
ATRIA INSTITUTE OF TECHNOLOGY

(Affiliated To Visvesvaraya Technological University, Belgaum)

Anandanagar, Bangalore-24

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

EMBEDDED SYSTEMS LAB MANUAL

SIXTH SEMESTER

SUBJECT CODE: 18ECL66

2020-2021

ATRIA INSTITUTE OF TECHNOLOGY
(Affiliated To Visvesvaraya Technological University, Belgaum)

Anandanagar, Bangalore-24

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

EMBEDDED SYSTEMS LAB MANUAL

The Embedded Systems Laboratory Manual pertaining VI semester ECE
has been prepared as per VTU syllabus and all the experiments are designed,
tested and verified according to the experiment list.

This manual typically contains practical/lab sessions related to Embedded
systems, implemented using LPC1768 kit and Keil Software in assembly level
programming and embedded C programming language covering various aspects
related to the subject for better understanding. Students are advised to thoroughly
go through this manual as it provides them practical insights.

Good Luck

INDEX
Sl. No. Name Page No.

1 Embedded Lab Syllabus 5
2 Introduction to ARM Cortex M3 Processor 6
3 Introduction to Microcontroller LPC1768 9
4 Technical specifications of LPC1768 16

PART A

1 ALP to multiply two 16 bit binary numbers. 26

2 ALP to find the sum of first 10 integers. 27

3 ALP to find the number of 0’s and 1’s in a 32 bit data. 28

4 ALP to determine the given 16 bit number is ODD or EVEN. 30

5 ALP to write data in RAM. 32

PART B

6 Interface a simple Switch and display its status through Relay, Buzzer
and LED.

35

7 Interface a Stepper motor and rotate it in clockwise and anti-clockwise
direction.

37

8 Display the Hex digits 0 to F on a 7-segment LED interface, with an
appropriate delay in between.

40

9 Interface a DAC and generate Triangular and Square waveforms. 42
10 Display Hello World message using Internal UART. 46
11 Demonstrate the use of an external interrupt to toggle an LED On/Off. 51
12 Using the Internal PWM module of ARM controller generate PWM and

vary its duty cycle.
55

13 Interface and Control a DC Motor. 59
14 Interface a 4×4 keyboard and display the key code on an LCD. 62
15 Measure Ambient temperature using a sensor and SPI ADC IC. 68
16 Interface 12 bit internal ADC to convert the analog to digital and display

the same on LCD.
76

DEPARTMENT VISION & MISSION
VISION

To become a pioneer in developing competent professionals with societal and ethical values through
transformational learning and interdisciplinary research in the field of Electronics and
Communication Engineering.

MISSION
The department of Electronics and Communication is committed to:

M1: Offer quality technical education through experiential learning to produce competent
engineering professionals.

M2: Encourage a culture of innovation and multidisciplinary research in collaboration with
industries/universities.

M3: Develop interpersonal, intrapersonal, entrepreneurial and communication skills among
students to enhance their employability.

M4: Create a congenial environment for the faculty and students to achieve their desired goals
and to serve society by upholding ethical values.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 5

EMBEDDED SYSTEM LAB SYLLABUS

Sub Code: 18ECL66 Exam Hours: 03 Hrs
Hrs/Week: 03 Exam Marks: 60 Marks
IA Marks: 40

PART-A:
(Conduct the following experiments on an ARM CORTEX M3 evaluation board to learn ALP and using

evaluation version of Embedded 'C' &Keil Uvision-4tool/compiler.)

1. ALP to multiply two 16 bit binary numbers.

2. ALP to find the sum of first 10 integers.

3. ALP to find the number of 0’s and 1’s in a 32 bit data.

4. ALP to determine the given 16 bit number is ODD or EVEN.

5. ALP to write data in RAM.

PART-B:

 (Conduct the following experiments on an ARM CORTEX M3evaluation board using evaluation version of

Embedded 'C' &Keil Uvision-4tool/compiler.)

6. Display “Hello World” message using Internal UART.

7. Interface and Control a DC Motor.

8. Interface a Stepper motor and rotate it in clockwise and anti-clockwisedirection.

9. Interface a DAC and generate Triangular and Square waveforms.

10. Interface a 4x4 keyboard and display the key code on an LCD.

11. Deonstrate the use of an external interrupt to toggle an LED On/Off.

12.Display the Hex digits 0 to F on a 7-segment LED interface, with an appropriate delay in

between.

13. Measure Ambient temperature using a sensor and SPI ADC IC.
Beyond Syllabus:

i).Using the Internal PWM module of ARM controller generate PWM and vary itsduty cycle.

ii).Interface a simple Switch and display its status through Relay, Buzzer andLED.

Conduction of Practical Examination:
 One question from PART A and One question from PART-B experiments to be asked in the practical
examination.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 6

INTRODUCTION TO ARM Cortex M3 PROCESSOR
Introduction

The ARM Cortex-M3 is a general purpose 32-bit microprocessor, which offers high performance and very
low power consumption. The Cortex-M3 offers many new features, including a Thumb-2 instruction set, low
interrupt latency, hardware divide, interruptible/continuable multiple load and store instructions, automatic
state save and restore for interrupts, tightly integrated interrupt controller with Wake-up Interrupt Controller
and multiple core buses capable of simultaneous accesses.

Pipeline techniques are employed so that all parts of the processing and memory systems can operate
continuously. Typically, while one instruction is being executed, its successor is being decoded, and a third
instruction is being fetched from memory.
The processor has a Harvard architecture, which means that it has a separate instruction bus and data bus.
This allows instructions and data accesses to take place at the same time, and as a result of this, the
performance of the processor increases because data accesses do not affect the instruction pipeline. This
feature results in multiple bus interfaces on Cortex-M3, each with optimized usage and the ability to be used
simultaneously. However, the instruction and data buses share the same memory space (a unified memory
system). In other words, you cannot get 8 GB of memory space just because you have separate bus interfaces.
A simplified block diagram of the Cortex-m3 architecture is shown below

It is worthwhile highlighting that the Cortex-M3 processor is not the first ARM processor to be used to create
generic micro controllers. The venerable ARM7 processor has been very successful in this market, The
Cortex-M3 processor builds on the success of the ARM7 processor to deliver devices that are significantly
easier to program and debug and yet deliver a higher processing capability.

