pipe is

placed in messages on the other's read queue.

 Figure2- Inside a streams pipe

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 30

Since a STREAMS pipe is a stream, we can push a STREAMS module onto either end of the pipe

to process data written to the pipe Figure3 But if we push a module on one end, we can't pop it off

the other end. If we want to remove it, we need to remove it from the same end on which it was

pushed.

 Figure3- Inside a streams pipe with a module

 Figure4- Arrangement of descriptors for coprocess

The parent uses only fd[0], and the child uses only fd[1]. Since each end of the STREAMS pipe

is full duplex, the parent reads and writes fd[0], and the child duplicates fd[1] to both standard

input and standard output. Figure4- shows the resulting descriptors. Note that this example also

works with full-duplex pipes that are not based on Streams, because it doesn’t make use of any

STREAMS features other than the full-duplex nature of STREAMS- based pipes.

Example- STREAMS-Based s_pipe Function

This example shows the STREAMS-based version of the s_pipe function. This version simply

calls the standard pipe function, which creates a full-duplex pipe.

#include "apue.h"

/*

 * Returns a STREAMS-based pipe, with the two file descriptors

 * returned in fd[0] and fd[1].

 */

int

s_pipe(int fd[2])

{

 return(pipe(fd));

}

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 31

1. Naming STREAMS Pipes.

2. Unique Connection.

Naming STREAMS Pipes

Normally, pipes can be used only between related processes: child processes inheriting pipes from

their parent processes. So that unrelated processes can communicate using FIFOs, but this provides

only a one-way communication path. The STREAMS mechanism provides a way for processes to

give a pipe a name in the file system. This bypasses the problem of dealing with unidirectional

FIFOs. We can use the fattach function to give a STREAMS pipe a name in the file system.

The path argument must refer to an existing file, and the calling process must either own the file

and have write permissions to it or be running with superuser privileges.

Once a STREAMS pipe is attached to the file system namespace, the underlying file is

inaccessible. Any process that opens the name will gain access to the pipe, not the underlying file.

Any processes that had the underlying file open before fattach was called, however, can continue

to access the underlying file. Indeed, these processes generally will be unaware that the name now

refers to a different file.

Figure- shows a pipe attached to the pathname /tmp/pipe. Only one end of the pipe is attached to

a name in the file system. The other end is used to communicate with processes that open the

attached filename. Even though it can attach any kind of STREAMS file descriptor to a name in

the file system, the fattach function is most commonly used to give a name to a STREAMS pipe.

#include <stropts.h>

int fattach(int filedes, const char *path);

Returns: 0 if OK, 1 on error

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 32

 Figure- A pipe mounted on a name in the file system

A process can call fdetach to undo the association between a STREAMS file and the name in the

file system.

After fdetach is called, any processes that had accessed the STREAMS pipe by opening the path

will still continue to access the stream, but subsequent opens of the path will access the original

file residing in the file system.

Unique Connections

Although we can attach one end of a STREAMS pipe to the file system namespace, we still have

problems if multiple processes want to communicate with a server using the named STREAMS

pipe. Data from one client will be interleaved with data from the other clients writing to the pipe.

Even if we guarantee that the clients write less than PIPE_BUF bytes so that the writes are atomic,

we have no way to write back to an individual client and guarantee that the intended client will

read the message. With multiple clients reading from the same pipe, we cannot control which one

will be scheduled and actually read what we send.

The connld STREAMS module solves this problem. Before attaching a STREAMS pipe to a name

in the file system, a server process can push the connld module on the end of the pipe that is to be

attached. This results in the configuration shown in Figure1.

#include <stropts.h>

int fdetach(const char *path);

Returns: 0 if OK, 1 on error

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 33

 Figure1- Setting up connld for unique connections.

In Figure1, the server process has attached one end of its pipe to the path /tmp/pipe. We show a

dotted line to indicate a client process in the middle of opening the attached STREAMS pipe. Once

the open completes, we have the configuration shown in Figure2.

Figure2- Using connld to make unique connections

The three functions that can be used to create unique connections between unrelated processes.

#include "apue.h"

int serv_listen(const char *name);

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 34

Returns: file descriptor to listen on if OK, negative value on error

int serv_accept(int listenfd, uid_t *uidptr);

Returns: new file descriptor if OK, negative value on error

int cli_conn(const char *name);

Returns: file descriptor if OK, negative value on error

The serv_listen function can be used by a server to announce its willingness to listen for client

connect requests on a well-known name (some pathname in the file system). Clients will use this

name when they want to connect to the server. The return value is the server's end of the

STREAMS pipe.

The serv_accept function is used by a server to wait for a client's connect request to arrive. When

one arrives, the system automatically creates a new STREAMS pipe, and the function returns one

end to the server. Additionally, the effective user ID of the client is stored in the memory to which

uidptr points.

A client calls cli_conn to connect to a server. The name argument specified by the client must be

the same name that was advertised by the server's call to serv_listen. On return, the client gets a

file descriptor connected to the server.

Passing File Descriptors

The ability to pass an open file descriptor between processes is powerful. It can lead to different

ways of designing clientserver applications. It allows one process (typically a server) to do

everything that is required to open a file (involving such details as translating a network name to

a network address, dialing a modem, negotiating locks for the file, etc.) and simply pass back to

the calling process a descriptor that can be used with all the I/O functions. All the details involved

in opening the file or device are hidden from the client.

When we pass an open file descriptor from one process to another, we want the passing process

and the receiving process to share the same file table entry. Figure 1 shows the desired

arrangement.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 35

Figure 1- Passing an open file from the top process to the bottom process.

Technically, we are passing a pointer to an open file table entry from one process to another. This

pointer is assigned the first available descriptor in the receiving process. (Saying that we are

passing an open descriptor mistakenly gives the impression that the descriptor number in the

receiving process is the same as in the sending process, which usually isn't true.)

