ATRIA INSTITUTE OF TECHNOLOGY

(Affiliated To Visvesvaraya Technological University, Belgaum)

Anandanagar, Bangalore-24

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

EMBEDDED SYSTEMS LAB MANUAL

SIXTH SEMESTER

SUBJECT CODE: 18ECL66

2020-2021

AP m{'“lrm
nrRin

INSTITUTE OF TECHNOLOG

ATRIA INSTITUTE OF TECHNOLOGY
(Affiliated To Visvesvaraya Technological University, Belgaum)
Anandanagar, Bangalore-24

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
EMBEDDED SYSTEMS LAB MANUAL
The Embedded Systems Laboratory Manual pertaining VI semester ECE

has been prepared as per VTU syllabus and all the experiments are designed,
tested and verified according to the experiment list.

This manual typically contains practical/lab sessions related to Embedded
systems, implemented using LPC1768 kit and Keil Software in assembly level
programming and embedded C programming language covering various aspects

related to the subject for better understanding. Students are advised to thoroughly
go through this manual as it provides them practical insights.

Good Luck

INDEX
Name

Embedded Lab Syllabus

Introduction to ARM Cortex M3 Processor

Introduction to Microcontroller LPC1768

Technical specifications of LPC1768
PART A

ALP to multiply two 16 bit binary numbers.

ALP to find the sum of first 10 integers.

ALP to find the number of 0’s and 1’s in a 32 bit data.

ALP to determine the given 16 bit number is ODD or EVEN.

ALP to write data in RAM.

PART B

Interface a simple Switch and display its status through Relay, Buzzer
and LED.

Interface a Stepper motor and rotate it in clockwise and anti-clockwise
direction.

Display the Hex digits 0 to F on a 7-segment LED interface, with an
appropriate delay in between.

Interface a DAC and generate Triangular and Square waveforms.
Display Hello World message using Internal UART.

Demonstrate the use of an external interrupt to toggle an LED On/Off.
Using the Internal PWM module of ARM controller generate PWM and
vary its duty cycle.

Interface and Control a DC Motor.

Interface a 4x4 keyboard and display the key code on an LCD.

Measure Ambient temperature using a sensor and SPI ADC IC.
Interface 12 bit internal ADC to convert the analog to digital and display
the same on LCD.

DEPARTMENT VISION & MISSION

VISION

To become a pioneer in developing competent professionals with societal and ethical values through
transformational learning and interdisciplinary research in the field of Electronics and
Communication Engineering.

MISSION
The department of Electronics and Communication is committed to:

M1: Offer quality technical education through experiential learning to produce competent
engineering professionals.

M2: Encourage a culture of innovation and multidisciplinary research in collaboration with
industries/universities.

M3: Develop interpersonal, intrapersonal, entrepreneurial and communication skills among
students to enhance their employability.

M4: Create a congenial environment for the faculty and students to achieve their desired goals
and to serve society by upholding ethical values.

EMBEDDED SYSTEMS LAB MANUAL

EMBEDDED SYSTEM LAB SYLLABUS

Sub Code: 18ECL66 Exam Hours: 03 Hrs
Hrs/Week: 03 Exam Marks: 60 Marks
IA Marks: 40

PART-A:

(Conduct the following experiments on an ARM CORTEX M3 evaluation board to learn ALP and using
evaluation version of Embedded 'C' &Keil Uvision-4tool/compiler.)

1. ALP to multiply two 16 bit binary numbers.

2. ALP to find the sum of first 10 integers.

3. ALP to find the number of 0’s and 1’s in a 32 bit data.

4. ALP to determine the given 16 bit number is ODD or EVEN.

5. ALP to write data in RAM.

PART-B:
(Conduct the following experiments on an ARM CORTEX M3evaluation board using evaluation version of
Embedded 'C' &Keil Uvision-4tool/compiler.)
6. Display “Hello World” message using Internal UART.
7. Interface and Control a DC Motor.
8. Interface a Stepper motor and rotate it in clockwise and anti-clockwisedirection.
9. Interface a DAC and generate Triangular and Square waveforms.
10. Interface a 4x4 keyboard and display the key code on an LCD.
11. Deonstrate the use of an external interrupt to toggle an LED On/Off.
12.Display the Hex digits 0 to F on a 7-segment LED interface, with an appropriate delay in
between.

13. Measure Ambient temperature using a sensor and SPI ADC IC.
Beyond Syllabus:

1).Using the Internal PWM module of ARM controller generate PWM and vary itsduty cycle.
ii).Interface a simple Switch and display its status through Relay, Buzzer andLED.

Conduction of Practical Examination:
One question from PART A and One question from PART-B experiments to be asked in the practical
examination.

Department of ECE, Atria IT Page 5

EMBEDDED SYSTEMS LAB MANUAL

INTRODUCTION TO ARM Cortex M3 PROCESSOR

Introduction

The ARM Cortex-M3 is a general purpose 32-bit microprocessor, which offers high performance and very
low power consumption. The Cortex-M3 offers many new features, including a Thumb-2 instruction set, low
interrupt latency, hardware divide, interruptible/continuable multiple load and store instructions, automatic
state save and restore for interrupts, tightly integrated interrupt controller with Wake-up Interrupt Controller
and multiple core buses capable of simultaneous accesses.

Pipeline techniques are employed so that all parts of the processing and memory systems can operate
continuously. Typically, while one instruction is being executed, its successor is being decoded, and a third
instruction is being fetched from memory.

The processor has a Harvard architecture, which means that it has a separate instruction bus and data bus.
This allows instructions and data accesses to take place at the same time, and as a result of this, the
performance of the processor increases because data accesses do not affect the instruction pipeline. This
feature results in multiple bus interfaces on Cortex-M3, each with optimized usage and the ability to be used
simultaneously. However, the instruction and data buses share the same memory space (a unified memory
system). In other words, you cannot get 8 GB of memory space just because you have separate bus interfaces.
A simplified block diagram of the Cortex-m3 architecture is shown below

Cortex-M3
Processor core system
s c . _ Register é
N o 9= @ bank =
Y= S 3 g Il ||
Interrupts | 1 8@ EE e = Debug } Trace
== B 5 a = system '
== - ALU &
= =
@
= |
- Memory interface 1
. Memaory
Instruction bus |__| protection — Data bus
unit i
) Debu
Bus interconnect . Debug - - g
™= interface [™ -
—1 I= T i [-
g g 4 E
_ .) | N
Code Memory system Private Outional
memaory and peripherals peripherals P

It is worthwhile highlighting that the Cortex-M3 processor is not the first ARM processor to be used to create
generic micro controllers. The venerable ARM?7 processor has been very successful in this market, The
Cortex-M3 processor builds on the success of the ARM7 processor to deliver devices that are significantly
easier to program and debug and yet deliver a higher processing capability.

Background of ARM architecture
ARM was formed in 1990 as Advanced RISC Machines Ltd., a joint venture of Apple Computer, Acorn

ComButer GrouB, and VLSI Technologz. In 1991, ARM introduced the ARM6 processor familz, and VLSI

Department of ECE, Atria IT Page 6

EMBEDDED SYSTEMS LAB MANUAL

became the initial licensee. Subsequently, additional companies, including Texas Instruments, NEC, Sharp,
and ST Microelectronics, licensed the ARM processor designs, extending the applications of ARM processors
into mobile phones, computer hard disks, personal digital assistants (PDAs), home entertainment systems, and
many other consumer products.
Nowadays, ARM partners ship in excess of 2 billion ARM processors each year. Unlike many semiconductor
companies, ARM does not manufacture processors or sell the chips directly. Instead, ARM licenses the
processor designs to business partners, including a majority of the world’s leading semiconductor companies.
Based on the ARM low-cost and power-efficient processor designs, these partners create their processors,
micro controllers, and system-on-chip solutions. This business model is commonly called intellectual property
(IP) licensing.
Architecture versions
Over the years, ARM has continued to develop new processors and system blocks. These include the popular
ARM7TDMI processor and, more recently, the ARM1176TZ (F)-S processor, which is used in high-end
applications such as smart phones. The evolution of features and enhancements to the processors over time
has led to successive versions of the ARM architecture. Note that architecture version numbers are
independent from processor names. For example, the ARM7TDMI processor is based on the ARMv4T
architecture (the 7 is for Thumb instruction mode support).
The ARMVSE architecture was introduced with the ARMOE processor families, including the ARM926E-S
and ARMO946E-S processors. This architecture added “Enhanced” Digital Signal Processing (DSP)
instructions for multimedia applications. With the arrival of the ARMI11 processor family, the architecture
was extended to the ARMv6. New features in this architecture included memory system features and Single
Instruction—Multiple Data (SIMD) instructions. Processors based on the ARMv6 architecture include the
ARM1136J (F)-S, the ARM1156T2 (F)-S, and the ARM1176JZ (F)-S.
Over the past several years, ARM extended its product portfolio by diversifying its CPU development, which
resulted in the architecture version 7 or v7. In this version, the architecture design is divided into three
profiles:

» The A profileis designed for high-performance open application platforms.

> The R profileis designed for high-end embedded systems in which real-time performance is needed.

» The M profileis designed for deeply embedded micro controller-type systems.

Bit more details on these profiles

A Profile (ARMv7-A): Application processors which are designed to handle complex applications such as
high-end embedded operating systems (OSs) (e.g., Symbian, Linux, and Windows Embedded). These
processors requiring the highest processing power, virtual memory system support with memory management
units (MMUSs), and, optionally, enhanced Java support and a secure program execution environment. Example
products include high-end mobile phones and electronic wallets for financial transactions.

R Profile (ARMv7-R): Real-time, high-performance processors targeted primarily at the higher end of the
real-time market, those applications, such as high-end breaking systems and hard drive controllers, in which
high processing power and high reliability are essential and for which low latency is important.

M Profile (ARMv7-M): Processors targeting low-cost applications in which processing efficiency is
important and cost, power consumption, low interrupt latency, and ease of use are critical, as well as
industrial control applications, including real-time control systems. The Cortex processor families are the first
products developed on architecture v7, and the Cortex- M3 processor is based on one profile of the v7
architecture, called ARM v7-M, an architecture specification for micro controller products.

Below figure shows the development stages of ARM versions

Department of ECE, Atria IT Page 7

EMBEDDED SYSTEMS LAB MANUAL

Architecture v7

v7-A (application)
e.g., Cortex-A8

Architecture v6

=

Architecture
vB/vEE

Architecture
va/vAT

v7-R (real-time)
e.g., Cortex-R4

ARM11386, 1176,
1166T-2

v7-M (microcontroller)
e.g., Cortex-M3

The Thumb-2 @

Technology Jp——
and Examples 920T,

Intel StrongARM
Instruction

Set

Architecture

The Thumb-2 technology extended the Thumb Instruction Set Architecture (ISA) into a highly efficient and
powerful instruction set that delivers significant benefits in terms of ease of use, code size, and performance.
The extended instruction set in Thumb-2 is a super set of the previous 16-bit Thumb instruction set, with
additional 16-bit instructions alongside 32-bit instructions. It allows more complex operations to be carried
out in the Thumb state, thus allowing higher efficiency by reducing the number of states switching between
ARM state and Thumb state.

Focused on small memory system devices such as micro controllers and reducing the size of the processor,
the Cortex-M3 supports only the Thumb-2 (and traditional Thumb) instruction set. Instead of using ARM
instructions for some operations, as in traditional ARM processors, it uses the Thumb-2 instruction set for all
operations. As a result, the Cortex-M3 processor is not backward compatible with traditional ARM
processors.

Nevertheless, the Cortex-M3 processor can execute almost all the 16-bit Thumb instructions, including all 16-
bit Thumb instructions supported on ARM?7 family processors, making application porting easy. With support
for both 16-bit and 32-bit instructions in the Thumb-2 instruction set, there is no need to switch the processor
between Thumb state (16-bit instructions) and ARM state (32-bit instructions). For example, in ARM7 or
ARMO family processors, you might need to switch to ARM state if you want to carry out complex
calculations or a large number of conditional operations and good performance is needed, whereas in the
Cortex-M3 processor, you can mix 32-bit instructions with 16-bit instructions without switching state, getting
high code density and high performance with no extra complexity.

The Thumb-2 instruction set is a very important feature of the ARMv7 architecture. Compared with
the instructions supported on ARM?7 family processors (ARMv4T architecture), the Cortex-M3 processor
instruction set has a large number of new features. For the first time, hardware divide instruction is available
on an ARM processor, and a number of multiply instructions are also available on the Cortex-M3 processor to
improve data-crunching performance. The Cortex-M3 processor also supports unaligned data accesses, a
feature previously available only in high-end processors.

Applications of Cortex M3 processors
® Low-cost micro controllers:

Automotivelndustry

Data communications

Industrial control applications

Consumer products:

ARMO26. 046, Architecture v6-M :
|
|
|
|
|

Intel XScale

Cortex-M0O,
Cortex-M1 (FPGA)

—_———————— e ———

=

Department of ECE, Atria IT Page 8

EMBEDDED SYSTEMS LAB MANUAL

The Cortex-M3 Processor versus Cortex-M3-Based Micro Controllers

misisinininSninisisininisininininNn NN w!

E Cortex-M3 chip ; Developed by
(= o
= Cortex-M3 Debug i=s ARM
d 2
3 core ,_-F m £
= T T 5
| Internal bus | B Developed by
O P i
Developed by = - = == - manu?‘?xlcgurers
ARM, design = Peripherals Memory =
houses, chip = 5
manufacturers o u
(= -
= Clock and -
g reset LS f
= -

Ly I I [By

The Cortex-M3 processor is the central processing unit (CPU) of a micro controller chip. In addition, a
number of other components are required for the whole Cortex-M3 processor-based micro controller. After
chip manufacturers license the Cortex-M3 processor, they can put the Cortex-M3 processor in their silicon
designs, adding memory, peripherals, input/output (I/O), and other features. Cortex-M3 processor-based chips
from different manufacturers will have different memory sizes, types, peripherals, and features.

Department of ECE, Atria IT Page 9

EMBEDDED SYSTEMS LAB MANUAL

INTRODUCTION TO MICRO CONTROLLER LPC1768

Architectural Overview

The LPC1768FBD100 is an ARM Cortex-M3 based micro controller for embedded applications requiring a
high level of integration and low power dissipation. The ARM Cortex-M3 is a next generation core that offers
system enhancements such as modernized debug features and a higher level of support block integration.
LPC1768 operate up to 100 MHz CPU frequency.

The peripheral complement of the LPC1768 includes up to 512 kilo bytes of flash memory, up to 64KB of
data memory, Ethernet MAC, a USB interface that can be configured as either Host, Device, or OTG, 8
channel general purpose DMA controller, 4 UARTSs, 2 CAN channels, 2 SSP controllers, SPI interface, 3 12C
interfaces, 2-input plus 2-output 12S interface, 8 channel 12-bit ADC, 10-bit DAC, motor control PWM,
Quadrature Encoder interface, 4 general purpose timers, 6-output general purpose PWM, ultra-low power
RTC with separate battery supply, and up to 70 general purpose 1/O pins.

The LPC1768 use a multi layer AHB(Advanced High Performance Bus) matrix to connect the ARM Cortex-
M3 buses and other bus masters to peripherals in a flexible manner that optimizes performance by allowing
peripherals that are on different slaves ports of the matrix to be accessed simultaneously by different bus
masters.