Background of ARM architecture
ARM was formed in 1990 as Advanced RISC Machines Ltd., a joint venture of Apple Computer, Acorn
Computer Group, and VLSI Technology. In 1991, ARM introduced the ARM6 processor family, and VLSI

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 7

became the initial licensee. Subsequently, additional companies, including Texas Instruments, NEC, Sharp,
and ST Microelectronics, licensed the ARM processor designs, extending the applications of ARM processors
into mobile phones, computer hard disks, personal digital assistants (PDAs), home entertainment systems, and
many other consumer products.
Nowadays, ARM partners ship in excess of 2 billion ARM processors each year. Unlike many semiconductor
companies, ARM does not manufacture processors or sell the chips directly. Instead, ARM licenses the
processor designs to business partners, including a majority of the world’s leading semiconductor companies.
Based on the ARM low-cost and power-efficient processor designs, these partners create their processors,
micro controllers, and system-on-chip solutions. This business model is commonly called intellectual property
(IP) licensing.
 Architecture versions
Over the years, ARM has continued to develop new processors and system blocks. These include the popular
ARM7TDMI processor and, more recently, the ARM1176TZ (F)-S processor, which is used in high-end
applications such as smart phones. The evolution of features and enhancements to the processors over time
has led to successive versions of the ARM architecture. Note that architecture version numbers are
independent from processor names. For example, the ARM7TDMI processor is based on the ARMv4T
architecture (the T is for Thumb instruction mode support).
The ARMv5E architecture was introduced with the ARM9E processor families, including the ARM926E-S
and ARM946E-S processors. This architecture added “Enhanced” Digital Signal Processing (DSP)
instructions for multimedia applications. With the arrival of the ARM11 processor family, the architecture
was extended to the ARMv6. New features in this architecture included memory system features and Single
Instruction–Multiple Data (SIMD) instructions. Processors based on the ARMv6 architecture include the
ARM1136J (F)-S, the ARM1156T2 (F)-S, and the ARM1176JZ (F)-S.
Over the past several years, ARM extended its product portfolio by diversifying its CPU development, which
resulted in the architecture version 7 or v7. In this version, the architecture design is divided into three
profiles:

 The A profileis designed for high-performance open application platforms.
 The R profileis designed for high-end embedded systems in which real-time performance is needed.
 The M profileis designed for deeply embedded micro controller-type systems.

Bit more details on these profiles
A Profile (ARMv7-A): Application processors which are designed to handle complex applications such as
high-end embedded operating systems (OSs) (e.g., Symbian, Linux, and Windows Embedded). These
processors requiring the highest processing power, virtual memory system support with memory management
units (MMUs), and, optionally, enhanced Java support and a secure program execution environment. Example
products include high-end mobile phones and electronic wallets for financial transactions.
R Profile (ARMv7-R): Real-time, high-performance processors targeted primarily at the higher end of the
real-time market, those applications, such as high-end breaking systems and hard drive controllers, in which
high processing power and high reliability are essential and for which low latency is important.
M Profile (ARMv7-M): Processors targeting low-cost applications in which processing efficiency is
important and cost, power consumption, low interrupt latency, and ease of use are critical, as well as
industrial control applications, including real-time control systems. The Cortex processor families are the first
products developed on architecture v7, and the Cortex- M3 processor is based on one profile of the v7
architecture, called ARM v7-M, an architecture specification for micro controller products.
Below figure shows the development stages of ARM versions

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 8

The Thumb-2
Technology
and
Instruction
Set
Architecture
The Thumb-2 technology extended the Thumb Instruction Set Architecture (ISA) into a highly efficient and
powerful instruction set that delivers significant benefits in terms of ease of use, code size, and performance.
The extended instruction set in Thumb-2 is a super set of the previous 16-bit Thumb instruction set, with
additional 16-bit instructions alongside 32-bit instructions. It allows more complex operations to be carried
out in the Thumb state, thus allowing higher efficiency by reducing the number of states switching between
ARM state and Thumb state.
Focused on small memory system devices such as micro controllers and reducing the size of the processor,
the Cortex-M3 supports only the Thumb-2 (and traditional Thumb) instruction set. Instead of using ARM
instructions for some operations, as in traditional ARM processors, it uses the Thumb-2 instruction set for all
operations. As a result, the Cortex-M3 processor is not backward compatible with traditional ARM
processors.
Nevertheless, the Cortex-M3 processor can execute almost all the 16-bit Thumb instructions, including all 16-
bit Thumb instructions supported on ARM7 family processors, making application porting easy. With support
for both 16-bit and 32-bit instructions in the Thumb-2 instruction set, there is no need to switch the processor
between Thumb state (16-bit instructions) and ARM state (32-bit instructions). For example, in ARM7 or
ARM9 family processors, you might need to switch to ARM state if you want to carry out complex
calculations or a large number of conditional operations and good performance is needed, whereas in the
Cortex-M3 processor, you can mix 32-bit instructions with 16-bit instructions without switching state, getting
high code density and high performance with no extra complexity.

The Thumb-2 instruction set is a very important feature of the ARMv7 architecture. Compared with
the instructions supported on ARM7 family processors (ARMv4T architecture), the Cortex-M3 processor
instruction set has a large number of new features. For the first time, hardware divide instruction is available
on an ARM processor, and a number of multiply instructions are also available on the Cortex-M3 processor to
improve data-crunching performance. The Cortex-M3 processor also supports unaligned data accesses, a
feature previously available only in high-end processors.
Applications of Cortex M3 processors

 Low-cost micro controllers:
 AutomotiveIndustry
 Data communications
 Industrial control applications
 Consumer products:

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 9

The Cortex-M3 Processor versus Cortex-M3-Based Micro Controllers

The Cortex-M3 processor is the central processing unit (CPU) of a micro controller chip. In addition, a
number of other components are required for the whole Cortex-M3 processor-based micro controller. After
chip manufacturers license the Cortex-M3 processor, they can put the Cortex-M3 processor in their silicon
designs, adding memory, peripherals, input/output (I/O), and other features. Cortex-M3 processor-based chips
from different manufacturers will have different memory sizes, types, peripherals, and features.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 10