What normally happens when a descriptor is passed from one process to another is that the sending

process, after passing the descriptor, then closes the descriptor. Closing the descriptor by the sender

doesn't really close the file or device, since the descriptor is still considered open by the receiving

process (even if the receiver hasn't specifically received the descriptor yet).

#include "apue.h"

int send_fd(int fd, int fd_to_send);

int send_err(int fd, int status, const char *errmsg);

Both return: 0 if OK, 1 on error

int recv_fd(int fd, ssize_t (*userfunc)(int, const

 void *, size_t));

Returns: file descriptor if OK, negative value on error

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 36

A process (normally a server) that wants to pass a descriptor to another process calls either send_fd

or send_err. The process waiting to receive the descriptor (the client) calls recv_fd.

The send_fd function sends the descriptor fd_to_send across using the STREAMS pipe or UNIX

domain socket represented by fd. We'll use the term s-pipe to refer to a bidirectional

communication channel that could be implemented as either a STREAMS pipe or a UNIX domain

stream socket.

The send_err function sends the errmsg using fd, followed by the status byte. The value of status

must be in the range 1 through 255.

Clients call recv_fd to receive a descriptor. If all is OK (the sender called send_fd), the non-

negative descriptor is returned as the value of the function. Otherwise, the value returned is the

status that was sent by send_err (a negative value in the range 1 through -255). Additionally, if an

error message was sent by the server, the client's userfunc is called to process the message. The

first argument to userfunc is the constant STDERR_FILENO, followed by a pointer to the error

message and its length. The return value from userfunc is the number of bytes written or a negative

number on error. Often, the client specifies the normal write function as the userfunc.

We implement our own protocol that is used by these three functions. To send a descriptor, send_fd

sends two bytes of 0, followed by the actual descriptor. To send an error, send_err sends the

errmsg, followed by a byte of 0, followed by the absolute value of the status byte (1 through 255).

The recv_fd function reads everything on the s-pipe until it encounters a null byte. Any characters

read up to this point are passed to the caller's userfunc. The next byte read by recv_fd is the status

byte. If the status byte is 0, a descriptor was passed; otherwise, there is no descriptor to receive.

The function send_err calls the send_fd function after writing the error message to the s-pipe. This

is shown in Figure 2.

#include "apue.h"

/*

 * Used when we had planned to send an fd using send_fd(),

 * but encountered an error instead. We send the error back

 * using the send_fd()/recv_fd() protocol.

 */

int

send_err(int fd, int errcode, const char *msg)

{

 int n;

 if ((n = strlen(msg)) > 0)

 if (writen(fd, msg, n) != n) /* send the error message */

 return(-1);

 if (errcode >= 0)

 errcode = -1; /* must be negative */

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 37

 if (send_fd(fd, errcode) < 0)

 return(-1);

 return(0);

}

Figure-2 The send_err function.

1. Passing File Descriptors over STREAMS-Based Pipes

2. Passing File Descriptors over UNIX Domain Sockets

Passing File Descriptors over STREAMS-Based Pipes

With STREAMS pipes, file descriptors are exchanged using two ioctl commands: I_SENDFD and

I_RECVFD. To send a descriptor, we set the third argument for ioctl to the actual descriptor.

Figure-3 The send_fd function for STREAMS pipes

#include "apue.h"

#include <stropts.h>

/*

 * Pass a file descriptor to another process.

 * If fd<0, then -fd is sent back instead as the error status.

 */

int

send_fd(int fd, int fd_to_send)

{

 char buf[2]; /* send_fd()/recv_fd() 2-byte protocol */

 buf[0] = 0; /* null byte flag to recv_fd() */

 if (fd_to_send < 0) {

 buf[1] = -fd_to_send; /* nonzero status means error */

 if (buf[1] == 0)

 buf[1] = 1; /* -256, etc. would screw up protocol */

 } else {

 buf[1] = 0; /* zero status means OK */

 }

 if (write(fd, buf, 2) != 2)

 return(-1);

 if (fd_to_send >= 0)

 if (ioctl(fd, I_SENDFD, fd_to_send) < 0)

 return(-1);

 return(0);

}

When we receive a descriptor, the third argument for ioctl is a pointer to a strrecvfd structure:

 struct strrecvfd {

 int fd; /* new descriptor */

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 38

 uid_t uid; /* effective user ID of sender */

 gid_t gid; /* effective group ID of sender */

 char fill[8];

 };

Passing File Descriptors over UNIX Domain Sockets

To exchange file descriptors using UNIX domain sockets, we call the sendmsg(2) and recvmsg(2)

functions. Both functions take a pointer to a msghdr structure that contains all the information on

what to send or receive. The structure on your system might look similar to the following:

struct msghdr {

 void *msg_name; /* optional address */

 socklen_t msg_namelen; /* address size in bytes */

 struct iovec *msg_iov; /* array of I/O buffers */

 int msg_iovlen; /* number of elements in array */

 void *msg_control; /* ancillary data */

 socklen_t msg_controllen; /* number of ancillary bytes */

 int msg_flags; /* flags for received message */

 };

The first two elements are normally used for sending datagrams on a network connection, where

the destination address can be specified with each datagram.

Two elements deal with the passing or receiving of control information. The msg_control field

points to a cmsghdr (control message header) structure, and the msg_controllen field contains the

number of bytes of control information.

struct cmsghdr {

 socklen_t cmsg_len; /* data byte count, including header */

 int cmsg_level; /* originating protocol */

 int cmsg_type; /* protocol-specific type */

 /* followed by the actual control message data */

 };

To send a file descriptor, we set cmsg_len to the size of the cmsghdr structure, plus the size of an

integer (the descriptor). The cmsg_level field is set to SOL_SOCKET, and cmsg_type is set to

SCM_RIGHTS, to indicate that we are passing access rights. (SCM stands for socket-level control

message.) Access rights can be passed only across a UNIX domain socket. The descriptor is stored

right after the cmsg_type field, using the macro CMSG_DATA to obtain the pointer to this integer.