On-chip flash memory system

The LPC1768 contains up to 512 KB of on-chip flash memory. A flash memory accelerator maximizes
performance for use with the two fast AHB Lite buses. This memory may be used for both code and data
storage. Programming of the flash memory may be accomplished in several ways. It may be programmed In
System via the serial port. The application program may also erase and/or program the flash while the
application is running, allowing a great degree of flexibility for data storage field firmware upgrades, etc.
On-chip Static RAM

The LPC1768 contains up to 64 KB of on-chip static RAM memory. Up to 32 KB of SRAM, accessible by
the CPU and all three DMA controllers are on a higher-speed bus. Devices containing more than 32 KB
SRAM have two additional 16 KB SRAM blocks, each situated on separate slave ports on the AHB
multilayer matrix. This architecture allows the possibility for CPU and DMA accesses to be separated in such
a way that there are few or no delays for the bus masters.

Department of ECE, Atria IT Page 10

EMBEDDED SYSTEMS LAB MANUAL

Block Diagram of LPC1768

JTAG Ethemeat FHY UsBE P .
imterface Deloug Port infedace inedace é E’ E ﬁ ::'r_-'
I 2 o £ =
[r i i ¥ ¥ ¥ iy
TESTIDEBUG = | clock generation -
RIS =f) DMA Eﬂaﬁggt device, and | Power canil, >
== controller MAC host, controts system functions
ARM Cortex-M3 [2H oTe ema [Vad
— E power vaoltage regulator [
-code D-code | System
bus bus bus
r4-—"—"—f"/""%¢ " "~~"—"™~"¢~"~"~""~""*™"*™"™™"™"™""™""™"7} """ “~"~""”™"™""™"" f"~"~"”"™"™="”™"="7™"7™% ="
: i Flash | | Flash
1 : Accalerator 512 kB
| - o : .
! H SRAM ROM
H i 32 kB a8 kB
1 1
i i SRAM
1 t t t t ! 16 kB
: 1
i T I 1
- 1 SRAM HS o
H [Tttt 16 kB GPID ["
1
! -" : T I]
! | DMAC| [USB | [Ethemet
! : regs regs regs
! e | "W AHB@ |
H | |AFE kridge
\ Multilaysr ! T
1 . . .
| AHBManz =~ A——————— R S| APB bridge
X
APE slave group 0 APB slave group 1
-l——h-| 55P1 |-l—h- -l—'.l-{ S55P0 Hi—h-
% UARTS0D& 1 |[4——] = UARTS2&3 |[¢4——1»
o CAM 1&2 je— | 125 =
-1——h-| FCO&1 |-d—h- -d—h-| I2CZ Hi—h-
*—4-1 SPI0 |-'I—I'- d o Capturefcompars | .
N timers 2 & 3 - "
o | Captureicompars | o
N " timers 0 & 1 N " o .| Repetitive intermupt
- i timer
1—4-1 Watchdog timer }d—l-
1—P| External interrupts Hi—
- FWM 1 [e——
4—h-| DAC I——h-
 ——— 12-bit ADC fe———
«——» System control |
| Pin connect block |-1—b'
-l—h-{ Motor control PWM Hi—h-
| GPID inberrupt confral }-l—h-
___________________________________ : :—Fl Quadrature encuder}ii—r-
32 kHz - i
. > . F» Real T Clock [*
oscillator =l lime e i Mote: shaded peripheral blocks
i support General Purpose DMA
""'h:'L wira-low power Backug registers | | o
| requlator {20 byles) T ","
1
_____________ RTC Power Domain ______

Department of ECE, Atria IT Page 11

EMBEDDED SYSTEMS LAB MANUAL

A brief description of the blocks:
Nested vector interrupt controller
The NVIC is an integral part of the Cortex-M3. The tight coupling to the CPU allows for low interrupt latency
and efficient processing of late arriving interrupts.
Features
Controls system exceptions and peripheral interrupts
In the LPC1768, the NVIC supports 33 vectored interrupts
32 programmable interrupt priority levels, with hardware priority level masking
Relocatable vector table
Non-Maskable Interrupt (NMI)
Software interrupt generation

VVVVYVYVYYVY

Interrupt sources

Each peripheral device has one interrupt line connected to the NVIC but may have several interrupt flags.
Individual interrupt flags may also represent more than one interrupt source.

Any pin on Port 0 and Port 2 (total of 42 pins) regardless of the selected function, can be programmed to
generate an interrupt on a rising edge, a falling edge, or both.

General purpose DMA controller

The GPDMA (General Purpose Direct Memory Access) is an AMBA AHB (Advanced Micro controller Bus
Architecture Advance high performance bus) compliant peripheral allowing selected peripherals to have
DMA support.

The GPDMA enables peripheral-to-memory, memory-to-peripheral, peripheral-to-peripheral, and memory-to-
memory transactions. The source and destination areas can each be either a memory region or a peripheral,
and can be accessed through the AHB master. The GPDMA controller allows data transfers between the USB
and Ethernet controllers and the various on-chip SRAM areas. The supported APB peripherals are SSP0/1, all
UARTS, the 12S-bus interface, the ADC, and the DAC. Two match signals for each timer can be used to
trigger DMA transfers.

Function Configuration block

The selected pins of the micro controller to have more than one function. Configuration registers control the
multiplexers to allow connection between the pin and the on-chip peripherals. Peripherals should be
connected to the appropriate pins prior to being activated and prior to any related interrupt(s) being enabled.
Activity of any enabled peripheral function that is not mapped to a related pin should be considered
undefined. Most pins can also be configured as open-drain outputs or to have a pull-up, pull-down, or no
resistor enabled.

Fast general purpose parallel 1/O

Device pins that are not connected to a specific peripheral function are controlled by the GPIO registers. Pins
may be dynamically configured as inputs or outputs. Separate registers allow setting or clearing any number
of outputs simultaneously. The value of the output register may be read back as well as the current state of the
port pins.

USB interface

The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a host and one or more
(up to 127) peripherals. The host controller allocates the USB bandwidth to attached devices through a token-
based protocol. The bus supports hot plugging and dynamic configuration of the devices. All transactions are
initiated by the host controller.

The USB interface includes a device, Host, and OTG controller with on-chip PHY for device and Host
functions. The OTG switching protocol is supported through the use of an external controller.

Department of ECE, Atria IT Page 12

EMBEDDED SYSTEMS LAB MANUAL

USB device controller enables 12 Mbit/s data exchange with a USB Host controller. It consists of a register
interface, serial interface engine, endpoint buffer memory, and a DMA controller. The serial interface engine
decodes the USB data stream and writes data to the appropriate endpoint buffer. The status of a completed
USB transfer or error condition is indicated via status registers. An interrupt is also generated if enabled.
When enabled, the DMA controller transfers data between the endpoint buffer and the on-chip SRAM.

12-bit ADC

The LPC1768 contain a single 12-bit successive approximation ADC with eight channels and DMA support.
10-bit DAC

The DAC allows to generate a variable analog output. The maximum output value of the DAC is VREFP.
UART's

The LPC1768 contain four UART's. In addition to standard transmit and receive data lines, UART1 also
provides a full modem control handshake interface and support for RS-485/9-bit mode allowing both software
address detection and automatic address detection using 9-bit mode.

The UART's include a fractional baud rate generator. Standard baud rates such as 115200 Baud can be
achieved with any crystal frequency above 2 MHz

SPI serial I/O controller

The LPC1768 contain one SPI controller. SPI is a full duplex serial interface designed to handle multiple
masters and slaves connected to a given bus. Only a single master and a single slave can communicate on the
interface during a given data transfer. During a data transfer the master always sends 8 bits to 16 bits of data
to the slave, and the slave always sends 8 bits to 16 bits of data to the master.

SSP serial I/O controller

The LPC1768 contain two SSP controllers. The SSP controller is capable of operation on a SPI, 4-wire SSI,
or Micro wire bus. It can interact with multiple masters and slaves on the bus. Only a single master and a
single slave can communicate on the bus during a given data transfer. The SSP supports full duplex transfers,
with frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master.
In practice, often only one of these data flows carries meaningful data.

12C-bus serial I/O controllers

The LPC1768 each contain three 12C-bus controllers. The 12C-bus is bidirectional for inter-IC control using
only two wires: a Serial Clock line (SCL) and a Serial DAta line (SDA). Each device is recognized by a
unique address and can operate as either a receiver-only device or a transmitter with the capability to both
receive and send information (such as memory). Transmitters and/or receivers can operate in either master or
slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The 12C is a
multi-master bus and can be controlled by more than one bus master connected to it.

General purpose 32-bit timers/external event counters

The LPC1768 include four 32-bit timer/counters. The timer/counter is designed to count cycles of the system
derived clock or an externally-supplied clock. It can optionally generate interrupts, generate timed DMA
requests, or perform other actions at specified timer values, based on four match registers. Each timer/counter
also includes two capture inputs to trap the timer value when an input signal transitions, optionally generating
an interrupt.

Pulse width modulator

The PWM is based on the standard Timer block and inherits all of its features, although only the PWM
function is pinned out on the LPC1768. The Timer is designed to count cycles of the system derived clock
and optionally switch pins, generate interrupts or perform other actions when specified timer values occur,
based on seven match registers. The PWM function is in addition to these features, and is based on match
register events.

Watchdog timer

The purpose of the watchdog is to reset the micro controller within a reasonable amount of time if it enters an

Department of ECE, Atria IT Page 13

EMBEDDED SYSTEMS LAB MANUAL

erroneous state. When enabled, the watchdog will generate a system reset if the user program fails to ‘feed’
(or reload) the watchdog within a predetermined amount of time.

RTC and backup registers

The RTC is a set of counters for measuring time when system power is on, and optionally when it is off. The
RTC on the LPC1768 is designed to have extremely low power consumption, i.e. less than 1 uA. The RTC
will typically run from the main chip power supply, conserving battery power while the rest of the device is
powered up. When operating from a battery, the RTC will continue working down to 2.1 V. Battery power
can be provided from a standard 3 V Lithium button cell.

An ultra-low power 32 kHz oscillator will provide a 1 Hz clock to the time counting portion of the RTC,
moving most of the power consumption out of the time counting function.

Clocking and Power Control

Crystal oscillators

The LPC1768 include three independent oscillators. These are the main oscillator, the IRC oscillator, and the
RTC oscillator. Each oscillator can be used for more than one purpose as required in a particular application.
Any of the three clock sources can be chosen by software to drive the main PLL and ultimately the CPU.
Following reset, the LPC1768 will operate from the Internal RC oscillator until switched by software. This
allows systems to operate without any external crystal and the boot loader code to operate at a known
frequency.

Power control

The LPC1768 support a variety of power control features. There are four special modes of processor power
reduction: Sleep mode, Deep-sleep mode, Power-down mode, and Deep power-down mode. The CPU clock
rate may also be controlled as needed by changing clock sources, reconfiguring PLL values, and/or altering
the CPU clock divider value. This allows a trade-off of power versus processing speed based on application
requirements. In addition, Peripheral Power Control allows shutting down the clocks to individual on-chip
peripherals, allowing fine tuning of power consumption by eliminating all dynamic power use in any
peripherals that are not required for the application. Each of the peripherals has its own clock divider which
provides even better power control.

Integrated PMU (Power Management Unit) automatically adjust internal regulators to minimize power
consumption during Sleep, Deep sleep, Power-down, and Deep power- down modes.

The LPC1768 also implement a separate power domain to allow turning off power to the bulk of the device
while maintaining operation of the RTC and a small set of registers for storing data during any of the power-
down modes.

Clock generation block diagram for LPC1768 is shown below

USB PLL settings UsSB PLL
(PLLT..) select
{(PLLICOM)
USB PLL
(PLL1} usb_clk
USE —
main PLL CRURTL ek L
settings = ect _“"fi‘
(PLLD.--) PLEEOM | USE clock duider sati ng
osc_clk \I USBCLKCFG[3:0]
rtc_clk sysclk aim P
irc_osc | . MPLLEIEL plci [CPU colk
'L \—T—fm""dﬂ System Control
5 em clock selec _ N
E);T_tK.E.RCSEL[':EI]t Cpugéﬂl_;g;g;'gfmnu 1 i Reset
watchdog dack select Pepherei 2o Reset has four sources on the
WDCLKSEL[1:0] . .
N o [T pots LPC1768: the RESET pin, the
_ 1 el Watchdog reset, power-on
PCLK_WDT J

reset (POR), and the Brown-
Out Detection (BOD) circuit.

Department of ECE, Atria IT Page 14

EMBEDDED SYSTEMS LAB MANUAL

The RESET pin is a Schmitt trigger input pin. Assertion of chip Reset by any source, once the operating
voltage attains a usable level, causes the RSTOUT pin to go LOW. Once reset is de-asserted, or, in case of a
BOD- triggered reset, once the voltage rises above the BOD threshold, the RSTOUT pin goes HIGH. In other
words RSTOUT is high when the controller is in its active state.

Emulation and debugging

Debug and trace functions are integrated into the ARM Cortex-M3. Serial wire debug and trace functions are
supported in addition to a standard JTAG debug and parallel trace functions. The ARM Cortex-M3 is
configured to support up to eight breakpoints and four watch points.

Note: For further details on Controller blocks refer the User manual of LPC176x/5x — UM10360 available at

Www.nxp.com

Department of ECE, Atria IT Page 15

http://www.nxp.com/

EMBEDDED SYSTEMS LAB MANUAL

TECHNICAL SPECIFICATIONS of LPC1768
Specifications of LPC1768:
> ARM Cortex-M3 processor runs up to 100 MHz frequency.

> ARM Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC).

> Up to 512kB on-chip flash program memory with In-System Programming (ISP) and In-Application
Programming (IAP) capabilities. The combination of an enhanced flash memory accelerator and

location of the flash memory on the CPU local code/data bus provides high code performance from
flash.

> Up to 64kB on-chip SRAM includes:

- Up to 32kB of SRAM on the CPU with local code/data bus for high-performance CPU access.

- Up to two 16kB SRAM blocks with separate access paths for higher throughput. These SRAM
blocks may be used for Ethernet, USB, and DMA memory, as well as for general purpose instruction and
data storage.

> Eight channel General Purpose DMA controller (GPDMA) on the AHB multilayer matrix that can be
used with the SSP, 125, UART, the Analog-to-Digital and Digital-to-Analog converter peripherals,
timer match signals, GPIO, and for memory-to-memory transfers.

> Serial interfaces:

- Ethernet MAC with RMII interface and dedicated DMA controller.

- USB 2.0 full-speed controller that can be configured for either device, Host, or OTG operation
with an on-chip PHY for device and Host functions and a dedicated DMA controller.

- Four UART's with fractional baud rate generation, internal FIFO, IrDA, and DMA support.

One UART has modem control I/O and RS-485/EIA-485 support.

- Two-channel CAN controller.

- Two SSP controllers with FIFO and multi-protocol capabilities. The SSP interfaces can be used with
the GPDMA controller.

- SPI controller with synchronous, serial, full duplex communication and programmable data length.
SPI is included as a legacy peripheral and can be used instead of SSPO.

- Three enhanced 12C-bus interfaces, one with an open-drain output supporting the full 12C

specification and Fast mode plus with data rates of 1Mbit/s, two with standard port pins.

Enhancements include multiple address recognition and monitor mode.

- 128 (Inter-IC Sound) interface for digital audio input or output, with fractional rate control. The
I12S interface can be used with the GPDMA. The 12S interface supports 3- wire data transmit and receive or
4-wire combined transmit and receive connections, as well as master clock output.