INTRODUCTION TO MICRO CONTROLLER LPC1768
Architectural Overview
The LPC1768FBD100 is an ARM Cortex-M3 based micro controller for embedded applications requiring a
high level of integration and low power dissipation. The ARM Cortex-M3 is a next generation core that offers
system enhancements such as modernized debug features and a higher level of support block integration.
LPC1768 operate up to 100 MHz CPU frequency.
The peripheral complement of the LPC1768 includes up to 512 kilo bytes of flash memory, up to 64KB of
data memory, Ethernet MAC, a USB interface that can be configured as either Host, Device, or OTG, 8
channel general purpose DMA controller, 4 UARTs, 2 CAN channels, 2 SSP controllers, SPI interface, 3 I2C
interfaces, 2-input plus 2-output I2S interface, 8 channel 12-bit ADC, 10-bit DAC, motor control PWM,
Quadrature Encoder interface, 4 general purpose timers, 6-output general purpose PWM, ultra-low power
RTC with separate battery supply, and up to 70 general purpose I/O pins.
The LPC1768 use a multi layer AHB(Advanced High Performance Bus) matrix to connect the ARM Cortex-
M3 buses and other bus masters to peripherals in a flexible manner that optimizes performance by allowing
peripherals that are on different slaves ports of the matrix to be accessed simultaneously by different bus
masters.
On-chip flash memory system
The LPC1768 contains up to 512 KB of on-chip flash memory. A flash memory accelerator maximizes
performance for use with the two fast AHB Lite buses. This memory may be used for both code and data
storage. Programming of the flash memory may be accomplished in several ways. It may be programmed In
System via the serial port. The application program may also erase and/or program the flash while the
application is running, allowing a great degree of flexibility for data storage field firmware upgrades, etc.
On-chip Static RAM
The LPC1768 contains up to 64 KB of on-chip static RAM memory. Up to 32 KB of SRAM, accessible by
the CPU and all three DMA controllers are on a higher-speed bus. Devices containing more than 32 KB
SRAM have two additional 16 KB SRAM blocks, each situated on separate slave ports on the AHB
multilayer matrix. This architecture allows the possibility for CPU and DMA accesses to be separated in such
a way that there are few or no delays for the bus masters.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 11

Block Diagram of LPC1768

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 12

A brief description of the blocks:
Nested vector interrupt controller
The NVIC is an integral part of the Cortex-M3. The tight coupling to the CPU allows for low interrupt latency
and efficient processing of late arriving interrupts.
Features

 Controls system exceptions and peripheral interrupts
 In the LPC1768, the NVIC supports 33 vectored interrupts
 32 programmable interrupt priority levels, with hardware priority level masking
 Relocatable vector table
 Non-Maskable Interrupt (NMI)
 Software interrupt generation

Interrupt sources
Each peripheral device has one interrupt line connected to the NVIC but may have several interrupt flags.
Individual interrupt flags may also represent more than one interrupt source.
Any pin on Port 0 and Port 2 (total of 42 pins) regardless of the selected function, can be programmed to
generate an interrupt on a rising edge, a falling edge, or both.
General purpose DMA controller
The GPDMA (General Purpose Direct Memory Access) is an AMBA AHB (Advanced Micro controller Bus
Architecture Advance high performance bus) compliant peripheral allowing selected peripherals to have
DMA support.
The GPDMA enables peripheral-to-memory, memory-to-peripheral, peripheral-to-peripheral, and memory-to-
memory transactions. The source and destination areas can each be either a memory region or a peripheral,
and can be accessed through the AHB master. The GPDMA controller allows data transfers between the USB
and Ethernet controllers and the various on-chip SRAM areas. The supported APB peripherals are SSP0/1, all
UARTs, the I2S-bus interface, the ADC, and the DAC. Two match signals for each timer can be used to
trigger DMA transfers.
Function Configuration block
The selected pins of the micro controller to have more than one function. Configuration registers control the
multiplexers to allow connection between the pin and the on-chip peripherals. Peripherals should be
connected to the appropriate pins prior to being activated and prior to any related interrupt(s) being enabled.
Activity of any enabled peripheral function that is not mapped to a related pin should be considered
undefined. Most pins can also be configured as open-drain outputs or to have a pull-up, pull-down, or no
resistor enabled.
Fast general purpose parallel I/O
Device pins that are not connected to a specific peripheral function are controlled by the GPIO registers. Pins
may be dynamically configured as inputs or outputs. Separate registers allow setting or clearing any number
of outputs simultaneously. The value of the output register may be read back as well as the current state of the
port pins.

USB interface
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a host and one or more
(up to 127) peripherals. The host controller allocates the USB bandwidth to attached devices through a token-
based protocol. The bus supports hot plugging and dynamic configuration of the devices. All transactions are
initiated by the host controller.
The USB interface includes a device, Host, and OTG controller with on-chip PHY for device and Host
functions. The OTG switching protocol is supported through the use of an external controller.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 13

USB device controller enables 12 Mbit/s data exchange with a USB Host controller. It consists of a register
interface, serial interface engine, endpoint buffer memory, and a DMA controller. The serial interface engine
decodes the USB data stream and writes data to the appropriate endpoint buffer. The status of a completed
USB transfer or error condition is indicated via status registers. An interrupt is also generated if enabled.
When enabled, the DMA controller transfers data between the endpoint buffer and the on-chip SRAM.
12-bit ADC
The LPC1768 contain a single 12-bit successive approximation ADC with eight channels and DMA support.
10-bit DAC
The DAC allows to generate a variable analog output. The maximum output value of the DAC is VREFP.
UART's
The LPC1768 contain four UART's. In addition to standard transmit and receive data lines, UART1 also
provides a full modem control handshake interface and support for RS-485/9-bit mode allowing both software
address detection and automatic address detection using 9-bit mode.
The UART's include a fractional baud rate generator. Standard baud rates such as 115200 Baud can be
achieved with any crystal frequency above 2 MHz
SPI serial I/O controller
The LPC1768 contain one SPI controller. SPI is a full duplex serial interface designed to handle multiple
masters and slaves connected to a given bus. Only a single master and a single slave can communicate on the
interface during a given data transfer. During a data transfer the master always sends 8 bits to 16 bits of data
to the slave, and the slave always sends 8 bits to 16 bits of data to the master.
SSP serial I/O controller
The LPC1768 contain two SSP controllers. The SSP controller is capable of operation on a SPI, 4-wire SSI,
or Micro wire bus. It can interact with multiple masters and slaves on the bus. Only a single master and a
single slave can communicate on the bus during a given data transfer. The SSP supports full duplex transfers,
with frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master.
In practice, often only one of these data flows carries meaningful data.
I2C-bus serial I/O controllers
The LPC1768 each contain three I2C-bus controllers. The I2C-bus is bidirectional for inter-IC control using
only two wires: a Serial Clock line (SCL) and a Serial DAta line (SDA). Each device is recognized by a
unique address and can operate as either a receiver-only device or a transmitter with the capability to both
receive and send information (such as memory). Transmitters and/or receivers can operate in either master or
slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I2C is a
multi-master bus and can be controlled by more than one bus master connected to it.
General purpose 32-bit timers/external event counters
The LPC1768 include four 32-bit timer/counters. The timer/counter is designed to count cycles of the system
derived clock or an externally-supplied clock. It can optionally generate interrupts, generate timed DMA
requests, or perform other actions at specified timer values, based on four match registers. Each timer/counter
also includes two capture inputs to trap the timer value when an input signal transitions, optionally generating
an interrupt.
Pulse width modulator
The PWM is based on the standard Timer block and inherits all of its features, although only the PWM
function is pinned out on the LPC1768. The Timer is designed to count cycles of the system derived clock
and optionally switch pins, generate interrupts or perform other actions when specified timer values occur,
based on seven match registers. The PWM function is in addition to these features, and is based on match
register events.
Watchdog timer
The purpose of the watchdog is to reset the micro controller within a reasonable amount of time if it enters an