Three macros are used to access the control data, and one macro is used to help calculate the value

to be used for cmsg_len.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 39

#include <sys/socket.h>

unsigned char *CMSG_DATA(struct cmsghdr *cp);

Returns: pointer to data associated with cmsghdr structure

struct cmsghdr *CMSG_FIRSTHDR(struct msghdr *mp);

Returns: pointer to first cmsghdr structure associated

with the msghdr structure, or NULL if none exists

struct cmsghdr *CMSG_NXTHDR(struct msghdr *mp,

 struct cmsghdr *cp);

Returns: pointer to next cmsghdr structure associated with

the msghdr structure given the current cmsghdr

structure, or NULL if we're at the last one

unsigned int CMSG_LEN(unsigned int nbytes);

Returns: size to allocate for data object nbytes large

The Single UNIX Specification defines the first three macros, but omits CMSG_LEN. The

CMSG_LEN macro returns the number of bytes needed to store a data object of size nbytes, after

adding the size of the cmsghdr structure, adjusting for any alignment constraints required by the

processor architecture, and rounding up.

An Open Server-Version 1

Using file descriptor passing, we now develop an open server—a program that is executed by a

process to open one or more files. Instead of sending the contents of the file back to the calling

process, however, this server sends back an open file descriptor. As a result, the open server can

work with any type of file (such as a device or a socket) and not simply regular files. The client

and server exchange a minimum amount of information using IPC: the filename and open mode

sent by the client, and the descriptor returned by the server.

• There are several advantages in designing the server to be a separate executable program.

The server can easily be contacted by any client, similar to the client calling a library

function. We are not hard-coding a particular service into the application, but designing a

general facility that others can reuse.

• If we need to change the server, only a single program is affected. Conversely, updating a

library function can require that all programs that call the function be updated (i.e.,

relinked with the link editor).

• The server can be a set-user-ID program, providing it with additional permissions that the

client does not have. Note that a library function (or shared library function) can’t

provide this capability.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 40

The client process creates an fd-pipe and then calls fork and exec to invoke the server. The client

sends requests across the fd-pipe using one end, and the server sends back responses over the fd-

pipe using the other end. We define the following application protocol between the client and the

server.

1. The client sends a request of the form ‘‘open <pathname> <openmode>\0’’ across the fd-

pipe to the server. The <openmode> is the numeric value, in ASCII decimal, of the

second argument to the open function. This request string is terminated by a null byte.

2. The server sends back an open descriptor or an error by calling either send_fd or

send_err.

We first have the header, open.h (Figure-1), which includes the standard headers and defines the

function prototypes.

Figure-1- The open.h header

The main function Figure-2 is a loop that reads a pathname from standard input and copies the

file to standard output. The function calls csopen to contact the open server and return an open

descriptor.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 41

 Figure-2- The client main function, version-1

Client-Server Connection Functions.

The Client-Server architecture, which refers to two processes or two applications that

communicate with each other to exchange some information. One of the two processes acts as a

client process, and another process acts as a server.

Client Process- This is the process, which typically makes a request for information. After getting

the response, this process may terminate or may do some other processing.

Server Process- This is the process which takes a request from the clients. After getting a request

from the client, this process will perform the required processing, gather the requested information,

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 42

and send it to the requestor client. Once done, it becomes ready to serve another client. Server

processes are always alert and ready to serve incoming requests.

There are two types of servers you can have −

Iterative Server − This is the simplest form of server where a server process serves one client and

after completing the first request, it takes request from another client. Meanwhile, another client

keeps waiting.

Concurrent Servers − This type of server runs multiple concurrent processes to serve many

requests at a time because one process may take longer and another client cannot wait for so long.

The simplest way to write a concurrent server under Unix is to fork a child process to handle each

client separately.

The opend.h header (figure-1), which includes the standard headers and declares the global

variables and function prototypes.

 Figure-1 - The opend.h header, version 1

The main function (Figure-2) reads the requests from the client on the fd-pipe (its standard input)

and calls the function handle_request.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 43

 Figure-2 The server main function, version 1

The function handle_request in Figure-3 does all the work. It calls the function buf_args to break

up the client’s request into a standard argv-style argument list and calls the function cli_args to

process the client’s arguments. If all is OK, open is called to open the file, and then send_fd sends

the descriptor back to the client across the fd-pipe (its standard output). If an error is encountered,

send_err is called to send back an error message, using the client–server protocol.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 44

 Figure-3 The handle_request function, version 1

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 1

Module – 5:Signal

Introduction

Signals are software interrupts. Signals provide a way of handling asynchronous events: a user

at a terminal typing the interrupt key to stop a program or the next program in a pipeline

terminating prematurely.

When a signal is sent to a process, it is pending on the process to handle it. The process can

react to pending signals in one of three ways:

1. Accept the default action of the signal, which for most signals will terminate the

process.

2. Ignore the signal. The signal will be discarded and it has no affect whatsoever on the

recipient process.

3. Invoke a user-defined function. The function is known as a signal handler routine and

the signal is said to be caught when this function is called.

Unix kernel support for signals

In Unix system version, each entry in the kernel process table slot has an array of signal flags, one

for each defined in the system.

When a signal is generated for a process, the kernel will set the corresponding signal flag in the

process table slot of the recipient process. If the recipient process is asleep, the kernel will awaken

the process by scheduling it. When the recipient process runs, the kernel will check the process U-

area that contains an array of signal handling specifications.