> Other peripherals:
- 70 General Purpose I/O (GPIO) pins with configurable pull-up/down resistors, open drain
mode, and repeater mode. All GPIOs are located on an AHB bus for fast access, and support
Cortex-M3 bit-banding. GPIOs can be accessed by the General Purpose DMA Controller. Any pin of
ports 0 and 2 can be used to generate an interrupt.
- 12-bit Analog-to-Digital Converter (ADC) with input multiplexing among eight pins, conversion
rates up to 200 kHz, and multiple result registers. The 12-bit ADC can be used with the GPDMA

controller.

- 10-bit Digital-to-Analog Converter (DAC) with dedicated conversion timer and DMA support.

- Four general purpose timers/counters, with a total of eight capture inputs and ten compare
outputs. Each timer block has an external count input. Specific timer events can be selected to generate

DMA requests,
Department of ECE, Atria IT Page 16

EMBEDDED SYSTEMS LAB MANUAL

- One motor control PWM with support for three-phase motor control.

- Quadrature encoder interface that can monitor one external quadrature encoder.

- One standard PWM/timer block with external count input.

- Real-Time Clock (RTC) with a separate power domain. The RTC is clocked by a dedicated RTC

oscillator. The RTC block includes 20 bytes of battery-powered backup registers, allowing system

status to be stored when the rest of the chip is powered off. Battery power can be supplied from a

standard 3 V Lithium button cell. The RTC will continue working when the battery voltage drops to as
low as 2.1 V. An RTC interrupt can wake up the CPU from any reduced power mode.

- Watchdog Timer (WDT). The WDT can be clocked from the internal RC oscillator, the RTC

oscillator, or the APB clock.

YV V V V V

Y

YV V. V V V V

- Cortex-M3 system tick timer, including an external clock input option.
- Repetitive interrupt timer provides programmable and repeating timed interrupts.

Standard JTAG test/debug interface as well as Serial Wire Debug and Serial Wire Trace Port options.
Emulation trace module supports real-time trace.

Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep power-down.

Single 3.3 V power supply (2.4 V to 3.6 V). Temperature range of -40 °C to 85 °C.

Four external interrupt inputs configurable as edge/level sensitive. All pins on PORT0 and PORT2 can
be used as edge sensitive interrupt sources.

Non Maskable Interrupt (NMI) input.

Clock output function that can reflect the main oscillator clock, IRC clock, RTC clock, CPU clock, or
the USB clock.

The Wake-up Interrupt Controller (WIC) allows the CPU to automatically wake up from any priority
interrupt that can occur while the clocks are stopped in deep sleep, Power-down, and Deep power-
down modes

Processor wake-up from Power-down mode via any interrupt able to operate during Power-down
mode (includes external interrupts, RTC interrupt, USB activity, Ethernet wake-up interrupt, CAN bus
activity, PORTO0/2 pin interrupt, and NMI).

Each peripheral has its own clock divider for further power savings.

Brownout detect with separate threshold for interrupt and forced reset.

On-chip Power-On Reset (POR).

On-chip crystal oscillator with an operating range of 1 MHz to 25 MHz.

4 MHz internal RC oscillator trimmed to 1% accuracy that can optionally be used as a system clock.

An on-chip PLL allows CPU operation up to the maximum CPU rate without the need for a high-
frequency crystal. May be run from the main oscillator, the internal RC oscillator, or the RTC
oscillator.

A second, dedicated PLL may be used for the USB interface in order to allow added flexibility for the
Main PLL settings.

Versatile pin function selection feature allows many possibilities for using on-chip peripheral
functions.

Department of ECE, Atria IT Page 17

EMBEDDED SYSTEMS LAB MANUAL

PART A
(Assembly Level Programming-ARM Cortex M3)
Software : Keil pvision 4

Department of ECE, Atria IT Page 18

EMBEDDED SYSTEMS LAB MANUAL

Software Handling Procedure:

1.Double click on Hvision 4 icon in the desktoE. -
| pVisiond =

File

Edit View Project Flash Debug Peripherals Tools SVCS Window Help

MNEdd| s ad]|oc| e | mhun|EEeg @ Ha#l@le o alET A

e

Eer..

OR|d&2 e @

@oo..| OFu.|Dye.. |

'Build Output

Department of ECE, Atria IT Page 19

EMBEDDED SYSTEMS LAB MANUAL

2. Select “New pvision Project” from project in the menu bar.
| pVisiond
File Edit View | I

Flash Debug Peripherals Tools SVCS Window Help

N d Hew pVision Project... £ o eal e o ‘l@l “

g s New Multi-Project Workspace...
Slde ’ &

Open Project...

Save Project in pVisiond format
Close Project
Export
Manage
Select Device for Target...
Remove Item
45 Options... Alt=F7
Clean targets

Build target]

Rebuild all target files

& Batch Build...
&2 Translate. Ctri=<F7
5 stop build

1D p_prgs_20: wvproj

2 D:VARMEMB\lap_prgs_2021'0ddeven.uvproj
3 DVARMEMB!Iap_prgs_2021'0neszeros.uvproj
4 DNARMEMBYIap_prgs_2021\multiplyl6.uvproj
5 DNARMEMB\lap_prgs_20214p5.uvproj

6 D:\ARMEMB\lap_prgs_2021'p6.uvproj

7 D:\ARMEMBembLabPrg\p6.uvproj

pr. [€e0. | 8 cyusersUsenDesktop\ps.uvproj

Build Output | 9 C:\Users\User\Desktop\p4.uvproj

10 C:\KeilARM\Examples\Blinky\Blinky.uvproj

Fl

Create a new

CAP NUM S5CRL OVR R /W

3. Browse and create a new project in the required location.
i pVisiond - A - ——

'wl@lla o@.ﬂl@l'\‘

Search Desktop

Organize * Mew folder

’ 7t Favorites 2 [Glibraries)l Objects
B Desktop +, Homegroup | practice programs
|18 Downloads [User | printout_junedth
4. Recent Places 1% Computer | ResultDigit
@ OneDrive € Network 1. Seshu projects
L activity | studentDetails
[l Libraries | Keerthana | studentTestPapers
Documents | LabFinalBamTT || visiLab
& Music . Listings
[TS bl
File name: |

Save as type: l Project Files (*.uvproj)

(& Hide Folders

Eer.. (@so...| (3 Fu.. |0yTe.. |
Build Output

CAP NUM SCRL OVR R /W

v B ©

Department of ECE, Atria IT Page 20

EMBEDDED SYSTEMS LAB MANUAL

% Select the target deV1ce= here,LPC1768 from NXP) from the list or tﬁe the exact name of the device. Press OK
CAUsers\User\Desktop\dema.uvproj - kVisiond - e e (=@

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NEd@ s wd|oc|cn | Prnn|=EeE® Ja#l@le oo alET
LG @] B o EREEYY

Project 1@

Description

/ARM 32-bit Cortex-M3 Microcontroller with MPU, CPU clock up to 1000
512kB on-chip Flash ROM with enhanced Flash Memory Accelerator,
hSys(aanga-mmg(lSP)mdh.ﬂppicaboanganmg(u\P)

64kB RAM, Nested Vectored Intemupt
EgﬂdﬂzﬂelﬁenedpapcseDMAmda AHB Matrx, APE,

Ethemet 10/100 MAC with RMIl interface and dedicated DMA,

USB 2.0 fullspeed Device controller and Host/OTG controller with DM#

CAN 2.0B with two channels, Four UARTSs, one with full Modem interfac

Three |2C serial intefaces, Three SPI/SSP serial interfaces, 125 interfac

General purpose 1/0 pins, 12bit ADC with 8 channels, 10bit DAC,

Four 32-bit Timers with capture/compare, Standard PWM Timer block.
Encoder,

Crystal oscilatar, 4MHz intemal RC ascilltor, PLL,

4 .

o] oo

Eer.. (@so...| (3 Fu.. |0yTe.. |

Build Output

5.”Copystart up to Project folder and add to project file”’?- Press NO.

B C\Users\Usen\Desktop\demo.uvpraj - pVisiond — e ke (=T
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

MNME A 6 a9 o] o |® R nn|EEERS Ja#@le o s alET

o HE @ L] 8 [reret AR &= e@

Project 18

@ Copy 'startup_LPC17xcs' to Project Folder and Add File to Project ?

o

oo | Oru.|0yTe. |

CAP NUM S5CRL OVR R /W

oot e
5

Department of ECE, Atria IT Page 21

EMBEDDED SYSTEMS LAB MANUAL

6.In the project window, right click on source and select Add new item to group “source group 1”.
ﬁSMMPWmmmj'uwsw

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

NE At s ad|o o] co | PR FEFEG S Faslale oo alJ) A

L G L] B et & d2 o @
=524 Target1
E o
4% Options for Group ‘Source Group 1... Alt+FT

| Add New Item to Group 'Source Group 1'..
Add Existing Files to Group ‘Source Group ..
Add Group...

Remove Group ‘Source Group 1' and its Files

b Manage Project Ttems...

Open File
Open List File

Open Map File
Open Build Log

% Rebuild all target files
|| Build target 7
Translate File

(4 Stop build

Show Include File Dependenties

oo | Oru.|0yTe. |
' Build Output TG

4

Add a new Item to Group i} = Simulation
T "E €T EFqo IV

7.Select Asm file and give name of the file with .s extension and press ADD.

| CUsers\User\Desktop\demo.uvpraj - pVisiond — e ke 2@ =
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

NS A s ado o] e | PR RN FFEG S Jaslale o5 alF S

fO A e] B et EFIN -

=524 Target1
{77 Source Groupl

@Cﬁle(c) Create a new assembler source fie and add it to the project.

Ce++ File {.cpp)

W Asm Fle (s)

@ Texd File ()
E Image File ()
@ User Code Template

|mﬁe(.s)

| C:\Users\User Desktop

=

oo | Oru.|0yTe. |

Simulation CAP NUM SCRL OVR R /W

ooty e
5

Department of ECE, Atria IT Page 22

EMBEDDED SYSTEMS LAB MANUAL

8.Type the program in the editor space and save.
CAlsers\User\Deskiop\deme uvpro - pVisiond e G s wi]

File Edit View Projedt Flash Debug Peripherals Tools SVCS Window Help

NEedad| 2 a@|9 & | |m o mr|EEE G @ Ha#s dale oa
D e L] BB Targett H&| b2 e @
Project 183 demo.s* - x
E-ﬁTarge’tl 1 JALP TO MULTIPLY TWO 16 BIT NUMBERS
{17 Source Group 1 2 AREA Reset, DATA, READONLY
- § EXPORT __ Vectors
4 _ Vectors
5 DCD 0X20001000
13 DCD Reset_Handler;
7
8 AREA MULTIPLY, CCDE, READONLY
8 ENIRY
10 EXPCRT Reset_Handler
11 Reset_Handler
12
13
14
15
16
17 stop B stop
ie
19 AREA DATAZ, DATA, READWRITE
20 numl EQU OXFFFF smaximum valur of 16 bit number

21 num2 EQU OXFFFF
22 product DCD OXO
23 END

22 |

Build Output 1B

Simulation L24 C1

9.Translate the program by select the icon from tool bar or from menu bar.
e demamyr - ok P—— e e T

File Edit View Projedt Flash Debug Peripherals Tools SVCS Window Help

NEedad| s @]9 | | ™ % omom|EE Ha# ale o o&
(S & e] 8] e EEIN .
Proj % Translate (Ctrl+F7) [¥] demo.s - X

Translate the currently active file |

1 ;ALP TO MULTIPLY TWO 16 BIT NUMBERS
z AREA Reser, DATA, READONLY

3 EXPORT _ Vectors

4 _ Vectors
B
6
7
8

2143 Source Group1

DCD 0X20001000
DCD Reset_Handler:

ARFA MULTIPLY, CCDE, READONLY
9 ENTIRY
1o EXPCRT Reset_Handler
11 Reset_Handler
12 MOV r0, #numl

17 stop B stop

19 AREA DATA2, DATA, READWRITE

20 numl EQU OXFFFF smaximum valur of 16 bit number
21 num2 EQU OXFFFF

22 product DCD 0XO

23 END

Build Output 183

assembling demo.s...
demo.s(19) : warning: A1581W: Added 2 bytes of padding at address 0x12
"demo.s" - 0 Error(s), 1 Warning(s).

Fl

Translate the currently active file Simulation CAP NUM 5CRL OVR R/W

Check for errors and warnings in the bottom window.

Department of ECE, Atria IT Page 23

EMBEDDED SYSTEMS LAB MANUAL

10.If no error,Select “Build” icon from tool bar or from menu bar.
CAUserUsenDesitopdemo uvprej - pisont T R . e T T

File Edit View Projedt Flash Debug Peripherals Tools SVCS Window Help

NS s @]9 | [= | @ Haeldale sa
CEEE IS &z e@
demo.s | - X

1 JALP TO MULTIPLY TWO 16 BIT NUMBERS

2 AREA Reset, DATA, READONLY

- § EXPORT __ Vectors

4 _ Vectors

5 DCD 0X20001000

13 DCD Reset_Handler;

7

8 AREA MULTIPLY, CCDE, READONLY

9 ENIRY

10 EXPCRT Reset_Handler

11 Reset_Handler

12

13

14

15

16

17 stop B stop

ie

19 AREA DATAZ, DATA, READWRITE

20 numl EQU OXFFFF smaximum valur of 16 bit number

21 num2 EQU OXFFFF
22 product DCD 0XO

23 END
22 |

Yru. [O4Te.. | | 4 " +

Build Output 1B

assembling demo.s... 2

demo.s(19) : warning: A1581W: Added 2 bytes of padding at address 0x12

"demo.s" - 0 Error(s), 1 Warning(s).

4 »
Build target files Simulation L24 C1 CAP NUM SCRL OVR RAW
P

11.Start the debug session from Menu bar.

CAUsers\User\Desktop\demo.uvpro)
File Edit View Projedt Flash

nd e ——— e = B W T | e

Peripherals Tools SVCS Window Help

NEd ﬁl WCs Eﬁ‘l \|@) start/Stop Debug Session cr+fFs = g | % HEa e | @_l ° o]
DB B 2 | 8] e BF Resetcru
Project 13 [El Run s - X
[8 Targett Q@ stop BIT NUMBERS
243 Source Group 1 iz F1p | REBDONLY
rs
{3* Step Over F10
{}* step Out Ctil+F11
{} Runto CursorLine cr-ro |
% Show Next Statement JE, READONLY
Breakpoints... ctri+B fer
@ Insert/Remove Breakpoint 3
Enable/Disable Breakpoint Ctrl+F3
9 Disable All Ereakpoints
&% Kill All Breakpoints Ctri=+Shift=F9
S Support »
Execution Profiling | —
i) fcimum valur of 16 bit number
Inline Assembly...
Function Editor (Open Ini File...

Epr. (@ 5o..| (B Fu. |0yTe. | ||« i 5
Build Output 1 B
assembling demo.s... -

demo.s (19) : warning: A1581W: Added 2 bytes of padding at address 0x12
"demo.s" - 0 Error(s), 1 Warning(s).