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 14

erroneous state. When enabled, the watchdog will generate a system reset if the user program fails to ‘feed’
(or reload) the watchdog within a predetermined amount of time.
RTC and backup registers
The RTC is a set of counters for measuring time when system power is on, and optionally when it is off. The
RTC on the LPC1768 is designed to have extremely low power consumption, i.e. less than 1 uA. The RTC
will typically run from the main chip power supply, conserving battery power while the rest of the device is
powered up. When operating from a battery, the RTC will continue working down to 2.1 V. Battery power
can be provided from a standard 3 V Lithium button cell.
An ultra-low power 32 kHz oscillator will provide a 1 Hz clock to the time counting portion of the RTC,
moving most of the power consumption out of the time counting function.
Clocking and Power Control

Crystal oscillators
The LPC1768 include three independent oscillators. These are the main oscillator, the IRC oscillator, and the
RTC oscillator. Each oscillator can be used for more than one purpose as required in a particular application.
Any of the three clock sources can be chosen by software to drive the main PLL and ultimately the CPU.
Following reset, the LPC1768 will operate from the Internal RC oscillator until switched by software. This
allows systems to operate without any external crystal and the boot loader code to operate at a known
frequency.
Power control
The LPC1768 support a variety of power control features. There are four special modes of processor power
reduction: Sleep mode, Deep-sleep mode, Power-down mode, and Deep power-down mode. The CPU clock
rate may also be controlled as needed by changing clock sources, reconfiguring PLL values, and/or altering
the CPU clock divider value. This allows a trade-off of power versus processing speed based on application
requirements. In addition, Peripheral Power Control allows shutting down the clocks to individual on-chip
peripherals, allowing fine tuning of power consumption by eliminating all dynamic power use in any
peripherals that are not required for the application. Each of the peripherals has its own clock divider which
provides even better power control.
Integrated PMU (Power Management Unit) automatically adjust internal regulators to minimize power
consumption during Sleep, Deep sleep, Power-down, and Deep power- down modes.
The LPC1768 also implement a separate power domain to allow turning off power to the bulk of the device
while maintaining operation of the RTC and a small set of registers for storing data during any of the power-
down modes.
Clock generation block diagram for LPC1768 is shown below

System Control
Reset
Reset has four sources on the
LPC1768: the RESET pin, the
Watchdog reset, power-on
reset (POR), and the Brown-
Out Detection (BOD) circuit.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 15

The RESET pin is a Schmitt trigger input pin. Assertion of chip Reset by any source, once the operating
voltage attains a usable level, causes the RSTOUT pin to go LOW. Once reset is de-asserted, or, in case of a
BOD- triggered reset, once the voltage rises above the BOD threshold, the RSTOUT pin goes HIGH. In other
words RSTOUT is high when the controller is in its active state.
Emulation and debugging
Debug and trace functions are integrated into the ARM Cortex-M3. Serial wire debug and trace functions are
supported in addition to a standard JTAG debug and parallel trace functions. The ARM Cortex-M3 is
configured to support up to eight breakpoints and four watch points.
Note: For further details on Controller blocks refer the User manual of LPC176x/5x – UM10360 available at
www.nxp.com

http://www.nxp.com/

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 16

TECHNICAL SPECIFICATIONS of LPC1768
Specifications of LPC1768:
 ARM Cortex-M3 processor runs up to 100 MHz frequency.

 ARM Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC).

 Up to 512kB on-chip flash program memory with In-System Programming (ISP) and In-Application
Programming (IAP) capabilities. The combination of an enhanced flash memory accelerator and
location of the flash memory on the CPU local code/data bus provides high code performance from
flash.

 Up to 64kB on-chip SRAM includes:
- Up to 32kB of SRAM on the CPU with local code/data bus for high-performance CPU access.
- Up to two 16kB SRAM blocks with separate access paths for higher throughput. These SRAM

blocks may be used for Ethernet, USB, and DMA memory, as well as for general purpose instruction and
data storage.

 Eight channel General Purpose DMA controller (GPDMA) on the AHB multilayer matrix that can be
used with the SSP, I2S, UART, the Analog-to-Digital and Digital-to-Analog converter peripherals,
timer match signals, GPIO, and for memory-to-memory transfers.

 Serial interfaces:
- Ethernet MAC with RMII interface and dedicated DMA controller.
- USB 2.0 full-speed controller that can be configured for either device, Host, or OTG operation

with an on-chip PHY for device and Host functions and a dedicated DMA controller.
- Four UART's with fractional baud rate generation, internal FIFO, IrDA, and DMA support.
One UART has modem control I/O and RS-485/EIA-485 support.
- Two-channel CAN controller.
- Two SSP controllers with FIFO and multi-protocol capabilities. The SSP interfaces can be used with

the GPDMA controller.
- SPI controller with synchronous, serial, full duplex communication and programmable data length.

SPI is included as a legacy peripheral and can be used instead of SSP0.
- Three enhanced I2C-bus interfaces, one with an open-drain output supporting the full I2C
specification and Fast mode plus with data rates of 1Mbit/s, two with standard port pins.

Enhancements include multiple address recognition and monitor mode.
- I2S (Inter-IC Sound) interface for digital audio input or output, with fractional rate control. The

I2S interface can be used with the GPDMA. The I2S interface supports 3- wire data transmit and receive or
4-wire combined transmit and receive connections, as well as master clock output.