If array entry contains a zero value, the process will accept the default action of the signal.

If array entry contains a 1 value, the process will ignore the signal and kernel will discard it.

If array entry contains any other value, it is used as the function pointer for a user-defined signal

handler routine.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 2

The kernel will setup the process to execute the function immediately and the process will return

to its current point of execution (or to some other place if signal handler does a long jmp), if the

signal handler does not terminate the process. If there are different signals pending on a process,

the order in which they are sent to a recipient process in undefined. If multiple instances of a signal

are pending on a process, it is implementation-dependent on whether a signal instance or multiple

instances of the signal is pending, but not how many of them are present.

Signal Concepts

All UNIX systems and ANSI – C support the signal API, which can be used to define

the per-signal handing method.

The function prototype of the signal is:

signal_num is the signal identifier like SIGINT or SIGTERM defined in the <signal.h>. handler

is the function pointer of a user defined signal handler function. This function should take an

integer formal argument and does not return any value.

Example below attempts to catch the SIGTERM, ignores the SIGINT, and accepts the default

action of the SIGSEGV signal. The pause API suspends the calling process until it is interrupted

by a signal and the corresponding signal handler does a return:

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 3

The SIG_IGN and SIG_DFL are manifest constants defined in <signal.h>

The return value of signal API is the previous signal handler for the signal. UNIX system V.3

and V.4 support the sigset API, which has the same prototype and similar use a signal.

the sigset arguments and return value is the same as that of signal. Both the functions set signal

handling methods for any named signal; but, signal API is unreliable and sigset is reliable.

This means that when a signal is set to be caught by a signal handler via sigset, when multiple

instances of the signal arrive one of them is handled while other instances are blocked. Further,

the signal handler is not reset to SIG_DFT when it is invoked.

Signal Mask

Each process in UNIX or POSIX.1 system has signal mask that defines which signals are blocked

when generated to a process. A blocked signal depends on the recipient process to unblock it and

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 4

handle it accordingly. If a signal is specified to be ignored and blocked, it is implementation

dependent on whether the signal will be discarded or left pending when it is sent to the process. A

process initially inherits the parent’s signal mask when it is created, but any pending signals for

the parent process are not passed on. A process may query or set its signal mask via the

sigprocmask API:

new_mask defines a set of to be set or reset in a calling process signal mask. cmd specifies how

the new_mask value is to be used by the API. The possible values cmd are:

If the actual argument to new_mask argument is a NULL pointer, the cmd argument will be

ignored, and the current process signal mask will not be altered. The old_mask argument is the

address of a sigset_t variable that will be assigned the calling process’s original signal mask prior

to a sigprocmask call. If the actual argument to old_mask is a NULL pointer, no previous signal

mask will be returned. The return value of sigprocmask call is zero if it succeeds or -1 if it fails.

The segset_t is a data type defined in <signal.h>. It contains a collection of bit flags, with each bit

flag representing one signal defined in the system. The BSD UNIX and POSIX.1 define a set of

API known as sigsetops functions, which set, reset, and query the presence of signals in a sigset_t

typed variable.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 5

The sigemptyset API clears all signal flags in the sigmask argument. The sigaddset API sets the

flag corresponding to the signal_num signal in sigmask. The sigdelset API clears the flag

corresponding to the signal_num signal in sigmask. The sigfillset API sets all the flags in the

sigmask. The return value of the sigemptyset, sigaddset, sigdelset, and sigfillset calls is zero if the

call succeed or -1 if they fail. The sigismember API returns 1 if the flag corresponding to the

signal_num signal in the sigmask is set, zero if not set, and -1 if the call fails. The following

example checks whether the SIGINT signal is present in a process signal mask and adds it to the

mask if it is not there. Then clears the SIGSEGV signal from the process signal mask.

If there are multiple instances of the same signal pending for the process, it is implementation

dependent whether one or all of those instances will be delivered to the process. A process can

query which signals are pending for it via the sigpending API

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 6

sigmask is assigned the set of signals pending for the calling process by the API. sigpending returns

a zero if it succeeds and a -1 value if it fails. UNIX system V.3 and V.4 support the following APIs

as simplified means for signal mask manipulation.

The sighold API adds the named signal signal_num to the calling process signal mask. The sigrelse

API removes the named signal signal_num to the calling process signal mask. The sigignore API

sets the signal handling method for the named signal signal_num to SIG_DFT. The sigpause API

removes the named signal signal_num from the calling process signal mask and suspends the

process until it is interrupted by a signal.

Sigaction

The sigaction API is a replacement for the signal API in the latest UNIX and POSIX systems. The

sigaction API is called by a process to set up a signal handling method for each signal it wants to

deal with. sigaction API returns the previous signal handling method for a given signal. The

sigaction API prototype is:

The struct sigaction data type is defined in the <signal.h> header as:

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 7

The sa_handler field can be set to SIG_IGN, SIG_DFL, or a user defined signal handler function.

The sa_mask field specifies additional signals that process wishes to block when it is handling

signal_num signal. The signal_num argument designates which signal handling action is defined

in the action argument. The previous signal handling method for signal_num will be returned via

the old_action argument if it is not a NULL pointer. If action argument is a NULL pointer, the

calling process’s existing signal handling method for signal_num will be unchanged. The

following C program illustrates the use of sigaction:

In the above example, the process signal mask is set with SIGTERM signal. The process then

defines a signal handler for the SIGINT signal and also specifies that the SIGSEGV signal is to be

blocked when the process is handling the SIGINT signal. The process then terminates its execution

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 8

via the pause API. The output of the above program would be as:

The sa_flag field of the struct sigaction is used to specify special handling for certain signals.