Fl r

Enter or leave 3 debug session Simulation L:24 C1

12.PressOK

Department of ECE, Atria IT Page 24

EMBEDDED SYSTEMS LAB MANUAL

CAUsers\User\Desktop\demo.uvproj -

& PRg— . . e W)

File

Neda| s ;a9

Edit View Project Flash Debug Peripherals Tools SVCS Window Help

BRI

N R T
Registers 3 Disassembly 3
Register Ve 12: MOV z0, #numl -
T G s 0xC FE4FT0FF MOVW =0, $0xFEEF

RO C0000000 o on;gc.mnc 1-541-7‘;?; r;é\f';umz 1, $0XFFFF

R1 DD0DDDDDD e it

Rz £D0000000 0x00000010 FEOOF20L IHU:. . 2,x0,=1

R3 00000000 * - TeeEeE

g 00000000 15: LDR =3,—product

g 00000000 030022?014 4B01 . Z.DR . 3, [pe, #4] ; @0x0000001C @

RE x00000000 : =20 (=31 -

AvAnAAAATE EnTn ats 3 w3 sAwant

R7 0000000 <l v

Re 000000000

RS 000000000 demo.s v X

R10 0<00000000 DCD 0X20001000 -

RN 0<00000000 DCD Reset_Handler;

R12 000000000 -

R13(SP) (x20001000 AREA MULTIPLY, CODE, READONLY T

R14{LR) OxFFFFFFFF 9 ENTRY

RIS{FC) (00000008 10 EXPORT Reset_Handlexr

PSR 01000000 11 Reset Handler

[Banked My 12 o £
- System 13
= Intemal 12

Mode Thread 15

Prviege Privileged 16

Steck MSP 17 stop B step

States D 18

Sec 0.00000000 13 AREA DATA2, DATA, READWRITE -
[E] Froject | = Registers < n | r
Command a Call Stack + Locals n
<%~ Cuzzently used: 36 Bytes (0%) | Name Location/Value Type
b v
>
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet Breakhccess COVERAGE | (cCalStack + Locals | Il Memory 1

Simulation 11:0.00000000 sec 121 CAP NUM SCRL OVR R/W

13.Press function key F11 or select “step” option under Debug menu for single step execution and verify the output in
register window/Memory window/xPSR.

Department of ECE, Atria IT Page 25

EMBEDDED SYSTEMS LAB MANUAL

1.ALP TO MULTIPLY TWO 16 BIT NUMBERS

AREA Reset, DATA, READONLY
EXPORT _ Vectors
__Vectors
DCD 0X20001000
DCD Reset Handler;

AREA MULTIPLY, CODE, READONLY
ENTRY

EXPORT Reset Handler
Reset Handler

MOV 10,#num1

MOV rl,#num?2

MUL 12,r0,r1

LDR r3,=product

STR 12,[r3]
stop B stop

AREA DATA2, DATA, READWRITE
numl EQU 0XFFFF ;maximum value of 16 bit number
num2 EQU 0XFFFF
product DCD 0X0

END

Result:
(0xFFFF) x(0xFFFF) =0xFFFE0O001 in the product memory location.

Department of ECE, Atria IT Page 26

EMBEDDED SYSTEMS LAB MANUAL

CAUsers\User\Desktop\demo.uvproj - pVisiond - ——c—
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
=l a9 | | ® | == | = Aae@ e < eF)

BEo nee o s | ONEED Oz 8- 3 8| %-
Registers 2 B Disassembly 1B
Register Valus 16: STR x2, [£3] -
= 0x00000016 6014 STR 2, [r3, $0x00]
RO <00D0FFFF 17: stop B stop
A DAODDOFFFE 0x00000018 ETFE = 0x00000018
2 eFFFEQOOT 0X0000D01A 0000 DCw 0x0000
s 10000000 0x0000001C 0000 DCwW 0%0000
it 00000000 0x0000001E 1000 jrlec] 0x1000
RS 400000000 0x00000020 0000 MOVS £0,z0 o
0x00000022 0000 MOVS z0,x0 -
il 00000000 nwnnnnnnaa nnon s g, =
R7 00000000 <| '
RE 00000000
RS Dx00000000 demo.s v x
R10 2<00000000 5 DCD 0X20001000
R11 000000000 5 DCD Resec_Handler:
R12 000000000 = -
R13(5P) x20001000 8 BREAR MULTIPLY, CODE, READONLY
R14(LR) OxFFFFFFFF o ——
RIS(PC) Cx0000001E 10 EXPORT Reset_Handler
PSR 01000000 11 Reser_Handler
¥ Banked 12 MOV 0 =
- System 13 MOV
Intemal an vuL
Mode Thread 15 LDR
Privilege Privieged 1e =TR
Stack MSP 17 stop B stop
States 13 18
I Sec 0.00000108 13 AREA DATA2, DATA, READWRITE -
=] project | 5 Registers < I o
Command 2 @ Memory2 1B
##% Currently used: 36 Bytes (0%) B o
_ | Address: [B10000000 E‘ ‘
a y 0x10000000: 01 00 FF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 DO 0D 00 00 00 0D 00 DO 0O 00 00 DO GO0 00 00 00 0D 00 -

> 0x10000017: 00 00
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess COVERAGE | -5—‘3[3“&3:! + Locals jl\:maul JMEmnvyZl
Simulation t1: 0.00000108 sec L7 C1 CAP NUM SCRL OVR R/W
- .
= | /A r = s b al
© 2 2 o e Iz iz € | A | & SEE e

2.ALP TO FIND THE SUM OF FIRST 10 INTEGERS

AREA Reset, DATA, READONLY
EXPORT _ Vectors
__Vectors
DCD 0X20001000
DCD Reset Handler;

AREA SUM, CODE, READONLY
ENTRY

EXPORT Reset Handler
Reset Handler

MOV r3,#10

MOV 10,#0

MOV rl1,#1
11 ADD r0,r0,r1

ADD rl,rl#1

SUBS r3.#1

BNE 11

LDR r4, =RESULT
STR 10, [r4]

XSS B XSS

AREA DATA2, DATA, READWRITE

Department of ECE, Atria IT Page 27

EMBEDDED SYSTEMS LAB MANUAL

RESULT DCD 0X0
END ;Mark the end
Result:
1+2+3+......+10=55d=37H.(At RESULT Memory Location)

DAARMSEMB\lap_prgs_20211p5.uvproj - pVisiond
File Edit View Project Flash Debug Peripherals Tools SVWCS Window Help

==l @ | | 2 &
SlEa e o | o - - |
Registers R [Disassembly 2 (B
Regater Valus = lloxoo =4, [pc, #4]1 ; G0x0000002% =
= Core
RO (00000037 [0x00000020 6020 0 4, #0x00
R1 (00000008 * 20 602 =0, [=4, £0x00]
R2 (00000000 0x00000022 ETFE B 0x00000022
A3 000000000 0‘000000:; 0500 BCW OXOOOO -
R4 010000000 ! z *
RS 500000000 0200000026 1000 oo 0x1000
W oowmo | fommomooee oo v oo
R (00000000 OxOOOOOOfC 0000 MOVS IO'IO
R2 0x00000000 — ! 2 . 0=
o aewm |[oeowooat oo v oo a
R0 000000000 0‘0000003" 0000 MOVS r0’10 ~
R11 (00000000 pa . o= =2
R12 (x000D000D qf D
R13(SF) 020001000 s > 3
R14(LR) OFFFFFFFF
naE me n.nonnnnan hd 23 XS5 B XSS it
= Project | £ Registers <. I »
Command 2 @ Memory3 3@
Running with Code Size Limit: 32K 7 ~
Load "D:\\ARMGEME\\lap prgs_2021\\ps.axf" [10000000 Eh]
~ ~ B ~ o 0x10000000: 00 00 O 00 00 00 00 0O 0O 00 00 OO OO 00 00 00 OO 00 00 00 00 00
##% Restricted Version with 32768 Byte Code Size Limit 0x10000017 : oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
**% Currently used: 44 Bytes (0%) O0x1000002E: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Q0 OO 00 00 00 00 00
0x10000045: 00 00 00 00 Q0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1000005C: 00 00 00 0O 00 00 00 OO OO 00 00 OO OO 00 OO0 00 OO0 00 00 00 00 00
0x10000073: 00 00 00 0D 00 00 00 DO 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x1000008A: 00 0O
0x100000A1: 00 00 00 OO0 OO 0O OO0 00 OO OO 00 OO0 OO0 OO0 00 OO0 00 OO 00 00 00 00 OO0
~ |0x100000BE&: 00 00 00 00 00 00 00 00 0O 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00
“ » 0x100000CF: 00 00 00 00 0O 00 00 00 00 00 00 Q0 00 00 00 00 00 00 00 00 Q0 00 00
0x100000E6: 00 0O
B Nv1NONNNFND- NN A0 A0 A0 AN AN 00 00_00 AN 0N A0 N0 00 00 60 00 00 N0 a0 00 00 00 ~Z
ASSIGN BreakDisable BreakEnable BreakKill BreaklList BreakSet BreakAccess COVERAGE ‘ u,!lall Stack = Locals j y 1 JMEmnrySl
Simulation t1: 0.00000567 sec L23c1 CAP NUM SCRL OVR R/W
= - = = - [
9. 2 o0 e ERE 3 o

3.ALP TO FIND THE 1’S AND 0’ IN THE GIVEN 32 BIT DATA.

AREA Reset, DATA, READONLY
EXPORT _ Vectors
__Vectors
DCD 0X20001000
DCD Reset Handler;

AREA onezero, CODE, READONLY
num EQU 15

ENTRY
EXPORT Reset Handler
Reset Handler
MOV 10,#num
MOV rl,#0
MOV 1r2,#0
MOV 13,#32
loop LSRS 10,r0,#1
BCS 11
ADD r2,#1
B 12
11 ADD rl,#1
12 SUBS r3.,#1
BNE loop

Department of ECE, Atria IT Page 28

EMBEDDED SYSTEMS LAB MANUAL

LDR r5,=ones

LDR r6,=zeros

STR rl,[r5]

STR 12,[r6]
stop B stop

AREA DATAI1, DATA, READWRITE
ones DCB 0X0
zeros DCB 0X0

END

Result:
If num=15d->no of 1’s=4 and No.of 0’s=28d=1Ch.

Department of ECE, Atria IT Page 29

EMBEDDED SYSTEMS LAB MANUAL
B vt i e e T T T (0

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NEdd|» wal9c|
AR R

Hael@ e oo el

Registers a @ Disassembly a @
Register |Va|ue IL 0%0000002C 4E02 LDR 6, [pc, #8] ; E0x00000038 a
EN 27: STR rl,[r3]
RO 000000000 0x0000002E 6028 5TR rl, [r5, #0x00]
00000004 28: SIR r2, [r6]
BI000001C 0x00000030 6032 STR x2, [r6, $0x00]
200000000 29: stop B stop
00000000 0x00000032 ETFE B 0x00000032
10000000 0x00000034 0000 DCW 0x0000
010000001 0x00000036 1000 DCW 0x1000
000000000 0x00000038 0001 DCW 00001
00000000 0x0000003A 1000 DCW 0x1000
B00000000 0x0000003C 0000 MOVS 0,0 D
000000000 0x0000003E 0000 MOV3 0,x0 -
DH0000000 <[d '
D<00000000
020001000 oneszeross T
OeFFFRFFFF 12 3UBS =3,#1 i
00000032 BNE loop
51000000 LDR r5,=ones
LDR r6,=zeros
SIR
SIR
Thread = stop B stop
Privileged
MSP v‘ MREA DATAl, DATA, READWRITE

] Project | = Registers < Il 2

Command 0 [@ Memory2
Running with Code Size Limit: 32K - e o
Load "D:\\RRMeEME\\lap prgs_2021\\oneszeros.axf" D ressl 0000000
. 0x10000000: 04 1C 00 00 00 OQ 0OQ 00 0O 0O 0O QO 00 00 OO0 00 OO 00 00 Q0 QO Q0 00
Restricted Version with 32768 Byte Code Size Limit T |0x10000017: 00
1 L | 0x1000002E: 00 00 00 00 00 0Q 0Q 00 00 00 QO QO Q0 00 00 00 00 00 00 QO QO Q0 00
> 0x10000045: 00 00 00 00 00 OO0 OO 0O 0O 0O 00 Q0 00 00 OO0 OO0 OO 00 00 Q0 Q0 Q0 00 ~
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess COVERAGE | (gjial\ Stack + Locals Memary 1 Memary 2

Simulation : 0.00002833 sec L:29 C1 CAP NUM SCRL OVR R/W
0

Department of ECE, Atria IT Page 30

EMBEDDED SYSTEMS LAB MANUAL

4. ALP TO FIND WHETHER THE GIVEN 16 BIT NUMBER IS ODD OR EVEN
AREA Reset, DATA, READONLY
EXPORT _ Vectors
__Vectors
DCD 0X20001000
DCD Reset Handler;

AREA oddeven, CODE, READONLY

res EQU 'o'
resu EQU 'e'

ENTRY
EXPORT Reset Handler
Reset Handler
LDR rl,=num
LDR r0,[r1]
RORS 10,#1
BCS 11
MOV r2 #resu
B12
11 MOV 12 #res
12 LDR r3,=result
STR r2,[r3]
stop B stop

AREA data, DATA, READWRITE
num DCW 16
result DCB 0X0

END

Department of ECE, Atria IT Page 31

EMBEDDED SYSTEMS LAB MANUAL

Result:

num=16d.Hence it is EVEN
DAARMBEMB\lap_ prgs_202T\oddh TS e

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NSEd@| » @9
B BRe o] |

Registers 0 [@ Disassembly ' n
= Cors ox00000020 ETFE B 0x00000020 T

e T 0x00000022 0000 DCW 0x0000 B

33 oomm |, TER0AAA624 ann new axnnnn a

R2 00000065

R3 10000002 oddevens v x

£ (00000000 10 res EQU 'of A

& (00000000 11 resu EQU 'e'

R6 00000000 T

G 00000000 13 ENTRY

5 (000000 12 EXPORT Reset_Handler

5 (000000 15 Reset Handler

il S0000000 16 LLR rl,=num P

R11 (00000000 17

R12 00000000 18

R13(5P) 20001000 19

R14({LR) (eFFFFFFFF 20

-~ R15(PC) 00000020 21
: # kPSR 41000000 22 11 L
E] Banked 23 12 &
[+ System 24
B Irtemal 25 stop B stop
- Mode Thread 26

Voukm: Pk 27 AREA data, DATA, READWRITE

Sk bl 28 num DCW 16

e Z 29 result DCB 0XO |
| Sec 000000175 - i .
[Project | = Registers < . r
Command 2 [Memory2

*#+ Restricted Version with 32768 Byte Code Size Limit Address: 10000000

i ' lox10000000: ..e
> 0x10000046:
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess COVERAGE | te:_"‘CaH Stack = Locals ﬂMemml EMemoryZ‘

simulation 11: 0,00000175 sec L25 C1 CAP NUM SCRL OVR RAW

Department of ECE, Atria IT Page 32

EMBEDDED SYSTEMS LAB MANUAL

5. ALP TO MOVE A BLOCK OF DATA FROM CODE TO RAM MEMORY
Method1:

AREA Reset, DATA, READONLY
EXPORT _ Vectors
__Vectors
DCD 0X20001000
DCD Reset Handler;

AREA writedata, CODE, READONLY
src DCD 0x11,0X22,0X33,0X44,0X55
ENTRY
EXPORT Reset Handler
Reset Handler
LDR r0,=src
LDR rl,=dst
MOV 12 #5

11 LDR r3,[r0],#4
STR 13,[r1].#4
SUBS r2,#1
BNE 11

stop B stop

AREA data, DATA,READWRITE
dst DCD 0X0
END

Method 2:
;ALP TO MOVE A BLOCK OF DATA FROM CODE TO RAM MEMORY-USING LDM and STM
INSTRUCTIONS(MULTIPLE DATA TRANSFER)

AREA Reset, DATA, READONLY

EXPORT _ Vectors

__Vectors

DCD 0X20001000

DCD Reset Handler;

AREA writedata, CODE, READONLY
src DCD 0x11,0X22,0X33,0X44,0X55
ENTRY

EXPORT Reset Handler
Reset Handler

Department of ECE, Atria IT Page 33

EMBEDDED SYSTEMS LAB MANUAL

LDR r0,=src
LDR rl,=dst
MOV 12,#5

11 LDMIA 10!,{r4-r8}
STMIA rl1!,{r4-r8}
SUBS r2,#1
BNE 11

stop B stop

AREA data, DATA,READWRITE
dst DCD 0X0
END
Result:
INPUT: 00000011h,00000022h,00000033h,00000044h,00000055h.
OUTPUT at dst : 0000001 1h,00000022h,00000033h,00000044h,00000055h.