 Other peripherals:
- 70 General Purpose I/O (GPIO) pins with configurable pull-up/down resistors, open drain

mode, and repeater mode. All GPIOs are located on an AHB bus for fast access, and support
Cortex-M3 bit-banding. GPIOs can be accessed by the General Purpose DMA Controller. Any pin of
ports 0 and 2 can be used to generate an interrupt.
- 12-bit Analog-to-Digital Converter (ADC) with input multiplexing among eight pins, conversion
rates up to 200 kHz, and multiple result registers. The 12-bit ADC can be used with the GPDMA
controller.
- 10-bit Digital-to-Analog Converter (DAC) with dedicated conversion timer and DMA support.
- Four general purpose timers/counters, with a total of eight capture inputs and ten compare

outputs. Each timer block has an external count input. Specific timer events can be selected to generate
DMA requests.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 17

- One motor control PWM with support for three-phase motor control.
- Quadrature encoder interface that can monitor one external quadrature encoder.
- One standard PWM/timer block with external count input.
- Real-Time Clock (RTC) with a separate power domain. The RTC is clocked by a dedicated RTC
oscillator. The RTC block includes 20 bytes of battery-powered backup registers, allowing system
status to be stored when the rest of the chip is powered off. Battery power can be supplied from a
standard 3 V Lithium button cell. The RTC will continue working when the battery voltage drops to as

low as 2.1 V. An RTC interrupt can wake up the CPU from any reduced power mode.
- Watchdog Timer (WDT). The WDT can be clocked from the internal RC oscillator, the RTC

oscillator, or the APB clock.
- Cortex-M3 system tick timer, including an external clock input option.
- Repetitive interrupt timer provides programmable and repeating timed interrupts.

 Standard JTAG test/debug interface as well as Serial Wire Debug and Serial Wire Trace Port options.

 Emulation trace module supports real-time trace.

 Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep power-down.

 Single 3.3 V power supply (2.4 V to 3.6 V). Temperature range of -40 °C to 85 °C.

 Four external interrupt inputs configurable as edge/level sensitive. All pins on PORT0 and PORT2 can
be used as edge sensitive interrupt sources.

 Non Maskable Interrupt (NMI) input.

 Clock output function that can reflect the main oscillator clock, IRC clock, RTC clock, CPU clock, or
the USB clock.

 The Wake-up Interrupt Controller (WIC) allows the CPU to automatically wake up from any priority
interrupt that can occur while the clocks are stopped in deep sleep, Power-down, and Deep power-
down modes

 Processor wake-up from Power-down mode via any interrupt able to operate during Power-down
mode (includes external interrupts, RTC interrupt, USB activity, Ethernet wake-up interrupt, CAN bus
activity, PORT0/2 pin interrupt, and NMI).

 Each peripheral has its own clock divider for further power savings.

 Brownout detect with separate threshold for interrupt and forced reset.

 On-chip Power-On Reset (POR).

 On-chip crystal oscillator with an operating range of 1 MHz to 25 MHz.

 4 MHz internal RC oscillator trimmed to 1% accuracy that can optionally be used as a system clock.

 An on-chip PLL allows CPU operation up to the maximum CPU rate without the need for a high-
frequency crystal. May be run from the main oscillator, the internal RC oscillator, or the RTC
oscillator.

 A second, dedicated PLL may be used for the USB interface in order to allow added flexibility for the
Main PLL settings.

 Versatile pin function selection feature allows many possibilities for using on-chip peripheral
functions.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 18

PART A
(Assembly Level Programming-ARM Cortex M3)

Software : Keil µvision 4

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 19

Software Handling Procedure:
1.Double click on µvision 4 icon in the desktop.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 20

2. Select “New µvision Project” from project in the menu bar.

3. Browse and create a new project in the required location.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 21

4. Select the target device(here,LPC1768 from NXP) from the list or type the exact name of the device. Press OK.

5.”Copy start up to Project folder and add to project file”?- Press NO.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 22

6.In the project window, right click on source and select Add new item to group “source group 1”.

7.Select Asm file and give name of the file with .s extension and press ADD.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 23

8.Type the program in the editor space and save.

9.Translate the program by select the icon from tool bar or from menu bar.

Check for errors and warnings in the bottom window.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 24

10.If no error,Select “Build” icon from tool bar or from menu bar.

11.Start the debug session from Menu bar.

12.PressOK

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 25

13.Press function key F11 or select “step” option under Debug menu for single step execution and verify the output in
register window/Memory window/xPSR.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 26

1.ALP TO MULTIPLY TWO 16 BIT NUMBERS

AREA Reset, DATA, READONLY
 EXPORT __Vectors

__Vectors
 DCD 0X20001000
 DCD Reset_Handler;

AREA MULTIPLY, CODE, READONLY

ENTRY
EXPORT Reset_Handler

Reset_Handler
MOV r0,#num1
MOV r1,#num2
MUL r2,r0,r1
LDR r3,=product
STR r2,[r3]

stop B stop

AREA DATA2, DATA, READWRITE
num1 EQU 0XFFFF ;maximum value of 16 bit number
num2 EQU 0XFFFF
product DCD 0X0

END

Result:
(0xFFFF) x(0xFFFF) =0xFFFE0001 in the product memory location.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 27

2.ALP TO FIND THE SUM OF FIRST 10 INTEGERS

AREA Reset, DATA, READONLY
 EXPORT __Vectors

__Vectors
 DCD 0X20001000
 DCD Reset_Handler;

AREA SUM, CODE, READONLY

ENTRY
EXPORT Reset_Handler

Reset_Handler
MOV r3,#10
MOV r0,#0
MOV r1,#1

l1 ADD r0,r0,r1
ADD r1,r1,#1
SUBS r3,#1
BNE l1

LDR r4, =RESULT
STR r0, [r4]

XSS B XSS

AREA DATA2, DATA, READWRITE

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 28

RESULT DCD 0X0
END ;Mark the end

Result:
1+2+3+……+10=55d=37H.(At RESULT Memory Location)

3.ALP TO FIND THE 1’S AND 0’ IN THE GIVEN 32 BIT DATA.
AREA Reset, DATA, READONLY
 EXPORT __Vectors

__Vectors
 DCD 0X20001000
 DCD Reset_Handler;

AREA onezero, CODE, READONLY

num EQU 15

ENTRY
EXPORT Reset_Handler

Reset_Handler
MOV r0,#num
MOV r1,#0
MOV r2,#0
MOV r3,#32

loop LSRS r0,r0,#1
BCS l1
ADD r2,#1
B l2

l1 ADD r1,#1
l2 SUBS r3,#1

BNE loop

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 29

LDR r5,=ones
LDR r6,=zeros
STR r1,[r5]
STR r2,[r6]

stop B stop

AREA DATA1, DATA, READWRITE
ones DCB 0X0
zeros DCB 0X0

 END

Result:
If num=15dno of 1’s=4 and No.of 0’s=28d=1Ch.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 30