POSIX.1 defines only two values for the sa_flag: zero or SA_NOCHLDSTOP. The

SA_NOCHLDSTOP flag is an integer literal defined in the <signal.h> header and can be used

when signal_num is SIGCHLD. The effect of the SA_NOCHLDSTOP flag is that the kernel will

generate the SIGCHLD signal to a process when its child process has terminated, but not when the

child process has been stopped. If the sa_flag value is set to zero in sigaction call for SIGCHLD,

het kernel will send the SIGCHLD signal to the calling process whenever its child process is either

terminated or stopped. UNIX System V.4 defines additional flags for the sa_flags field. These

flags can be used to specify the UNIX System V.3 style of signal handling method:

The SIGCHLD Signal and the waitpid API

When a child process terminates or stops, the kernel will generate a SIGCHLD signal to its parent

process. Depending upon how the parent sets up signal handling of the SIGCHLD signal, different

events may occur:

1. Parent accepts the default action of the SIGCHLD signal: The SIGCHLD signal does not

terminate the parent process. It affects only the parent process if it arrives at the same time

het parent process is suspended by the waitpid system call. In this case, the parent process

is awakened, the API will return child’s exit status and process ID to the parent, and the

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 9

kernel will clear up the process table slot allocated for the child process. Thus, with this

setup, a parent process can call waitpid API repeatedly to wait for each child it created.

2. Parent ignores the SIGCHLD signal: The SIGCHLD signal will be discarded, and the

parent will not be disturbed, even if it is executing the waitpid system call. The effect of

this setup is that if the parent calls waitpid API, the API will suspend the parent until all its

child processes have terminated. Furthermore, the child process table slots will be cleared

by the kernel, and the API will return -1 value to the parent process.

3. Process catches the SIGCHLD signal: The signal handler function will be called in the

parent whenever het child process terminates. Furthermore, if the SIGCHLD signal arrives

while het parent process is executing the waitpid system call, after the signal handler

returns, the waitpid API may be restarted to collect the child exit status and clear its process

table slot. On the other hand, the API may be aborted and the child process table slot not

freed, depending upon the parent setup of the signal action for the SIGCHLD signal.

The sigsetjmp and siglongjmp APIs

The sigsetjmp and siglongjmp APIs have similar functions as their corresponding setjmp and

longjmp APIs. The sigsetjmp and siglongjmp APIs are defined in POSIX.1 and on most UNIX

systems that support signal mask. The function prototypes of the APIs are:

The sigsetjmp and siglongjmp are created to support signal mask processing. Specifically, it is

implementation dependent on whether a process signal mask is saved and restored when it invokes

the setjmp and longjmp APIs respectively. The sigsetjmp API behaves similarly to the setjmp API,

except that it has a second argument, save_sigmask, which allows a user to specify whether a

calling process signal mask should be saved to the provided env argument. If the save_sigmask

argument is nonzero, the caller’s signal mask is saved, else signal mask is not saved. The

siglongjmp API does all operations as the longjmp API, but it also restores a calling process signal

mask if the mask was saved in its env argument. The ret_val argument specifies the return value

of the corresponding sigsetjmp API when called by siglongjmp API. Its value should be nonzero

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 10

number, and if it is zero the siglongjmp API will reset it to 1. The siglongjmp API is usually called

from user-defined signal handling functions. This is because a process signal mask is modified

when a signal handler is called, and siglongjmp should be called to ensure that the process signal

mask is restored properly when “jumping out” from a signal handling function. The following C

program illustrates the use of sigsetjmp and siglongjmp APIs.

The program sets its signal mask to contain SIGTERM, and then sets up a signal trap for the

SIGINT signal. The program then calls sigsetjmp to store its code location in the env global

variable. Note the sigsetjmp call returns a zero value when directly called in user program and not

via siglongjmp. The program suspends its execution via the pause API. When ever the user

interrupts the process from the keyboard, the callme function is called. The callme function calls

siglongjmp API to transfer flow back to the sigsetjmp function in main, which now returns a 2

value. The sample output of the above program is:

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 11

kill

A process can send signal to a related process via the kill API. This is a simple means of IPC or

control. The sender and recipient processes must be related such that either sender process real or

effective user ID matches that of the recipient process, or the sender has su privileges. For example,

a parent and child process can send signals to each other via the kill API. The kill API is defined

in most UNIX system and is a POSIX.1 standard. The function prototype is as:

The sig_num argument is the integer value of a signal to be sent to one or more processes

designated by pid. The possible values of pid and its use by the kill API are:

The return value of kill is zero if it succeeds or -1 if it fails.

alarm

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 12

The alarm API can be called by a process to request the kernel to send the SIGALRM signal after

a certain number of real clock seconds. The alarm API is defined in most UNIX systems and is a

POSIX.1 standard. The function prototype of the API is as:

The time_interval argument is the number of CPU seconds elapse time, after which the kernel will

send the SIGALRM signal to the calling process. If a time_interval value is zero, it turns off the

alarm clock. The return value of the alarm API is the number of CPU seconds left in the process

timer, as set by a previous alarm system call. The effect of the previous alarm API call is canceled,

and the with new alarm call. process timer is reset. A process alarm clock is not passed on to its

forked child process, but an exec’ed process retains the same alarm clock value as was prior to the

exec API call. The alarm API can be used to implement the sleep API.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 13

The sleep function above sets up a signal handler for the SIGALRM, calls het alarm API to request

the kernel to send the SIGALRM signal after the timer interval, and finally, suspends its execution

via the pause system call. The wakeup signal handler function is called when the SIGALRM signal

is sent to the process. When it returns, the pause system call will be aborted, and the calling process

will return from the sleep function. BSD UNIX defines the ualarm function, which is the same as

the alarm API except that the argument and return value of the ualarm function are in microsecond

units.