DB g P wiatartaroe, e T T S T 5
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

N@dd s od|sr|«|pnn = I 1| Has@e oe[F]3
wEo nrrn » [OREEEDE- cE-E-E] -
Registers n Disassembly 1
Register 16: 11 LDMIA rQ!,{r4-rg} -
1 =
= Com Oxoogs?ozq EEBO0LFD LDMSTMIA rg;,{rz r:} 0
....... R0 £o000001C n nnnn(-m?n FRAINIFN STM I'| ;'§I4_Iai X
------- R BaI0000D14 T ; ; . 7
"""" R2 (100000004
------- R3 D000000D wiitedataRam.s il
"""" R4 (00000011 7 s
R5 00000022 g ARER writedata, CODE, READCHLY
R6 (00000033 9 src DCD 0x11,0X22,0%33,0%44,0%55
R7 100000044 10 ENTRY
11 EXPORT Reset_Handler
12 Reset_Handler w
13 LDR r0,=src
14 LDR rl,=dst
15 MOV r2, 45
16 11 LDMIA 0!, {r4-xg}
17 STMIA rl!,{r4-rg}
18 SUBS z2,#1
13 BNE 11 E
20
21 stop B stop
22
"""" Mode Thread 23
::::P”""ege Privieged 24 AREA data, DATR,READWRITE
Stack ISP 25 dst DCD 00
States 21 26 END A
"""" Sec 0.00000175 -
E project | = Registers < U L
Command R Memaory 2 1
#%% Cyurrently used: 64 Bytes (0%) - al -
- | Address: 0000000 D
i } ,/0x10000000: 11 00 00 00 22 00 Q0 00 33 00 00 00 44 00 00 00 55 00 00 00 00 00 00
> 0x10000017; 00 00 00 00 00 0QQ 0O 00 00 00 00 0QQ 00 00 00 00 00 0Q 00 OQ 0O 00 00 ~
ASS5IGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess COVERAGE | tg‘.‘h(al\ Stack + Locals | [Memory 1 \jMemoryZ‘
Simulation 11: 0.00000175 sec L16 C1 CAP NUM 5CRL OVR R/W

Mo

Department of ECE, Atria IT Page 34

EMBEDDED SYSTEMS LAB MANUAL

PART B
(INTERACING HARDWARE WITH LPC 1768 MICROCONTROLLER)
SOFTWARE: Keil pVision 4, Flash Magic
Language: Embedded C

Department of ECE, Atria IT Page 35

EMBEDDED SYSTEMS LAB MANUAL

Exp.No:1: (Beyond Syllabus-Practice session):
Interface a simple Switch and display its status through Relay, Buzzer and LED.
Connection details:

LPC1768
S| RELAY
P1.28
SWITCH > P11 P1.19 >| LED
P1.27
2 BUZZER

Algorithm:

Configure PORT 1 and PORT 2 as GPIO.

Configure the direction of Port 2 as input and Port 1 as output .

Read the status of the switch.

If the switch is pressed, turn on LED,Relay and Buzzer else turn them off.
Repeat from step 3 unconditionally.

M

Program:
#include<LPC17xx.h>
#define switch 11
#define LED 19
#define relay 28
#define buzzer 27
int main(void)

{
LPC_PINCON->PINSEL3=0x00000000;
LPC_PINCON->PINSEL4=0x00000000;
LPC GPIO2->FIODIR=0x00000000;
LPC_GPIO1->FIODIR=0xFFFFFFFF;
LPC_GPIO1->FIOCLR=0xFFFFFFFF;
while(1)

{
if ({(LPC_GPIO2->FIOPIN>>switch)& 0x1))
{
LPC_GPIO1->FIOPIN=(1<<LED)|(1<<relay)|(1<<buzzer);

Department of ECE, Atria IT Page 36

EMBEDDED SYSTEMS LAB MANUAL
}

else

{
LPC_GPIO1->FIOPIN=(0<<LED)|(0<<relay)|(0<<buzzer);

h
b
h

Department of ECE, Atria IT Page 37

EMBEDDED SYSTEMS LAB MANUAL

Exp.No:2
Interface a Stepper motor and rotate it in clockwise and anti-clockwise direction.
Connection Details:

LPC1768 TRAINER KIT
LPC1768 PO.15
SWI > P2.11 —2 STEPPER
> MOTOR STEPPER
5 P12 3| INTERFACING MOTOR
SW2 CIRCUIT
PO.18
1. Configure the Port 0 and Port 2 as GPIO.
2. Configure the Port 2 in input direction and Port 0 in output direction.
3. Read the status of the switch 1. If it is pressed, set the direction as 0 for clock wise rotation.
4. Else read the status of switch 2. If it is pressed, set the direction as 1 for anticlock wise rotation.
5. If'the direction is 0, send the data to energize the stepper motor coils in a sequence A-B-C-D else in

D-C-B-A sequence.
Insert an appropriate delay between energizing two consecutive coils.
7. Repeat from steps 3 unconditionally.

.0\

Program:
#include<lpc17xx.h>
#define SW1 11
#define SW2 12

void delay(unsigned int x)
{

unsignedinti,j;
for(i=0;1<x;1++)

{
for(3=0;7<90000;j++);
f

f

int main(void)

Department of ECE, Atria IT Page 38

EMBEDDED SYSTEMS LAB MANUAL
{

unsignedint direct;
LPC_PINCON->PINSEL0=0X00000000;
LPC_ PINCON->PINSEL1=0X00000000;
LPC_PINCON->PINSEL4=0X00000000;
LPC GPIOO0->FIODIR=0xFFFFFFFF;
LPC_GPIO2->FIODIR=0X00000000;
LPC_GPIO0->FIOCLR=0X00078000;// CLEAR P0.15 TO p0.18
while(1)
{
if(1((LPC_GPIO2->FIOPIN>>SW1)& 0X1))
{
while(!((LPC_GPIO2->FIOPIN>>SW1) & 0X1));
direct=1;
b
else if(!((LPC_GPIO2->FIOPIN>>SW2) & 0X1))
{
while(!((LPC_GPIO2->FIOPIN>>SW2) & 0X1));
direct=0;
}
if(direct==1)
{
LPC_GPIO0->FIOPIN=0X00008000;
delay(15);
LPC_GPIOO0->FIOPIN=0X00010000;
delay(15);
LPC_GPIO0->FIOPIN=0X00020000;
delay(15);
LPC_GPIO0->FIOPIN=0X00040000;
delay(15);
}

else

{
LPC_GPIOO0->FIOPIN=0X00040000;
delay(15);
LPC_GPIOO0->FIOPIN=0X00020000;
delay(15);
LPC_GPIOO0->FIOPIN=0X00010000;
delay(15);

LPC_ GPIO0->FIOPIN=0x00008000;

Department of ECE, Atria IT

Page 39

EMBEDDED SYSTEMS LAB MANUAL

delay(15);

;
;
}

Exp.No:3
Display the Hex digits 0 to F on a 7-segment LED interface, with an appropriate delay in between,
Department of ECE, Atria IT Page 40

EMBEDDED SYSTEMS LAB MANUAL

Connection Details:

LPC1768 PO.2 abcdefy
PO.0 -
PO.1 = -
0
PO.3 > ' '-‘.

T-segment display

P04 > :E
interfacing circwit |
P05 > r
PO.E >
PO.7 >
P4.28 $5V->h
ALGORITHM:
1. Configure port 0 and Port 4 as GPIO.
2. Configure the direction of Port 0 and Port 4 as output.
3. Create a look up table containing 7 segment equivalent code for the digits 0 to 9 and hexa
digits A to F.
4. Select the display unit. Send logic 1 to Port line P0.2 for display unit 1 or to Port 4.28 for
display unit 2.
5. Send each 7 segment equivalent code taken from look up table toPort 0.0 to Port line P0.7
with appropriate delay in between.
6. Clear the selected display before sending the next data to display and insert a delay.
7. Repeat from step 4.
PROGRAM:
#include<lpc17xx.h>

Department of ECE, Atria IT Page 41

EMBEDDED SYSTEMS LAB MANUAL

void delay (unsigned int x)

{

unsignedinti,j;

for(i=0;1<x;1++)

{

for(j=0;;<90000;j++);

i

f

int main(void)

{

unsignedint k;

unsignedint a[[={0x104,0x1E5,0x094,0x0c4,
0x065,0x046,0x006,0xE4,
0x004,0x064,0x024,0x004,
0x116,0x104,0x016,0x36};

LPC PINCON->PINSEL0=0X0000000;

LPC PINCON->PINSEL9=0X0000000;

LPC_ GPIOO->FIODIR=0XFFFFFFFF;

LPC_ GPIO4->FIODIR=0XFFFFFFFF;

LPC_ GPIOO->FIOPIN=0X1F7;

LPC GPIO4->FIOPIN=0X10000000;

while(1)

{

for(k=0;k<16;k++)

{

LPC_GPIOO->FIOPIN=a[k];

delay(80);

LPC GPIO0->FIOPIN=0X1F7,

delay(80);

h
h
h

Department of ECE, Atria IT Page 42

EMBEDDED SYSTEMS LAB MANUAL

Exp.No: 4

Interface a DAC and generate Triangular and Square waveforms.
Connection Details:

LPC1768

10 BIT
INTERNAL P0.26 CRO

DAC

It is a string DAC consisting of 2" resistors in series where N = no. of bits LPC176x DAC has
only 1 output pin, referred to as AOUT. The Analog voltage at the output of this pin is given
as:

VALUE * (Vreep-VRrern)

Vaour = + VREFN
1024
When we have Vgggy = 0. the equation boils down to:
VALUE * Vgerp

Vaour = 1024

Where VALUE is the 10-bit digital value which is to be converted into its Analog counterpart
and Vger 1s the input reference voltage.
Pins relating to LPC1768 DAC block:
Pin Description
AOUT (P0.26) Analog Output pin. Provides the converted Analog signal which

is referenced to VSSA i.e. the Analog GND. Set Bits[21:20] in PINSELI1
register to “10” to enable this function.
DACR register Format: (32 bit register):
D/A Converter Register (DACR - 0x4008 C000)
This read/write register includes the digital value to be converted to analog, and a bit
thattrades off performance vs. power. Bits 5:0 are reserved for future, higher-resolution
D/Aconverters.

Department of ECE, Atria IT Page 43

EMBEDDED SYSTEMS LAB MANUAL

Bit Symbol | Value Description Reset
Value
5:0 - Reserved | User software should not write ones to reserved bits. NA

The value read from a reserved bit is not defined.

15:6 | VALUE | 10 bit the voltage onthe AOUT pin is VALUE % (VREFP - |0
data VREFN)/1024) + VREFN.

16 BIAS 0 The settling time of the DAC is 1 pus max, and the 0
maximum current is 700 pA. This allows
a maximum update rate of 1| MHz.

31:17 | - Reserved | User software should not write ones to reserved bits. NA
The value read from a reserved bit 1s not defined.

ALGORITHM:
TRIANGULAR WAVEFORM:

1. Configure the Port 0.26 as second alternate function to carry the analog output by using
the PINSELI register.

Initialize 10 bit digital dataas O.

Send the digital data to the DACR[6:15].

Increment the digital data and check whether it is equal to 1024,.

If it is less than 1024, repeat from step 3.

Else decrement the digital value and send to the DACR[6:15]

Check whether the digital data is greater than 0.

if yes, repeat from step 6 else repeat from step 3.

PROGRAM FOR TRIANGULAR WAVEFORM:
#include<lpcl7xx.h>
#define p0 26 21
#define ddata 6
uint32_tdacv = 0x0;

® N L AW N

int main()
{
SystemlInit();
LPC PINCON -> PINSELI1 = (1<<p0_26);
while(1)
{
while(1)
{

dacv++;

Department of ECE, Atria IT Page 44

EMBEDDED SYSTEMS LAB MANUAL

LPC DAC->DACR=(dacv<<ddata);
if(dacv>=0x3FF)
{

f
f
while(1)
{

break;

dacv--;

LPC DAC->DACR=(dacv<<ddata);
1f(dacv<=0x0)

{

}

break;

b
b
}
SQUARE WAVEFORM:
1. Configure the Port 0.26 as second alternate function to carry the analog output by using
the PINSELI register.
Initialize 10 bit digital dataas O.
Send the digital data to the DACR[6:15].
Insert the required delay.
Send the digital data equivalent to the required analog signal amplitude.(it should be
less than 3.3v or 0x3fY).
Insert the same delay as used in step 4.
. Repeat from step 2 unconditionally.

U

=N o

Program:
#include<lpc17xx.h>

#define p0 26 21
#define ddata 6
uint32 tdacv = 0x0;
void delay(unsigned int x)
{
unsignedinti,j;
for (1i=0;1<x;i++)

{

Department of ECE, Atria IT Page 45

EMBEDDED SYSTEMS LAB MANUAL

for(j7=0;<9000;j++);

J
}
int main()
{
SystemlInit();
LPC PINCON -> PINSEL1 = (1<<p0_26);
while(1)
{
while(1)
{
dacv = 0x0;
LPC DAC->DACR=(dacv<<ddata);
delay (15);
dacv = 0x3ft;
LPC DAC ->DACR =(dacv<<ddata);
delay(15);
}
}
}

Department of ECE, Atria IT Page 46

EMBEDDED SYSTEMS LAB MANUAL

Exp.No:S:
Display “Hello World” message using Internal UART.

Connection Details:

TxDO (P0.2) USB CABLE> PC
RxDO (P0.3) MONITOR
<
UART Registers:
The below table shows the registers associated with LPC1768 UART.
Register | Description
RBR Contains the recently received Data
THR Contains the data to be transmitted
FCR FIFO Control Register
LCR Controls the UART frame formatting(Number of Data Bits, Stop
bits)
DLL Least Significant Byte of the UART baud rate generator value.
DLM Most Significant Byte of the UART baud rate generator value.

UART Register formats or configuration:
FCR (FIFO Control Register):
LPC1768 has inbuilt 16byte FIFO for Receiver/Transmitter. Thus it can store 16-bytes of data
received on UART without overwriting. If the data is not read before the Queue(FIFO) is

filled then the new data will be lost and the OVERRUN error bit will be set.

FCR
31:8 7:6 5:4 3 2 1 0
RESERVED RX RESERVED | DMA TX FIFO |RXFIFO | FIFO
TRIGGER MODE | RESET RESET ENABLE

Bit 0 — FIFQO:This bit is used to enable/disable the FIFO for thedata received/transmitted.
FIFO is Disabled, 1--FIFO is Enabled for both Rx and Tx.