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 31

4. ALP TO FIND WHETHER THE GIVEN 16 BIT NUMBER IS ODD OR EVEN
AREA Reset, DATA, READONLY
 EXPORT __Vectors

__Vectors
 DCD 0X20001000
 DCD Reset_Handler;

AREA oddeven, CODE, READONLY

res EQU 'o'
resu EQU 'e'

ENTRY
EXPORT Reset_Handler

Reset_Handler
LDR r1,=num
LDR r0,[r1]
RORS r0,#1
BCS l1
MOV r2,#resu
B l2

l1 MOV r2,#res
l2 LDR r3,=result

STR r2,[r3]
stop B stop

AREA data, DATA, READWRITE
num DCW 16
result DCB 0X0

END

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 32

Result:
num=16d.Hence it is EVEN

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 33

5. ALP TO MOVE A BLOCK OF DATA FROM CODE TO RAM MEMORY

Method1:

AREA Reset, DATA, READONLY
 EXPORT __Vectors

__Vectors
 DCD 0X20001000
 DCD Reset_Handler;

AREA writedata, CODE, READONLY

src DCD 0x11,0X22,0X33,0X44,0X55
ENTRY

EXPORT Reset_Handler
Reset_Handler

LDR r0,=src
LDR r1,=dst
MOV r2,#5

l1 LDR r3,[r0],#4
STR r3,[r1],#4
SUBS r2,#1
BNE l1

stop B stop

AREA data, DATA,READWRITE
dst DCD 0X0

END

Method 2:
;ALP TO MOVE A BLOCK OF DATA FROM CODE TO RAM MEMORY-USING LDM and STM
INSTRUCTIONS(MULTIPLE DATA TRANSFER)

AREA Reset, DATA, READONLY
 EXPORT __Vectors

__Vectors
 DCD 0X20001000
 DCD Reset_Handler;

AREA writedata, CODE, READONLY

src DCD 0x11,0X22,0X33,0X44,0X55
ENTRY

EXPORT Reset_Handler
Reset_Handler

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 34

LDR r0,=src
LDR r1,=dst
MOV r2,#5

l1 LDMIA r0!,{r4-r8}
STMIA r1!,{r4-r8}
SUBS r2,#1
BNE l1

stop B stop

AREA data, DATA,READWRITE
dst DCD 0X0

END
Result:
INPUT: 00000011h,00000022h,00000033h,00000044h,00000055h.
OUTPUT at dst : 00000011h,00000022h,00000033h,00000044h,00000055h.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 35

PART B
(INTERACING HARDWARE WITH LPC 1768 MICROCONTROLLER)

SOFTWARE: Keil µVision 4, Flash Magic
Language: Embedded C

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 36

Exp.No:1: (Beyond Syllabus-Practice session):
Interface a simple Switch and display its status through Relay, Buzzer and LED.
Connection details:

Algorithm:
1. Configure PORT 1 and PORT 2 as GPIO.
2. Configure the direction of Port 2 as input and Port 1 as output .
3. Read the status of the switch.
4. If the switch is pressed, turn on LED,Relay and Buzzer else turn them off.
5. Repeat from step 3 unconditionally.

Program:
#include<LPC17xx.h>
#define switch 11
#define LED 19
#define relay 28
#define buzzer 27
int main(void)
{
LPC_PINCON->PINSEL3=0x00000000;
LPC_PINCON->PINSEL4=0x00000000;
LPC_GPIO2->FIODIR=0x00000000;
LPC_GPIO1->FIODIR=0xFFFFFFFF;
LPC_GPIO1->FIOCLR=0xFFFFFFFF;
while(1)
 {
if (!((LPC_GPIO2->FIOPIN>>switch)& 0x1))
{
LPC_GPIO1->FIOPIN=(1<<LED)|(1<<relay)|(1<<buzzer);

LED

RELAY

SWITCH

BUZZER

 LPC1768

P1.28

P2.11 P1.19

P1.27

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 37

}
else
{
LPC_GPIO1->FIOPIN=(0<<LED)|(0<<relay)|(0<<buzzer);

}
 }
}

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 38

Exp.No:2
Interface a Stepper motor and rotate it in clockwise and anti-clockwise direction.
Connection Details:
 LPC1768 TRAINER KIT

ALGORITHM:

1. Configure the Port 0 and Port 2 as GPIO.
2. Configure the Port 2 in input direction and Port 0 in output direction.
3. Read the status of the switch 1. If it is pressed, set the direction as 0 for clock wise rotation.
4. Else read the status of switch 2. If it is pressed, set the direction as 1 for anticlock wise rotation.
5. If the direction is 0, send the data to energize the stepper motor coils in a sequence A-B-C-D else in

D-C-B-A sequence.
6. Insert an appropriate delay between energizing two consecutive coils.
7. Repeat from steps 3 unconditionally.

Program:
#include<lpc17xx.h>
#define SW1 11
#define SW2 12
void delay(unsigned int x)
{
unsignedinti,j;
for(i=0;i<x;i++)
{
for(j=0;j<90000;j++);
}
}
int main(void)

 PO.15

 PO.18

LPC1768
P2.11

P2.12

STEPPER
MOTOR
INTERFACING
CIRCUIT

STEPPER
MOTOR

SW1

SW2

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 39

{
unsignedint direct;
LPC_PINCON->PINSEL0=0X00000000;
LPC_PINCON->PINSEL1=0X00000000;
LPC_PINCON->PINSEL4=0X00000000;
LPC_GPIO0->FIODIR=0xFFFFFFFF;
LPC_GPIO2->FIODIR=0X00000000;
LPC_GPIO0->FIOCLR=0X00078000;// CLEAR P0.15 TO p0.18
while(1)
 {
if(!((LPC_GPIO2->FIOPIN>>SW1)& 0X1))
{
while(!((LPC_GPIO2->FIOPIN>>SW1) & 0X1));
direct=1;
}
else if(!((LPC_GPIO2->FIOPIN>>SW2) & 0X1))
{
while(!((LPC_GPIO2->FIOPIN>>SW2) & 0X1));
direct=0;
}
if(direct==1)
{
LPC_GPIO0->FIOPIN=0X00008000;
delay(15);
LPC_GPIO0->FIOPIN=0X00010000;
delay(15);
LPC_GPIO0->FIOPIN=0X00020000;
delay(15);
LPC_GPIO0->FIOPIN=0X00040000;
delay(15);
}
else
{
LPC_GPIO0->FIOPIN=0X00040000;
delay(15);
LPC_GPIO0->FIOPIN=0X00020000;
delay(15);
LPC_GPIO0->FIOPIN=0X00010000;
delay(15);
LPC_GPIO0->FIOPIN=0x00008000;