Interval Timers

The use of the alarm API is to set up a interval timer in a process. The interval timer can be used

to schedule a process to do some tasks at fixed time interval, to time the execution of some

operations, or limit the time allowed for the execution of some tasks. The following program

illustrates how to set up a real-time clock interval timer using the alarm API.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 14

The sigaction API is called to set up callme as the signal handling function for the SIGALRM

signal. The program then invokes real clock seconds. het alarm API to send itself het SIGALRM

signal after 5. The program then goes off to perform its normal operation in an infinite loop. When

the timer expirers, the callme function is invoked, which restarts the alarm clock for another 5

seconds and then does the scheduled tasks. When the callme function returns, the program

continues its “normal” operation until another timer expiration. BSD UNIX invented the setitimer

API, which provides capabilities additional to those of the alarm API. The setitimer resolution

time is in microseconds, whereas the resolution time for alarm is in seconds. The alarm API can

be used to set up real-time clock timer per process. The setitimer API can be used to define up to

three different types of timers in a process:

1. Real time clock timer.

2. Timer based on the user time spent by a process

3. Timer based on the total user and system times spent by a process.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 15

The getitimer API is also defined in BSD and System V UNIX for users to query the timer values

that are set by the setitimer API. The setitimer and getitimer function prototypes are:

The which argument specify which timer to process, the possible values are:

The struct itimerval data type is defined in the <sys/time.h> header as:

For setitimer API, the val.it_value is the time to set the named timer, and the val.it_interval is the

time to reload the timer when it expires. The val.it_interval may be set to zero if the timer is to run

only once and if the val.it_value is set to zero, it stops the named timer if it is running. For getitimer

API, old.it_value and the old.it_interval return the named timer’s remaining time and the reload

time, respectively. The old argument of the setitimer API is like the old argument of the getitimer

API. If this is an address of a struct itimerval typed variable, it returns the previous timer value, if

set to NULL the old timer value will not be returned. The ITIMER_VIRTUAL and

ITIMER_PROF timers are primary useful in timing the total execution time of selected user

functions, as the timer runs only while the user process is running or the kernel is executing system

functions on behalf of the user process fo rhet ITIMER_PROF timer. Both the APIs return zero on

success or -1 value if they fail.

POSIX.1b Timers

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 16

POSIX.1b defines a set of APIs for interval timer manipulation. The POSIX.1b timers are more

flexible and powerful than UNIX timers in following ways:

1. Users may define multiple independent timers per system clock.

2. The timer resolution is in nanoseconds.

3. Users may specify, on a timer basis, the signal to be raised when a timer expires.

4. The timer interval may be specified as either an absolute or a relative time

There is a limit on how many POSIX timers can be created per process, this is TIMER_MAX

constant defined in <limits.h> header.

POSIX timers created by a process are not inherited by its child process, but are retained across

the exec system call. A POSIX.1 timer does not use the SIGALRM signal when it expires, it can

be used safely with the sleep API in the same program. The POSIX.1b APIs for timer

manipulation are:

The timer_create API is used to dynamically create a timer and returns its handler. The clock

argument specifies which system clock would be the new timer based on, its value may be

CLOCK_REALTIME for creating a real time clock timer – this defined by POSIX.1b – other

values are system dependent. The spec argument defines what action to take when the timer

expires. The struct sigevent data type is defined as:

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 17

The sigev_signo field specifies a signal number to be raised at the timer expiration. Its valid only

when the sigev_notify field is set to SIGEV_SIGNAL. If sigev_notify field is set to

SIGEV_NONE, no signal is raised by the timer when it expires. Because multiple timers may

generate the same signal, the sigev_value field is used to contain any user defined data to identify

that a signal is raised by a specific timer.

Daemon Process

Introduction

Daemons are processes that live for a long time. They are often started when the system is

bootstrapped and terminate only when the system is shut down. They do not have a controlling

terminal; so, we say that they run in the background. UNIX systems have numerous daemons that

perform day-to-day activities. Here we look at the process structure of daemons and how to write

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 18

a daemon. Since a daemon does not have a controlling terminal, we need to see how a daemon can

report error conditions when something goes wrong.

We look at some common system daemons and how they relate to the concepts of process groups,

controlling terminals, and sessions. The ps command prints the status of various processes in the

system. We will execute: ps -axj under BSD UNIX. The -a option shows the status of processes

owned by others, and -x shows processes that do not have a controlling terminal. The -j option

displays the job-related information: the session ID, process group ID, controlling terminal, and

terminal process group ID. Under System V based systems, a similar command is ps -efjc. The

output from ps looks like-

The system processes depend on the operating system implementation. Anything with a parent

process ID of 0 is usually a kernel process started as part of the system bootstrap procedure. (An

exception to this is init, since it is a user-level command started by the kernel at boot time.). Kernel

processes are special and generally exist for the entire lifetime of the system. They run with

superuser privileges and have no controlling terminal and no command line. Process 1 is usually

init, is a system daemon responsible for, among other things, starting system services specific to

various run levels. These services are usually implemented with the help of their own daemons.

On Linux, the kevenTD daemon provides process context for running scheduled functions in the

kernel. The kapmd daemon provides support for the advanced power management features

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 19

available with various computer systems. The kswapd daemon is also known as the pageout

daemon. It supports the virtual memory subsystem by writing dirty pages to disk slowly over time.

The Linux kernel flushes cached data to disk using two additional daemons: bdflush and kupdated.