Bit 1 — RX FIFO:This is used to clear the 16-byte Rx FIFO.0-No impact.

Department of ECE, Atria IT

Page 47

EMBEDDED SYSTEMS LAB MANUAL

1-Clears the 16-byte Rx FIFO and the resets the FIFO pointer.
Bit 2 — Tx_FIFO:This is used to clear the 16-byte Tx FIFO.
0-No impact.
1-Clears the 16-byte Tx FIFO and the resets the FIFO pointer.
Bit 3 - DMA MODE:
This is used for Enabling/Disabling DMA mode.
0--Disables the DMA.
1--Enables DMA only when the FIFO(bit-0) bit is SET.
Bit 7:6 — Rx_TRIGGER:This bit is used to select the number of bytes of the receiver data to be written
so as to enable the interrupt/DMA.
00-- Trigger level 0 (1 character or 0x01)
01-- Trigger level 1 (4 characters or 0x04)
10-- Trigger level 2 (8 characters or 0x08)
11-- Trigger level 3 (14 characters or 0x0E)

LCR (Line Control Register):
This register is used for defining the UART frame format ie. Number of Data bits, STOP bits etc.

Format:
31:8 7 6 5:4 3 2 1:0
Reserved DLAB | Break Parity Parity Stop Bit Word Length
COntrol Select Enable Select Select

Bit 1:0 : Word Length Select: These two bits are used to select the character length
00-- 5-bit character length
01-- 6-bit character length
10-- 7-bit character length
11-- 8-bit character length
Bit 2 — Stop Bit Selection: This bit is used to select the number(1/2) of stop bits
0-- 1 Stop bit
1-- 2 Stop Bits
Bit 3 — Parity Enable:This bit is used to Enable or Disable the Parity generation and checking.
0-- Disable parity generation and checking.
1-- Enable parity generation and checking.
Bit 5:4 — Parity Selection:These two bits will be used to select the type of parity.
00-- Odd parity. Number of 1s in the transmitted character and the
attached parity bit will be odd.
01-- Even Parity. Number of 1s in the transmitted character and the
attached parity bit will be even.
10-- Forced "1" stick parity.
11-- Forced "0" stick parity
Bit 6 — Break Control:0-- Disable break transmission.

1-- Enable break transmission. Qutput Ein UARTn TXD is forced to logic 0
Department of ECE, Atria IT Page 48

EMBEDDED SYSTEMS LAB MANUAL

Bit 8 — DLAB: Divisor Latch Access Bit:
This bit is used to enable the access to divisor latch.
0-- Disable access to divisor latch
1-- Enable access to divisor latch
LSR (Line Status Register):
The is a read-only register that provides status information of the UART TX and RX blocks.
LSR Format:

31:8 7 6 5 4 3 2 1 |0

Reserved RXFE | TEMT THRE | BI FE PE OE | RDR

Bit 0 — RDR: Receive Data Ready
This bit will be set when there is a received data in RBR register. This bit will be automatically cleared when
RBR is empty.

0-- The UARTn receiver FIFO is empty.

1-- The UARTn receiver FIFO is not empty.

Bit 1 — OE: Overrun Error

The overrun error condition is set when the UART Rx FIFO is full and a new character is received. In this
case, the UARTn RBR FIFO will not be overwritten and the character in the UARTn RSR will be lost.
0-- No overrun

1-- Buffer over run

Bit 2 — PE: Parity Error

This bit is set when the receiver detects a error in the Parity.

0-- No Parity Error

1-- Parity Error

Bit 3 — FE: Framing Error

This bit is set when there is error in the STOP bit(LOGIC 0)

0-- No Framing Error

1-- Framing Error

Bit 4 — BI: Break Interrupt

This bit is set when the RXDn is held in the spacing state (all zeroes) for one full character transmission
0-- No Break interrupt

1-- Break Interrupt detected.

Bit 5 —- THRE: Transmitter Holding Register Empty

THRE is set immediately upon detection of an empty THR. It is automatically cleared when the THR is
written.

0-- THR register is Empty

1-- THR has valid data to be transmitted

Bit 6 — TEMT: Transmitter Empty

TEMT is set when both UnTHR and UnTSR are empty; TEMT is cleared when any of them contain valid
data.

0-- THR and/or the TSR contains valid data.

1-- THR and the TSR are empty.

Bit 7 — RXFE: Error in Rx FIFO

This bit is set when the received data is affected by Framing Error/Parity Error/Break Error.

0-- RBR contains no UARTn RX errors.

Department of ECE, Atria IT Page 49

EMBEDDED SYSTEMS LAB MANUAL

1-- RBR contains at least one RX error.

TER (Transmitter Enable register): This register is used to Enable/Disable the transmission
TER Format:

31:8 7 6-0

Reserved | TXEN | Reserved

Bit 7 — TXEN: Trsnamitter Enable
When this bit is 1, the data written to the THR is output on the TXD pin.
If this bit is cleared to 0 while a character is being sent, the transmission of that character is
completed, but no further characters are sent until this bit is set again.
In other words, a 0 in this bit blocks the transfer of characters.
*Note: By default this bit will be set after Reset.
Baudrate Calculation
LPC1768 generates the baud rate depending on the values of DLM,DLL.
Baudrate = PCLK/ (16 * ((256 * DLM) + DLL) * (1+ DivAddVal/MulVal))
where, DLM=0, DLL= , (DivaddVal/MulVal)=0.

Steps for Configuring UART0

Below are the steps for configuring the UARTO.

1. Configure the P0.2 and P0.3 as first alternate function UARTO function using PINSELO register.
2.Configure the FCR for enabling the FIFO and Reset both the Rx/Tx FIFO.

3. Configure LCR for 8-data bits, 1 Stop bit, Disable Parity and Enable DLAB.

4. Calculate the DLM,DLL values for required baudrate from PCLK.

6. Update the DLM,DLL with the calculated values(i.e DLM=0;DLL=163).

7. Finally clear DLAB to disable the access to DLM,DLL.

After this the UART will be ready to Transmit/Receive Data at the specified baudrate, by sending the string
character by character.

Department of ECE, Atria IT Page 50

EMBEDDED SYSTEMS LAB MANUAL

Program:

#include<lpc17xx.h>

void UOWrite(char txdata)

{

while(!(LPC_UARTO->LSR & 0x20));
LPC UARTO->THR=txdata;

}

void initUARTO(void)

{

LPC PINCON->PINSELO =(1<<4)|(1<<6);
LPC UARTO->LCR=0x83;

LPC UARTO->DLL=163;

LPC UARTO0->DLM=0;

LPC UARTO0->FCR =0x7;

LPC UARTO0->FDR=0x0;

LPC UARTO0->LCR = 0x03;

}

int main(void)

{
charmsg[]= "Hello World";

int 1=0;
nitUARTO();

for(i=0;msg[1];i++)

{
UOWrite(msg[i]);

h
h

Department of ECE, Atria IT Page 51

EMBEDDED SYSTEMS LAB MANUAL

Exp.No:6:
Demonstrate the use of an external interrupt to toggle an LED On/Off.

Connection details:

LPC1768 TRAINEER. KI'I]
LPC1768 - SW1
P2.11
SW2
P12 .| LEDI LED?
P1.19 T
P1.20
Description:

LPC1768 has four external interrupts EINTO-EINTS3.

Port Pin[PINSEL_FUNC_0|PINSEL_FUNC_1|PINSEL_FUNC 2
P2.10 |GPIO EINTO0 NMI

P2.11 |GPIO EINT1 12STX_CLK
P2 12 |GPIO EINT2 12STX WS

P2.13 |GPIO EINT3 12STX_SDA

LPC1768 External Interrupts

Normal
Application

LPC1768

Normal

Application

Note:
¢ since the two general purpose switches have been connected with port lines P2.11 and

P2.12, only two interrupts EINT1 and EINT2 have been used in this experiment.

Department of ECE, Atria IT Page 52

http://exploreembedded.com/wiki/File:Lpc1768_external_interrupts.png

EMBEDDED SYSTEMS LAB MANUAL

e By pressing the switch, the corresponding interrupt signal will be generated.

EINT Registers:
Below table shows the registers associated with LPC1768 external interrupts.
Register Description
PINSELx To configure the pins as External Interrupts
EXTINT External Interrupt Flag Register contains interrupt flags
for EINTO,EINT1, EINT2 & EINT3.
EXTMODE External Interrupt Mode register(Level/Edge Triggered)
EXTPOLAR External Interrupt Polarity(Falling/Rising Edge, Active
Low/High)
EXTINT Format:
31:4 3 2 1 0

RESERVED | EINT3 | EINT2 | EINTI | EINTO

EINTx: Bits will be set whenever the interrupt is detected on the particular interrupt
pin.If the interrupts are enabled then the control goes to ISR.
Writing one to specific bit will clear the corresponding interrupt.

EXTMODE Format:
31:4 3 2 1 0
RESERVED EXTMODE3 EXTMODE2 EXTMODEI EXTMODEO

EXTMODEZX: This bits is used to select whether the EINTx pin is level or edge
Triggered.
0: EINTx is Level Triggered.
1: EINTx is Edge Triggered.

EXTPOLAR Format:
31:4 3 2 1 0
RESERVED | EXTPOLAR3 | EXTPOLAR2 | EXTPOLARI1 | EXTPOLARO

EXTPOLARX: This bits is used to select polarity(LOW/HIGH,FALLING/RISING) of
the EINTx interrupt depending on the EXTMODE register.
0: EINTx is Active Low or Falling Edge (depending on EXTMODEX).
1: EINTx is Active High or Rising Edge (depending on EXTMODEX).

ALGORITHM:

Department of ECE, Atria IT Page 53

EMBEDDED SYSTEMS LAB MANUAL

1. Configure the pins p2.11 AND p2.12 as external interrupts in PINSELx
register.
2. Clear any pending interrupts in EXTINT.
3. Configure the EINTx as Edge/Level triggered in EXTMODE register.
4. Select the polarity(Falling/Rising Edge, Active Low/High) of the interrupt
in EXTPOLAR register.
5. Finally enable the interrupts by calling NVIC EnableIRQ() with IRQ
number.
6. Define ISR1 to toggle the status of LED 1 for EINT1 and ISR2 to toggle the status of
LED2 for EINT2.

PROGRAM:
#include <lpcl7xx.h>

#define PINSEL EINT1 22 // interrupt 1
#define PINSEL EINT2 24 // interrupt 2

#define LEDI1 25 //led at p1.25
#define LED2 26 //led at pl.26

#define SBIT EINT1 1 //extint bit 1
#define SBIT EINT2 2 //extint bit 2

#define SBIT EXTMODEI1 1 //extint mode bit 1
#define SBIT EXTMODE2 2 //extint mode bit 2

#define SBIT EXTPOLAR1 1 //extint polarity mode bit 1
#define SBIT EXTPOLAR2 2 //extint polarity mode bit 2

void EINT1 IRQHandler(void)
{
LPC SC->EXTINT = (I1<<SBIT_EINT1); /* Clear Interrupt Flag */
LPC_GPIO1->FIOPIN *= (1<< LED1); /* Toggle the LEDI1 everytime INTR1 is generated */

}

void EINT2 IRQHandler(void)
{
LPC _SC->EXTINT = (1<<SBIT_EINT?2); /* Clear Interrupt Flag */
LPC GPIO1->FIOPIN *= (1<< LED2); /* Toggle the LED2 everytime INTR2 is generated */

}

Department of ECE, Atria IT Page 54

EMBEDDED SYSTEMS LAB MANUAL

int main()

{
SystemlInit();

LPC SC->EXTINT = (1<<SBIT EINTI1) |(I<<SBIT EINT2); /* Clear Pending interrupts */
LPC _PINCON->PINSEL4 = (1<<PINSEL EINTI1) | (I<<PINSEL EINT2); /* Configure
P2 11,P2 12 as EINT1/2 */
LPC_SC->EXTMODE = (1<<SBIT_EXTMODE]I) | (1<<SBIT_EXTMODE2);
/* Configure EINTx as Edge Triggered*/
LPC SC->EXTPOLAR = (1<<SBIT EXTPOLARI)| (1<<SBIT _EXTPOLAR?2); /* Configure
EINTx as Falling Edge */

LPC GPIO1->FIODIR = (1<<LEDI) | (1<<LED2); /* Configure LED pins as OUTPUT */
LPC_GPIO1->FIOPIN = 0x00;

NVIC EnableIRQ(EINT1 IRQn); /* Enable the EINT1,EINT2 interrupts */
NVIC EnableIRQ(EINT2 IRQn);
while(1)
{
// Do nothing
}
}

Department of ECE, Atria IT Page 55

EMBEDDED SYSTEMS LAB MANUAL

Exp.No:7 (Beyond Syllabus)
Using the Internal PWM module of ARM controller generate PWM and vary itsduty cycle.
Connection Details:

LPC1768

PWM P2.0 | CRO

BELOCK

LPC1768 has 6 PWM output pins which can be used as 6-Single edged or 3-Double edged. There as seven
match registers to support these 6 PWM output signals. Below block diagram shows the PWM pins and the
associated Match(Duty Cycle) registers.

PWM channel 1(Port Line P2.0) has been connected to the PWM output point in a trainer Kit.So configure
the P2.0 as a first alternate function to carry the PWM channel 1output using PINSEL4 register.

LPC1768 PWM Registers
The below table shows the registers associated with LPC1768 PWM Module.
Register Description
Interrupt Register: The IR can be read to identify which of eight possible interrupt sources are
IR) .)) o
pending. Writing Logic-1 will clear the corresponding interrupt.
TCR Timer Control Register: The TCR is used to control the Timer Counter
functions(enable/disable/reset).
Timer Counter: The 32-bit TC is incremented every PR+1 cycles of PCLK. The TC is controlled
TC
through the TCR.
PR Prescalar Register: This is used to specify the Prescalar value for incrementing the TC.
PC Prescale Counter: The 32-bit PC is a counter which is incremented to the value stored in PR.
When the value in PR is reached, the TC is incremented.
Match Control Register: The MCR is used to control the reseting of TC and generating of
MCR .
interrupt whenever a Match occurs.
MRO Match Register: This register hold the max cycle Time(Ton+Toff).
MRI1- Match Registers: These registers holds the Match value(PWM Duty) for corresponding PWM
MR6 channels(PWM1-PWM6).
PWM Control Register: PWM Control Register. Enables PWM outputs and selects PWM channel
PCR . .
types as either single edge or double edge controlled.
LER Load Enable Register: Enables use of new PWM values once the match occurs.

Department of ECE, Atria IT Page 56

EMBEDDED SYSTEMS LAB MANUAL

Register Configuration
The below table shows the registers associated with LPC1768 PWM.

TCR
31:4 3 2 1 0
Reserved PWM Enable [Reserved [Counter Reset (Counter Enable
Bit 0 — Counter Enable
This bit is used to Enable or Disable the PWM Timer and PWM Prescalar Counters
0- Disable the Counters

1- Enable the Counter incrementing.

Bit 1 — Counter reset

This bit is used to clear the PWM Timer and PWM Prescalar Counter values.

0- Do not Clear.

1- The PWM Timer Counter and the PWM Prescale Counter are synchronously reset on the next positive
edge of PCLK.

Bit 3 — PWM Enable

Used to Enable or Disable the PWM Block.