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 40

delay(15);
}
}
 }

Exp.No:3
Display the Hex digits 0 to F on a 7-segment LED interface, with an appropriate delay in between.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 41

Connection Details:

ALGORITHM:
1. Configure port 0 and Port 4 as GPIO.
2. Configure the direction of Port 0 and Port 4 as output.
3. Create a look up table containing 7 segment equivalent code for the digits 0 to 9 and hexa

digits A to F.
4. Select the display unit. Send logic 1 to Port line P0.2 for display unit 1 or to Port 4.28 for

display unit 2.
5. Send each 7 segment equivalent code taken from look up table toPort 0.0 to Port line P0.7

with appropriate delay in between.
6. Clear the selected display before sending the next data to display and insert a delay.
7. Repeat from step 4.

PROGRAM:
#include<lpc17xx.h>

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 42

void delay (unsigned int x)
{
unsignedinti,j;
for(i=0;i<x;i++)
{
for(j=0;j<90000;j++);
}
}
int main(void)
{
unsignedint k;
unsignedint a[]={0x104,0x1E5,0x094,0x0c4,
 0x065,0x046,0x006,0xE4,
 0x004,0x064,0x024,0x004,
 0x116,0x104,0x016,0x36};
LPC_PINCON->PINSEL0=0X0000000;
LPC_PINCON->PINSEL9=0X0000000;
LPC_GPIO0->FIODIR=0XFFFFFFFF;
LPC_GPIO4->FIODIR=0XFFFFFFFF;
LPC_GPIO0->FIOPIN=0X1F7;
LPC_GPIO4->FIOPIN=0X10000000;
while(1)
{
for(k=0;k<16;k++)
{
LPC_GPIO0->FIOPIN=a[k];
delay(80);
LPC_GPIO0->FIOPIN=0X1F7;
delay(80);
}
}
}

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 43

Exp.No: 4
Interface a DAC and generate Triangular and Square waveforms.
Connection Details:

 P0.26

It is a string DAC consisting of 2N resistors in series where N = no. of bits LPC176x DAC has
only 1 output pin, referred to as AOUT. The Analog voltage at the output of this pin is given
as:

Where VALUE is the 10-bit digital value which is to be converted into its Analog counterpart
and VREF is the input reference voltage.
Pins relating to LPC1768 DAC block:
Pin Description
AOUT (P0.26) Analog Output pin. Provides the converted Analog signal which

is referenced to VSSA i.e. the Analog GND. Set Bits[21:20] in PINSEL1
register to “10” to enable this function.
DACR register Format: (32 bit register):
D/A Converter Register (DACR - 0x4008 C000)
This read/write register includes the digital value to be converted to analog, and a bit
thattrades off performance vs. power. Bits 5:0 are reserved for future, higher-resolution
D/Aconverters.

LPC1768

10 BIT
INTERNAL
DAC

CRO

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 44

Bit Symbol Value Description Reset
Value

5:0 - Reserved User software should not write ones to reserved bits.
The value read from a reserved bit is not defined.

NA

15:6 VALUE 10 bit
data

the voltage onthe AOUT pin is VALUE × ((VREFP -
VREFN)/1024) + VREFN.

0

16 BIAS 0 The settling time of the DAC is 1 μs max, and the
maximum current is 700 μA. This allows
a maximum update rate of 1 MHz.

0

31:17 - Reserved User software should not write ones to reserved bits.
The value read from a reserved bit is not defined.

NA

ALGORITHM:
TRIANGULAR WAVEFORM:

1. Configure the Port 0.26 as second alternate function to carry the analog output by using
the PINSEL1 register.

2. Initialize 10 bit digital dataas 0.
3. Send the digital data to the DACR[6:15].
4. Increment the digital data and check whether it is equal to 102410.
5. If it is less than 102410, repeat from step 3.
6. Else decrement the digital value and send to the DACR[6:15]
7. Check whether the digital data is greater than 0.
8. if yes, repeat from step 6 else repeat from step 3.

PROGRAM FOR TRIANGULAR WAVEFORM:
#include<lpc17xx.h>
 #define p0_26 21
 #define ddata 6
uint32_tdacv = 0x0;

int main()
 {

SystemInit();
LPC_PINCON -> PINSEL1 = (1<<p0_26);
while(1)
{

while(1)
{

dacv++;

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 45

LPC_DAC->DACR=(dacv<<ddata);
if(dacv>=0x3FF)
{

break;
}

}
while(1)
{

dacv--;
LPC_DAC->DACR=(dacv<<ddata);
if(dacv<=0x0)
{

break;
}

}
}

}
SQUARE WAVEFORM:

1. Configure the Port 0.26 as second alternate function to carry the analog output by using
the PINSEL1 register.

2. Initialize 10 bit digital dataas 0.
3. Send the digital data to the DACR[6:15].
4. Insert the required delay.
5. Send the digital data equivalent to the required analog signal amplitude.(it should be

less than 3.3v or 0x3ff).
6. Insert the same delay as used in step 4.
7. Repeat from step 2 unconditionally.

Program:
#include<lpc17xx.h>
 #define p0_26 21
 #define ddata 6
uint32_tdacv = 0x0;
void delay(unsigned int x)
 {

unsignedinti,j;
for (i=0;i<x;i++)
{

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 46

for(j=0;j<9000;j++);
}

 }
int main()
 {

SystemInit();
LPC_PINCON -> PINSEL1 = (1<<p0_26);
while(1)
{

while(1)
{

dacv = 0x0;
LPC_DAC->DACR=(dacv<<ddata);
delay (15);

dacv = 0x3ff;
 LPC_DAC ->DACR =(dacv<<ddata);
delay(15);
 }

 }
 }

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 47

Exp.No:5:
Display “Hello World” message using Internal UART.
Connection Details:

 USB CABLE

UART Registers:
The below table shows the registers associated with LPC1768 UART.

Register Description
RBR Contains the recently received Data
THR Contains the data to be transmitted
FCR FIFO Control Register
LCR Controls the UART frame formatting(Number of Data Bits, Stop

bits)
DLL Least Significant Byte of the UART baud rate generator value.
DLM Most Significant Byte of the UART baud rate generator value.