The syslogd daemon is available to any program to log system messages for an operator. The

messages may be printed on a console device and also written to a file. The inetd daemon (xinetd)

listens on the system's network interfaces for incoming requests for various network servers. The

nfsd, lockd, and rpciod daemons provide support for the Network File System (NFS). The cron

daemon (crond) executes commands at specified dates and times. Numerous system administration

tasks are handled by having programs executed regularly by cron. The cupsd daemon is a print

spooler; it handles print requests on the system. The kernel daemons are started without a

controlling terminal. The lack of a controlling terminal in the user-level daemons is probably the

result of the daemons having called setsid. All the user-level daemons are process group leaders

and session leaders and are the only processes in their process group and session. Finally, note that

the parent of most of these daemons is the init process.

Coding Rules

Some basic rules to coding a daemon prevent unwanted interactions from happening. We state

these rules and then show a function, daemonize, that implements them.

1. The first thing to do is call umask to set the file mode creation mask to 0. The file mode

creation mask that is inherited could be set to deny certain permissions.

2. Call fork and have the parent exit. This does several things.

First, if the daemon was started as a simple shell command, having the parent terminate

makes the shell think that the command is done.

Second, the child inherits the process group ID of the parent but gets a new process ID, so

we are guaranteed that the child is not a process group leader. This is a prerequisite for the

call to setsid that is done next.

3. Call setsid to create a new session. Three steps occur. The process

becomes a session leader of a new session,

becomes the process group leader of a new process group

has no controlling terminal.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 20

4. Change the current working directory to the root directory. The current working directory

inherited from the parent could be on a mounted file system. Since daemons normally exist

until the system is rebooted, if the daemon stays on a mounted file system, that file system

cannot be unmounted.

5. Unneeded file descriptors should be closed. This prevents het daemon from holding open

any descriptors that it may have inherited from its parent.

6. Some daemons open file descriptors 0, 1, and 2 to /dev/null so that any library routines that

try to read from standard input or write to standard output or standard error will have no

effect. Since the daemon is not associated with a terminal device, there is nowhere for

output tboe displayed; nor is there anywhere to receive input from an interactive user. Even

if the daemon was started from an interactive session, the daemon runs in the background,

and the login session can terminate without affecting the daemon. If other users log in on

the same terminal device, we wouldn't want output from the daemon showing up on the

terminal, and the users wouldn't expect their input to be read by the daemon.

#include "apue.h"

#include <syslog.h>

#include <fcntl.h>

#include <sys/resource.h>

void

daemonize(const char *cmd)

{

 int i, fd0, fd1, fd2;

 pid_t pid;

 struct rlimit rl;

 struct sigaction sa;

 /*

 * Clear file creation mask.

 */

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 21

 umask(0);

 /*

 * Get maximum number of file descriptors.

 */

 if (getrlimit(RLIMIT_NOFILE, &rl) < 0)

 err_quit("%s: can't get file limit", cmd);

 /*

 * Become a session leader to lose controlling TTY.

 */

 if ((pid = fork()) < 0)

 err_quit("%s: can't fork", cmd);

 else if (pid != 0) /* parent */

 exit(0);

 setsid();

 /*

 * Ensure future opens won't allocate controlling TTYs.

 */

 sa.sa_handler = SIG_IGN;

 sigemptyset(&sa.sa_mask);

 sa.sa_flags = 0;

 if (sigaction(SIGHUP, &sa, NULL) < 0)

 err_quit("%s: can't ignore SIGHUP", cmd);

 if ((pid = fork()) < 0)

 err_quit("%s: can't fork", cmd);

 else if (pid != 0) /* parent */

 exit(0);

 /*

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 22

 * Change the current working directory to the root so

 * we won't prevent file systems from being unmounted.

 */

 if (chdir("/") < 0)

 err_quit("%s: can't change directory to /", cmd);

 /*

 * Close all open file descriptors.

 */

 if (rl.rlim_max == RLIM_INFINITY)

 rl.rlim_max = 1024;

 for (i = 0; i < rl.rlim_max; i++)

 close(i);

 /*

 * Attach file descriptors 0, 1, and 2 to /dev/null.

 */

 fd0 = open("/dev/null", O_RDWR);

 fd1 = dup(0);

 fd2 = dup(0);

 /*

 * Initialize the log file.

 */

 openlog(cmd, LOG_CONS, LOG_DAEMON);

 if (fd0 != 0 || fd1 != 1 || fd2 != 2) {

 syslog(LOG_ERR, "unexpected file descriptors %d %d %d",

 fd0, fd1, fd2);

 exit(1);

 }

}

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 23

If the daemonize function is called from a main program that then goes to sleep, we can check the

status of the daemon with the ps command:

$./a.out

$ ps -efj

UID PID PPID PGID SID TTY CMD

sar 13800 1 13799 13799 ? ./a.out

$ ps -efj | grep 13799

sar 13800 1 13799 13799 ? ./a.out

Error Logging

One problem a daemon has is how to handle error messages. It can not simply write to standard

error, since it should not have a controlling terminal. The BSD syslog facility is in 4.2BSD and

most systems derived from BSD support syslog. The syslog function is included as an XSI

extension in the Single UNIX Specification. The BSD syslog facility is used by most daemons.

Figure below illustrates its structure.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 24

There are three ways to generate log messages:

1. Kernel routines can call the log function. These messages can be read by any user process

that opens and reads the /dev/klog device.

2. Most user processes (daemons) call the syslog function to generate log messages. This

causes the message to be sent to the UNIX domain datagram socket /dev/log.

3. A user process on this host, or on some other host that is connected to this host by a TCP/IP

network, can send log messages to UDP port 514. Note that the syslog function never

generates these UDP datagrams: they require explicit network programming by the process

generating the log message.

Normally, the syslogd daemon reads all three forms of log messages. On start-up, this daemon

reads a configuration file, usually /etc/syslog.conf, which determines where different classes of

messages are to be sent. For example, urgent messages can be sent to the system administrator (if

logged in) and printed on the console, whereas warnings may be logged to a file. Our interface to

this facility is through the syslog function.