0- PWM Disabled

1- PWM Enabled

MCR
31:21 20 19 18 -5 4 3 2 1
Reserved PWMMR6S PWMMR6R PWMMR6I - PWMMR1S PWMMRI1R PWMMRI1I PWMMR0S PWMMROR
PWMMRxI
This bit is used to Enable or Disable the PWM interrupts when the PWMTC matches PWMMRx (x:0-6)
0- Disable the PWM Match interrupt
1- Enable the PWM Match interrupt.
PWMMRxR
This bit is used to Reset PWMTC whenever it Matches PWMRx(x:0-6)
0- Do not Clear.
1- Reset the PWMTC counter value whenever it matches PWMRx.
PWMMRxS
This bit is used to Stop the PWMTC,PWMPC whenever the PWMTC matches PWMMRx(x:0-6).
0- Disable the PWM stop o match feature
1- Enable the PWM Stop feature. This will stop the PWM whenever the PWMTC reaches the Match register
value.

PCR
31:15 14-9 8-7 6-2 1-0
Unused PWMENA6-PWMENA1 Unused PWMSEL6-PWMSEL?2 Unused
PWMSELXx

This bit is used to select the single edged and double edge mode form PWMx (x:2-6)
0- Single Edge mode for PWMx

1- Double Edge Mode for PWMXx.

PWMENAXx

Department of ECE, Atria IT Page 57

EMBEDDED SYSTEMS LAB MANUAL

This bit is used to enable/disable the PWM output for PWMx(x:1-6)
0- PWMx Disable.
1- PWMXx Enabled.

LER
31-7 6 5 4 3 2 1 0
Unused LEN6 LENS5 LEN4 LEN3 LEN2 LEN1 LENO
LENx
This bit is used Enable/Disable the loading of new Match value whenever the PWMTC is reset(x:0-6)
PWMTC will be continously incrementing whenever it reaches the PWMMRO, timer will be reset depeding
on PWMTCR configuraion. Once the Timer is reset the New Match values will be loaded from MR0O-MR6
depending on bits set in this register.
0- Disable the loading of new Match Values
1- Load the new Match values from MRx when the timer is reset.

PWM Working
The TC is continuously incremented and once it matches the MR 1(Duty Cycle) the PWM pin is pulled Low.
TC still continues to increment and once it reaches the Cycle time(Ton+Toff) the PWM module does the
following things:

e Reset the TC value.

e Pull the PWM pin High.

e Loads the new Match register values.

Steps to Configure PWM

Configure the GPIO pins for PWM operation in respective PINSEL register.

Configure TCR to enable the Counter for incrementing the TC, and Enable the PWM block.
Set the required pre-scalar value in PR. In our case it will be zero.

Configure MCR to reset the TC whenever it matches MRO.

Update the Cycle time in MRO. Here, it will be 100.

Load the Duty cycles for required PWM1 channel in respective match register MR1.
Enable the bits in LER register to load and latch the new match values.

Enable the pwm channel 1 in PCR register.

NN R D=

PROGRAM:
#include<lpc17xx.h>

void delay(unsigned int k)
{

unsignedinti,j;
for(i=0;i<k;i++)
for(j7=0;j<60000;j++);

¥

#define SBIT CNTEN 0
#define SBIT PWMEN 2
#define SBIT PWMMROR 1

Department of ECE, Atria IT Page 58

EMBEDDED SYSTEMS LAB MANUAL

#define SBIT PWMENAI1 9

#define PWM 1 0

int main()

{

int dc;

Systemlnit();

LPC PINCON->PINSEL4=(1<<PWM_1);
LPC PWMI1->TCR=(1<<SBIT CNTEN)|(1<<SBIT _PWMEN);
LPC PWM1->PR=0x00;

LPC PWMI1->MCR=(1<<SBIT PWMMROR);
LPC PWMI1->MRO0=100;

LPC PWMI1->PCR=(1<<SBIT PWMENAI);
while(1)

{

for(dc=0;dc<100;dc++)

{

LPC PWMI1->MR1=dc;

delay(5);

}

for(de=100;dc>0;dc--)

{

LPC PWMI1->MR1=dc;

delay(5);

}

Department of ECE, Atria IT Page 59

EMBEDDED SYSTEMS LAB MANUAL

EXP.NO:8:
Interface and Control a DC Motor.
Connection details:

LPC1768 < swl
P2.11 s
P12 PWM Block
X DC Motor Interface . DC Motor
P22
(pwmch 3)

e Use all the register configuration as used in PWM experiment .
e Use PWM channel 3(P2.2) instead of PWM channel 1(P2.0).

Algorithm:
Steps to Configure PWM

Configure the GPIO pins for PWM operation in respective PINSEL register.

Configure TCR to enable the Counter for incrementing the TC, and Enable the PWM block.
Set the required pre-scalar value in PR. In our case it will be zero.

Configure MCR to reset the TC whenever it matches MRO.

Update the Cycle time in MRO. Here, it will be 100.

Load the Duty cycles for required PWM3 channel in respective match register MR3.

Enable the bits in LER register to load and latch the new match values.

Enable the pwm channel 1 in PCR register.

steps to control the speed of DC motor:

After configuring the PWM module,

1. Read the status of the switch 1. For each press, decrease the MR3 by 10.

check whether it is greater than 0.Else assume MR3 is always zero for further
continuous press of Switch 1.

2. Read the status of the switch 2. For each press, increase the MR3 by 10. Check whether it is
less than 100.Else assume MR3 is always 99 for further continuous press of Switch 2.

NN R L=

PROGRAM:

Department of ECE, Atria IT Page 60

EMBEDDED SYSTEMS LAB MANUAL

#include<Ilpc17xx.h>

#define cnten 0

#define pwnen 2

#define P2 2 4

#define MROR 1

#define pwnch3 11

#define SW1 11

#define SW2 12

void delay(unsigned int k)

{

unsignedintx,y;

for(x=0;x<k;x++)

for(y=0;y<90000;y++);

}

int main (void)

{

inti=100;

LPC PINCON->PINSEL4=(1<<P2 2);

LPC PWMI->TCR=(1<<cnten)|(1<<pwnen) ;
LPC PWMI->MCR=(1<<MROR);

LPC PWMI1->PCR=(1<<pwnch3);

LPC PWMI1->PR=0x0;

LPC PWMI1->MRO0=100;

while(1)

{

LPC PWMI->MR3=i;

delay(5);
if(1((LPC_GPIO2->FIOPIN>>SW1)&0X1))

{
while(!((LPC_GPIO2->FIOPIN>>SW1)&0X1));
1=1-10;

if(i<=0)

1=0;

f

else if(!((LPC_GPIO2->FIOPIN>>SW2)&0X1))
{
while(!((LPC_GPIO2->FIOPIN>>SW2)&0X1));
i=i+10;

if(i>100)

1=99;

Department of ECE, Atria IT

Page 61

(RN

Department of ECE, Atria IT

EMBEDDED SYSTEMS LAB MANUAL

Page 62

EMBEDDED SYSTEMS LAB MANUAL

Exp.No: 9:
Interface a 4x4 keyboard and display the key code on an LCD.

Connection Details:

+ 323N

Y70
na=lo

Rz

| == | == i === | 5= P1.14 R=
- = L= > "] > L= 0_1.&5 Ra

Program:

#include "lpc17xx.h"

#include "lcd.h"

I

// Matrix Keypad Scanning Routine

//

// COL1 COL2 COL3 COL4

/0 1 2 3 ROWI

/4 5 6 7 ROW2

/8 9 A B ROWS3

//C D E F ROWA4

]

#define COL1 0

#define COL2 1

#define COL3 4

#define COL4 8

#define ROW1 9

#define ROW2 10

#define ROW3 14

#define ROW4 15

#define COLMASK ((I<<COL1) |[(1<< COL2) |(1<< COL3) |(1<< COL4))

#define ROWMASK ((I<<ROW1) |(I<< ROW2) |(1<< ROW3) |(I<< ROW4))

#define KEY CTRL DIR LPC GPIO1->FIODIR
#define KEY CTRL SET LPC_GPIO1->FIOSET

Department of ECE, Atria IT Page 63

EMBEDDED SYSTEMS LAB MANUAL

#define KEY CTRL CLR LPC_GPIOI->FIOCLR
#define KEY CTRL PIN LPC_GPIO1->FIOPIN

1111777777717 COLUMN WRITE //////111111111111111
voidcol write(unsigned char data)

{

unsignedint temp=0;
temp=(data) & COLMASK;

KEY CTRL CLR |= COLMASK;
KEY CTRL SET |- temp;
}

TN AN 17T
int main (void)
{
unsigned char key, i;
unsigned char rval[] = {0x77,0x07,0x0d};
unsigned char keyPadMatrix[] =
{
'4''8"'B",'F',
37 A'VE',
'2''6''0'",'D',
'7,'5,'9".'C'
¥
Systemlnit();
init_led();

KEY CTRL DIR |= COLMASK; //Set COLs as Outputs
KEY CTRL DIR &=~(ROWMASK); // Set ROW lines as Inputs

lcd putstring16(0,"Press HEX Keys..");// 1* line display
led_putstring16(1,"Key Pressed = ");// 2™ line display

while (1)
{
key = 0;
for(i=0; 1<4; i++)
{
// turn on COL output one by one
col_write(rval[i]);

// read rows - break when key press detected
if ((KEY_CTRL_PIN & (1<<ROW1)))
break;

Department of ECE, Atria IT

Page 64

EMBEDDED SYSTEMS LAB MANUAL

key-H—;
if {(KEY_CTRL PIN & (1<<ROW2)))
break;

key++;
if {(KEY_CTRL PIN & (1<<ROW3)))
break;

key++;
if {(KEY_CTRL PIN & (1<<ROW4)))
break;

key++;

}

if (key == 0x10)
led putstring16(1,"Key Pressed = ");
else
{
led_gotoxy(1,14);
led_putchar(keyPadMatrix[key]);

LCD code:-

#include "lpc17xx.h"

#include "lcd.h"

voidLcd CmdWrite(unsigned char cmd);
voidLcd DataWrite(unsigned char dat);
#define LCDRS 9

#define LCDRW 10

#define LCDEN 11

#define LCD_D4 19

#define LCD_D5 20

#define LCD_D6 21

#define LCD_D7 22

#define LecdData ~ LPC_GPIO0->FIOPIN

#define LcdControl LPC GPIO0->FIOPIN

#define LcdDataDirn LPC_GPIO0->FIODIR

#define LedCtrlDirn LPC_GPIO0->FIODIR

#define LCD_ctrlMask ((1<<LCDRS)|(1<<LCDRW)|(1<<LCDEN))

Department of ECE, Atria IT Page 65

EMBEDDED SYSTEMS LAB MANUAL

#define LCD_dataMask ((I<<LCD_D4)|(I<<LCD_D5)|(1<<LCD_D®6)|(1<<LCD_D7))
void delay(unsigned int count)

{

int j=0, 1=0;

for (j=0;j<count;j++)

for (1=0;1<30;i++);

}

voidsendNibble(char nibble)

{

LcdData&=~(LCD_dataMask); // Clear previous data
LcdDatal= (((nibble >>0x00) & 0x01) << LCD_D4);

LcdDatal= (((nibble >>0x01) & 0x01) << LCD_D5);

LcdDatal= (((nibble >>0x02) & 0x01) << LCD_D6);

LcdDatal= (((nibble >>0x03) & 0x01) << LCD_D7);

}

voidLcd CmdWrite(unsigned char cmd)

{

sendNibble((cmd>> 0x04) & 0x0F); //Send higher nibble

LcdControl&= ~(1<<LCDRS); // Send LOW pulse on RS pin for selecting Command register
LcdControl&= ~(1<<LCDRW); // Send LOW pulse on RW pin for Write operation
LcdControl |= (1<<LCDEN); // Generate a High-to-low pulse on EN pin

delay(100);

LcdControl&= ~(1<<LCDEN);

delay(10000);

sendNibble(cmd& 0x0F); //Send Lower nibble

LcdControl&= ~(1<<LCDRS); // Send LOW pulse on RS pin for selecting Command register
LcdControl&= ~(1<<LCDRW); // Send LOW pulse on RW pin for Write operation
LcdControl |= (1<<LCDEN); // Generate a High-to-low pulse on EN pin

delay(100);

LcdControl&= ~(1<<LCDEN);

delay(1000);
}

voidLcd DataWrite(unsigned char dat)

{

sendNibble((dat>> 0x04) & 0x0F); //Send higher nibble

LcdControl |= (1<<LCDRS); // Send HIGH pulse on RS pin for selecting data register
LcdControl&= ~(1<<LCDRW); // Send LOW pulse on RW pin for Write operation
LcdControl |= (1<<LCDEN); // Generate a High-to-low pulse on EN pin

delay(100);

LcdControl&= ~(1<<LCDEN);

Department of ECE, Atria IT

Page 66

EMBEDDED SYSTEMS LAB MANUAL

delay(1000);

sendNibble(dat& 0x0F); //Send Lower nibble

LcdControl |= (1<<LCDRS); // Send HIGH pulse on RS pin for selecting data register
LcdControl&= ~(1<<LCDRW); // Send LOW pulse on RW pin for Write operation
LcdControl |= (1<<LCDEN); // Generate a High-to-low pulse on EN pin

delay(100);

LcdControl&= ~(1<<LCDEN);

delay(1000);
H

voidled_clear(void)

{
Led CmdWrite(0x01);

}

intled_gotoxy(unsigned char x, unsigned char y)

{
unsigned char retval = TRUE;

if((x>1) && (y>15))
{
retval = FALSE;

}

else
{
if(x==0) Led CmdWrite(0x80 +y);
else if(x==1) Led CmdWrite(0xCO +y);
}

returnretval;

}

voidlcd putchar(unsigned char ¢)
{
Lcd DataWrite(¢);
}
voidlcd putstring(char *string)
{
while(*string !="0")
{
led_putchar(*string);
string++;
h
}

void led putstring16(unsigned char line, char *string)

{

unsigned char len = 16;

Department of ECE, Atria IT Page 67

EMBEDDED SYSTEMS LAB MANUAL

led_gotoxy(line, 0);
while(*string !="0' &&len--)

{
led_putchar(*string);
string++;

}
}
voidinit lcd(void)

{
LcdDataDirn |= LCD_dataMask; // Configure all the LCD pins as output
LcedCtrlDirn |= LCD_ctrlMask;

// Initialize Lecd in 4-bit mode
Led CmdWrite(0x03);
delay(2000);
Led CmdWrite(0x03);
delay(1000);
Led CmdWrite(0x03);
delay(100);
Led CmdWrite(0x2);
Lcd CmdWrite(0x28);
Lcd CmdWrite(0x0e);
Lcd CmdWrite(0x06);
Led CmdWrite(0x01);
delay(1); // display on

}

Department of ECE, Atria IT Page 68

EMBEDDED SYSTEMS LAB MANUAL

Exp.No:10:
Measure Ambient temperature using a sensor and SPI ADC IC.

Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI) is an interface bus commonly used to send data between microcontrollers and
small peripherals such as shift registers, sensors, and SD cards. It uses separate clock and data lines, along
with a select line to choose the device.

ADC (Analog to Digital Converter):

The Microchip Technology Inc. MCP3202 is a successive approximation 12-bit Analog-to-Digital (A/D)
Converter with on-board sample and hold circuitry. The MCP3202 is programmable to provide a single
pseudo-differential input pair or dual single-ended inputs. Differential Nonlinearity (DNL) is specified at £1
LSB, and Integral Nonlinearity (INL) is offered in =1 LSB (MCP3202-B) and +2 LSB (MCP3202-C)
versions. Communication with the device is done using a simple serial interface compatible with the SPI
protocol. The device is capable of conversion rates of up to 100ksps at 5V and 50ksps at 2.7V.The MCP3202
is a Dual Channel 12-Bit A/D Converter with SPI Serial Interface By Microchip . In this tutorial 1 will
interface this ADC using Ipc1768 microcontroller using SPI Protocol in mode(0,0) . Maximum clock rate
supported by MCP3202 is 1.8 MHz.

Fsample= 100 KSPS

Fclk = 18*Fsample
Configuring SPI Control Register :
Name Function
Voo/Viaer +2.7V to 5.5V Power Supply and
— 7 Reference Voltage Input
GRS 1 =z : ngNRﬁ CHO Channel 0 Analog Input
CHo[] 2 Q 7 CLK
CHIC]3 & 6 By CH1 Channel 1 Analog Input
Ve(4 = 5[p, CLK Serial Clock
Dy Serial Data In
Dour Serial Data Out
CS/SHDN Chip Select/Shutdown Input
Serial Peripheral interface allows high speed synchronous data

communication betweenlpcl768microcontrollers.

Department of ECE, Atria IT Page 69

EMBEDDED SYSTEMS LAB MANUAL

— [

MCU laiches data from AJD Converter

on rising edges of SCLK T
SCLK 1| 2| [s]| |4| |5] [&] |7| |& o [0 || [12] [3] [wa] [1s] |e] 17| |18 [19) 2| |22 24

Deta = cocked out of e e e)

AJD Converter on falling edges

D =R
Oour ==l = =ty =
Stan

T - Bit .

s EE A R R - e A B B R L

MCU Received Data ————T—1—T—T—T—T— T

e lXIKIX\ X[X[*]X] Kl\ l AEAES LI l“’l*\“l“l“l“\mlwll
Data stored into MCU receive Data stored into MCU receive Data stored into MCU receive
register after transmission of register after transmission of register after transmission of

first 8 bits second 8 bits last 8 bits

X = Don't Care Bits

SPI communication mode (0,0)

first we need to send start bit , it is last bit of first byte we are going to send to ADC and then we have to
select Configuration modes.there are two modes single ended and pseudo differential mode here choose
single ended mode . MSBF bit choses order of format of byte either MSB first or LSB first herechoose MSB
bit first format so MSBF=I.ransferingSecondbyte=0xAOforchannelOand Secondbyte=0xEO for channel 1.
ADC will return B11 to B8 of data in the lower nibble of byte so we need to perform some mathematical
manipulation. after that we need to send any byte to receive third byte of data.

—_
Start

A
> |

0 Channel 0 +F

B 0

Channel 1 ‘I

5P1-M0S1

2 Channel 2
SFI- ENABLE

03 Channel 3
SPI-MISO

Pin Assignment with LPC1768:

SPI - ADC LPC1768 Lines SPI - ADC
CS P0.28
MCP
Dout P3.26

Department of ECE, Atria IT Page 70

EMBEDDED SYSTEMS LAB MANUAL

Din P3.25 L
J
e PR
Q - ﬁ Vss _— Din FB——
ALGORITHM:
PROGRAM:
#include <LPC17xx.H>

#include <stdint.h>
#include <stdio.h>
#include "delay.h"
#include "spi_manul.h"
#include "lcd.h"
#define pulse val 2

main()
{
unsignedintspi_rsv=0;
float vin;
charbuf]20];
Systemlnit ();
led_init();
led_str("SPI 3202-b");
delay(60000);
delay(60000);
while(1)
{
led_clr();
led cmd(0x80);
spi_rsv = spi_datal(15);
vin = ((spi_rsv& 0xfff) * (3.3)) / 4096 ;
sprintf(buf,"Temp: %0.2f degC",(vin*100));
led_str(buf);
delay(50000);
delay(50000);

}
}

Department of ECE, Atria IT Page 71

EMBEDDED SYSTEMS LAB MANUAL

SPI ADC data fetching program:-
#include <LPC17xx.H>

#include "delay.h"

#define pulse val 2

#define CLK 1<<27

#define CS 1<<28
#define DDOUT 26

#define DOUT 1<<25
#define DIN 1<<26

#define spi_stst 0

unsignedintspi_data(char sel)

{

charclks = 4;
LPC_GPIO0->FIODIR |= CS|CLK;
LPC GPIO3->FIODIR = DOUT;

LPC_GPIO0->FIOSET = CS|CLK;
LPC GPIO3->FIOCLR =DOUT;
nop_delay(100);
#if spi_stst
if (LPC_GPIO3->FIOPIN & DIN)
{

return 'P";
h
#endif
LPC GPIO0->FIOCLR =CS;
nop_delay(pulse val);
while(clks)

{
LPC _GPIO0->FIOCLR = CLK;

nop_delay(pulse val);

LPC_GPIO3->FIOPIN = (sel& 1) << DDOUT;
sel = sel>> 1;

LPC GPIO0->FIOSET = CLK;
nop_delay(pulse val);

clks--;
b
LPC _GPIO0->FIOCLR = CLK;
nop_delay(pulse val);
if ({(LPC_GPIO3->FIOPIN & DIN))
{
return 'U";
h
clks = 12;

Department of ECE, Atria IT

Page 72

EMBEDDED SYSTEMS LAB MANUAL

while(clks)

{
clks--;

LPC _GPIOO->FIOCLR = CLK;

nop_delay(pulse val);
LPC GPIO0->FIOSET = CLK;
nop_delay(pulse val);

¥
nop_delay(pulse val);
if ({(LPC_GPIO3->FIOPIN & DIN))
{
return 'U";
}
return 'Z';
}
unsignedint spi_datal(char sel)
{
unsignedintspi_reg=0;
charclks = 12;
LPC _GPIO0->FIODIR |= CS|CLK;
LPC_GPIO3->FIODIR = DOUT;

LPC_GPIO0->FIOSET = CS|CLK;
LPC_GPIO3->FIOSET = DOUT;
LPC_GPIO3->FIOPIN =DIN;

nop_delay(100);

LPC _GPIO0->FIOCLR =CS;
//start condi

LPC GPIO0->FIOCLR = CLK;

LPC _GPIO3->FIOSET =DOUT;
nop_delay(pulse val);

LPC_GPIOO->FIOSET = CLK;
nop_delay(5);

//single mode
LPC _GPIO0->FIOCLR = CLK;
LPC GPIO3->FIOSET =DOUT;

nop_delay(pulse val);
LPC_GPIOO->FIOSET = CLK;
nop_delay(5);

//chanl 1
LPC GPIO0->FIOCLR = CLK;
LPC_GPIO3->FIOSET =DOUT;

Department of ECE, Atria IT

Page 73

EMBEDDED SYSTEMS LAB MANUAL

nop_delay(pulse val);
LPC_GPIOO->FIOSET = CLK;
nop_delay(5);

//msb first
LPC GPIO0->FIOCLR = CLK;
LPC_GPIO3->FIOSET =DOUT;

nop_delay(pulse val);

LPC GPIOO0->FIOSET = CLK;
nop_delay(5);

//smpling
// LPC_GPIO0->FIOCLR = CLK;
/I nop_delay(pulse val);
// LPC_GPIO0->FIOSET = CLK;
/I nop_delay(2);

//null bit

LPC _GPIO0->FIOCLR = CLK;
nop_delay(pulse val);

LPC_GPIOO->FIOSET = CLK;
/I while ((LPC_GPIO3->FIOPIN & DIN) == DIN);
/[if(1(LPC_GPIO3->FIOPIN & DIN));
/114
/l return'U';
I}
nop_delay(5);

clks =12;
while(clks)
{
LPC_GPIO0->FIOCLR = CLK;

nop_delay(pulse val);

LPC_GPIOO->FIOSET = CLK;
if((LPC_GPIO3->FIOPIN & DIN))

{
spi_reg |= 1<<(clks-1);

}

else

{

}
clks--;

nop_delay(5);

}
nop_delay(1);

returnspi_reg;

}

spi_reg = spi_reg;

Department of ECE, Atria IT

Page 74

EMBEDDED SYSTEMS LAB MANUAL

LCD display program:-

#include <LPC17xx.H>
#include "delay.h"
#define RRW (7<<9)
#define DATA L (15<<19)
voidled pin(void)
{
LPC_GPIO0->FIODIR |= RRW|DATA L;

}

voidlcd _cmd(unsigned char cmd)

{

LPC GPIOO0->FIOPIN =(((cmd& 0xf0)>>4) << 19)| (1<<11);
delay(200);
LPC GPIO0->FIOPIN =(((cmd& 0xf0)>>4) << 19);

LPC GPIOO->FIOCLR |- RRW|DATA L;
delay(10);

LPC_GPIO0->FIOPIN = (((cmd& 0xf)) << 19)| (1<<11);
delay(200);
LPC_GPIO0->FIOPIN = (((cmd& 0xf))<< 19);

}

voidlcd_data(unsigned char cmd)

{

LPC_GPIO0->FIOPIN =(1<<9)|(((cmd& 0xf0)>>4) << 19)| (1<<11);
delay(200);
LPC_GPIO0->FIOPIN =(((cmd& 0xf0)>>4) << 19);

LPC_GPIO0O->FIOCLR |- RRW|DATA L;
delay(10);

LPC_GPIO0->FIOPIN = (1<<9)|(((emd& 0xf)) << 19)| (1<<11);
delay(200);
LPC_GPIOO->FIOPIN = (((cmd& 0xf)) << 19);

}

voidled init(void)

{

led_pin();

led_cmd(0x03);

delay(3000);

led_cmd(0x03);

Department of ECE, Atria IT Page 75

EMBEDDED SYSTEMS LAB MANUAL

delay(1000);
led cmd(0x03);
delay(100);

led cmd(0x2);
led_cmd(0x28);
led _cmd(0x0e);
lecd_cmd(0x06);
led cmd(0x01);
delay(1);

}

voidled_str(char *1str)
{
while(*1str)
{
led data(*1str);
Istr++;
§
}

voidled_clr(void)

{

led_cmd(0x03);
delay(10);
led_cmd(0x2);
led cmd(0x28);
lcd_cmd(0x0e);
led cmd(0x06);
led _emd(0x01);
delay(10);
H

Department of ECE, Atria IT Page 76

EMBEDDED SYSTEMS LAB MANUAL

Exp.No:11: (Beyond syllabus)
Interface 12 bit internal ADC to convert the analog to digital and display the same on LCD.

Connection Details:

LPC1768

| P0.23
AD2 12 bit ADC Module N 16x2

¥| LCD display

ALGORITHM:
Steps for Configuring ADC
1. Configure the GPIO pin for ADC function using PINSEL register.

2. Enable the CLock to ADC module.

3. Deselect all the channels and Power on the internal ADC module by setting
ADCR.PDN bit.

4. Select the Particular channel for A/D conversion by setting the corresponding bits in
ADCR.SEL

5. Set the ADCR.START bit for starting the A/D conversion for selected channel.

6. Wait for the conversion to complete, ADGR.DONE bit will be set once conversion is
over.

7. Read the 12-bit A/D value from ADGR.RESULT.

8. Use it for further processing or just display on LCD.

Department of ECE, Atria IT Page 77

EMBEDDED SYSTEMS LAB MANUAL

PROGRAM:
#include "lpc17xx.h"
#include "lcd.h"
#define VREF 3.3 //Reference Voltage at VREFP pin, given VREFN = 0V(GND)
#define ADC_CLK EN (1<<12)
#define SEL_ADO 2 (1<<2)//Select Channel ADO0.2
#define CLKDIV 1 //ADC clock-divider (ADC_CLOCK=PCLK/CLKDIV+1) =12.5Mhz
@ 25Mhz PCLK
#define PWRUP (1<<21) //setting it to 0 will power it down
#define START CNV (1<<24) //001 for starting the conversion immediately
#define ADC_DONE (1U<<31) //define it as unsigned value or compiler will throw #61-D
warning
#define ADCR_SETUP_ SCM ((CLKDIV<<S) | PWRUP)
111117171 Init ADCO CH2 /1111111171171
Init. ADC()
{

// Convert Port pin 0.25 to function as ADO0.2

LPC SC->PCONP |= ADC CLK EN; //Enable ADC clock

LPC ADC->ADCR = ADCR_SETUP SCM | SEL ADO 2;
LPC PINCON->PINSELI |= (1<<18) ; //select ADO0.2 for P0.25

}

/111177711 READ ADCO CH:2 /////11111111117]
unsignedintRead ADC()
{
unsignedinti=0;
LPC ADC->ADCR |= START CNYV; //Start new Conversion
while((LPC_ADC->ADDR2 & ADC DONE) == 0); //Wait untill conversion is
finished
1=(LPC_ADC->ADDR2>>4) & 0xFFF; //12 bit Mask to extract result

)
/111117771 DISPLAY ADC VALUE /1111111111711

Display ADC()
{

unsignedintadc_value = 0;
charbuf[4] = {5};
float voltage = 0.0;
adc_value = Read ADC();
sprintf((char *)buf, "%3d", adc_value); // display 3 decima place

Department of ECE, Atria IT Page 78

EMBEDDED SYSTEMS LAB MANUAL

led_putstring16(0,"ADC VAL =000 "); //1st line display
lcd putstring16(1,"Voltage 00 V"); //2nd line display
led gotoxy(0,10);
lcd putstring(buf);
voltage = (adc_value * 3.3) / 4095 ;
led gotoxy(1,8);
sprintf(buf, "%3.2f", voltage);
led putstring(buf);
}
11117 MAIN /1111TTTTTT
int main (void)
{
init_lcd();
Init. ADC();
lcd putstring16(0,"** MICROLAB **");
led putstring16(1,"** INSTRUMENTS **");
delay(60000);
delay(60000);
delay(60000);
lcd putstring16(0,"ADC Value.. ");
lcd putstring16(1,"voltage....... ");

while(1)
{
Display ADC();
delay(100000);
§
}

Department of ECE, Atria IT Page 79

EMBEDDED SYSTEMS LAB MANUAL

DEPARTMENT VISION & MISSION

VISION

To become a pioneer in developing competent professionals with societal and ethical values through
transformational learning and interdisciplinary research in the field of Electronics and
Communication Engineering.

MISSION
The department of Electronics and Communication is committed to:

M1: Offer quality technical education through experiential learning to produce competent
engineering professionals.

M2: Encourage a culture of innovation and multidisciplinary research in collaboration with
industries/universities.

Ma3: Develop interpersonal, intrapersonal, entrepreneurial and communication skills among
students to enhance their employability.

M4: Create a congenial environment for the faculty and students to achieve their desired goals
and to serve society by upholding ethical values.

Department of ECE, Atria IT

	DEPARTMENT OF ELECTRONICS AND COMMUNICATION
	SUBJECT CODE: 18ECL66
	DEPARTMENT OF ELECTRONICS AND COMMUNICATION EMBEDDED SYSTEMS LAB MANUAL
	DEPARTMENT VISION & MISSION
	MISSION

	LPC1768 PWM Registers
	Register Configuration
	PWM Working
	Steps to Configure PWM
	Steps to Configure PWM
	Serial Peripheral Interface (SPI)
	
	DEPARTMENT VISION & MISSION
	MISSION