Calling openlog is optional. If it's not called, the first time syslog is called, openlog is called

automatically. Calling closelog is also optional—it just closes the descriptor that was being used

to communicate with the syslogd daemon. Calling openlog lets us specify an ident that is added to

each log message. This is normally the name of the program (cron, inetd, etc.). The option

argument is a bitmask specifying various options. The available options are as follows:

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 25

Daemon Conventions

Several common conventions are followed by daemons in the UNIX System.

1. If the daemon uses a lock file, het file is usually stored in /var/run. Note, however, that the

daemon might need superuser permissions to create a file here. The name of the file is

usually name.pid, where name is the name of the daemon or the service. For example, the

name of the cron daemon's lock file is /var/run/crond.pid.

2. If the daemon supports configuration options, they are usually stored in /etc. The

configuration file is named name.conf, where name is the name of the daemon or the name

of the service. For example, the configuration for the syslogd daemon is /etc/syslog.conf.

3. Daemons can be started from het command line, but they are usually started from one of

the system initialization scripts (/etc/rc* or /etc/init.d/*). If the daemon should be restarted

automatically when it exits, we can arrange for init to restart it if we include a respawn

entry for it in /etc/inittab.

4. If a daemon has a configuration file, the daemon reads it when it starts, but usually won't

look at it again. If an administrator changes the configuration, the daemon would need to

be stopped and restarted to account for the configuration changes. To avoid this, some

daemons will catch SIGHUP and reread their configuration files when they receive the

signal. Since they aren't associated with terminals and are either session leaders without

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 26

controlling terminals or members of orphaned process groups, daemons have no reason to

expect to receive SIGHUP. Thus, they can safely reuse it.

ClientServer Model

A common use for a daemon process is as a server process. We can call the syslogd process a

server that has messages sent to it by user processes (clients) using a UNIX domain datagram

socket. In general, a server is a process that waits for a client to contact it, requesting some type of

service. The service being provided by the syslogd server is the logging of an error message.

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 27

Question Bank

 Module1

1. Briefly explain the concept of Unix architecture.

2. Explain features of Unix.

3. Describe the command arguments and options.

4. Explain the basic Unix commands such as – echo, printf, ls, who, date, passwd, cal.

5. Explain the combining commands.

6. Briefly explain the concept of ‘type’ command.

7. List and explain the file types?

8. Describe the parent child relationship in unix files

9. Describe the relative and absolute pathname

10. Explain the basic directory commands such as - pwd, cd, mkdir, rmdir.

11. Explain the file related commands such as – cat, mv, rm, cp,wc and od.

12. Explain the posix and single unix specification.

13. Write a short notes on internal and external commands

14. Explain the structure of organization of files.

Module2

1. Explain the ls command and options with examples

2. Describe the relative and absolute file permissions changing methods

3. Give the syntax and example for recursively changing file permissions

4. Explain the directory permissions

5. What is wildcard? List and explain the metacharacters in wildcard with examples

6. Explain the two solution for removing the special meanings of wildcards

7. Name and explain in three standard files and redirection

8. Explain the concept of Pipes with an example

9. Describe the BRE and ERE concepts with example

10. Write a short notes on: a) grep b) egrep

11. Give an explanation on ordinary and environment variable

12. Discuss the following concepts in shell programming-: a) The .Profile b) Read cmd

c) Read-only cmd

13. Describe the command line arguments

14. Write a short note on exit and exit status of command

15. Explain the logical operators for conditional execution

16. Discuss the concept the test command and its shortcut

17. Explain the control statements in detail

18. Write a short notes on a) set and shift commands b) handling positional parameters

c) trap command

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 28

Module3

1. List and explain the general file APIs

2. Describe the file and record locking

3. Explain the directory file APIs with an example

4. Explain the device file API s with an example

5. Explain the FIFO files APIs with example

6. Describe the symbolic link file APIs

7. Explain the unix process data structure with a neat diagram

8. Discuss the following concept in process APIs a) fork, vfork b) _ exit

c)wait,waitpid d)exec e)pipe f) I/O direction g) wait3 wait4 Functions h)

Race functions e) exec functions

9. Explain the concept of process termination.

10. Write a short notes: a) command-line arguments b) Environment list

11. Explain the memory layout of c program with a block diagram

12. What is memory allocation? Explain the three functions of memory

allocation

13. List and explain the alternate memory allocators

14. Explain setjmp and longjmp function with examples

Module4

1. Explain the concept of changing user id and group id

2. Explain the interpreter files in detail

3. What is process accounting? Explain in detail

4. Describe user identification

5. Explain the pipes with neat diagram and example

6. Describe the popen and pclose function with example

7. Describe co-process

8. What is FIFO? Explain with example\

9. Explain the 3 types of IPC

10. Write a short note message queues?

11. What are semaphores? Explain in detail

12. Describe the client-server properties

13. Write a short note on stream pipes

14. Discuss the concept of passing file descriptors

15. Explain client server connection function with an example

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 29

Module5

1. Explain the signal concepts

2. Describe the unix system signals

3. Explain the signal features of the unix system

4. Write a short on: a) kill function b) alarm function c) sigmask d)

sigaction e) sigsetjmp and siglongjmp

5. Write the daemon characteristics

6. List and state the coding rules?

7. Write a function that can be called from a program that wants to

initialize itself as a daemon

8. Describe the error logging with a neat diagram

9. Write a short note on client server model

Unix Programming 18CS56

Department of ISE, Atria. I.T Page 30

Thankyou

ALL THE BEST FOR EXAM

Ranjitha J

Assistant Professor

Dept of ISE

ATRIA, Bangalore