UART Register formats or configuration:
FCR (FIFO Control Register):
LPC1768 has inbuilt 16byte FIFO for Receiver/Transmitter. Thus it can store 16-bytes of data
received on UART without overwriting. If the data is not read before the Queue(FIFO) is
filled then the new data will be lost and the OVERRUN error bit will be set.

FCR
31:8 7:6 5:4 3 2 1 0
RESERVED RX

TRIGGER
RESERVED DMA

MODE
TX FIFO
RESET

RX FIFO
RESET

FIFO
ENABLE

Bit 0 – FIFO:This bit is used to enable/disable the FIFO for thedata received/transmitted. 0--
FIFO is Disabled, 1--FIFO is Enabled for both Rx and Tx.
Bit 1 – RX_FIFO:This is used to clear the 16-byte Rx FIFO.0-No impact.

LPC1768 UART0
 TxD0 (P0.2)
 RxD0 (P0.3)

PC
 MONITOR

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 48

1-Clears the 16-byte Rx FIFO and the resets the FIFO pointer.
Bit 2 – Tx_FIFO:This is used to clear the 16-byte Tx FIFO.

0-No impact.
1-Clears the 16-byte Tx FIFO and the resets the FIFO pointer.

Bit 3 – DMA_MODE:
This is used for Enabling/Disabling DMA mode.
0--Disables the DMA.
1--Enables DMA only when the FIFO(bit-0) bit is SET.

Bit 7:6 – Rx_TRIGGER:This bit is used to select the number of bytes of the receiver data to be written
so as to enable the interrupt/DMA.

00-- Trigger level 0 (1 character or 0x01)
01-- Trigger level 1 (4 characters or 0x04)
10-- Trigger level 2 (8 characters or 0x08)
11-- Trigger level 3 (14 characters or 0x0E)

LCR (Line Control Register):
This register is used for defining the UART frame format ie. Number of Data bits, STOP bits etc.

Format:

31:8 7 6 5:4 3 2 1:0
Reserved DLAB Break

COntrol
Parity
Select

Parity
Enable

Stop Bit
Select

Word Length
Select

Bit 1:0 : Word Length Select: These two bits are used to select the character length
00-- 5-bit character length
01-- 6-bit character length
10-- 7-bit character length
11-- 8-bit character length

Bit 2 – Stop Bit Selection:This bit is used to select the number(1/2) of stop bits
0-- 1 Stop bit
1-- 2 Stop Bits

Bit 3 – Parity Enable:This bit is used to Enable or Disable the Parity generation and checking.
0-- Disable parity generation and checking.
1-- Enable parity generation and checking.

Bit 5:4 – Parity Selection:These two bits will be used to select the type of parity.
00-- Odd parity. Number of 1s in the transmitted character and the
attached parity bit will be odd.
01-- Even Parity. Number of 1s in the transmitted character and the
attached parity bit will be even.
10-- Forced "1" stick parity.
11-- Forced "0" stick parity

Bit 6 – Break Control:0-- Disable break transmission.
1-- Enable break transmission. Output pin UARTn TXD is forced to logic 0

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 49

Bit 8 – DLAB: Divisor Latch Access Bit:
This bit is used to enable the access to divisor latch.
0-- Disable access to divisor latch
1-- Enable access to divisor latch

LSR (Line Status Register):
The is a read-only register that provides status information of the UART TX and RX blocks.
LSR Format:

31:8 7 6 5 4 3 2 1 0
Reserved RXFE TEMT THRE BI FE PE OE RDR

Bit 0 – RDR: Receive Data Ready
This bit will be set when there is a received data in RBR register. This bit will be automatically cleared when
RBR is empty.
0-- The UARTn receiver FIFO is empty.
1-- The UARTn receiver FIFO is not empty.
Bit 1 – OE: Overrun Error
The overrun error condition is set when the UART Rx FIFO is full and a new character is received. In this
case, the UARTn RBR FIFO will not be overwritten and the character in the UARTn RSR will be lost.
0-- No overrun
1-- Buffer over run
Bit 2 – PE: Parity Error
This bit is set when the receiver detects a error in the Parity.
0-- No Parity Error
1-- Parity Error
Bit 3 – FE: Framing Error
This bit is set when there is error in the STOP bit(LOGIC 0)
0-- No Framing Error
1-- Framing Error
Bit 4 – BI: Break Interrupt
This bit is set when the RXDn is held in the spacing state (all zeroes) for one full character transmission
0-- No Break interrupt
1-- Break Interrupt detected.
Bit 5 – THRE: Transmitter Holding Register Empty
THRE is set immediately upon detection of an empty THR. It is automatically cleared when the THR is
written.
0-- THR register is Empty
1-- THR has valid data to be transmitted
Bit 6 – TEMT: Transmitter Empty
TEMT is set when both UnTHR and UnTSR are empty; TEMT is cleared when any of them contain valid
data.
0-- THR and/or the TSR contains valid data.
1-- THR and the TSR are empty.
Bit 7 – RXFE: Error in Rx FIFO
This bit is set when the received data is affected by Framing Error/Parity Error/Break Error.
0-- RBR contains no UARTn RX errors.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 50

1-- RBR contains at least one RX error.

TER (Transmitter Enable register): This register is used to Enable/Disable the transmission
TER Format:

31:8 7 6-0
Reserved TXEN Reserved

Bit 7 – TXEN: Trsnamitter Enable
When this bit is 1, the data written to the THR is output on the TXD pin.
If this bit is cleared to 0 while a character is being sent, the transmission of that character is
completed, but no further characters are sent until this bit is set again.
In other words, a 0 in this bit blocks the transfer of characters.
•Note: By default this bit will be set after Reset.

Baudrate Calculation
LPC1768 generates the baud rate depending on the values of DLM,DLL.
Baudrate = PCLK/ (16 * ((256 * DLM) + DLL) * (1+ DivAddVal/MulVal))
where, DLM=0, DLL= , (DivaddVal/MulVal)=0.
Steps for Configuring UART0
Below are the steps for configuring the UART0.
1. Configure the P0.2 and P0.3 as first alternate function UART0 function using PINSEL0 register.
2.Configure the FCR for enabling the FIFO and Reset both the Rx/Tx FIFO.
3. Configure LCR for 8-data bits, 1 Stop bit, Disable Parity and Enable DLAB.
4. Calculate the DLM,DLL values for required baudrate from PCLK.
6. Update the DLM,DLL with the calculated values(i.e DLM=0;DLL=163).
7. Finally clear DLAB to disable the access to DLM,DLL.
After this the UART will be ready to Transmit/Receive Data at the specified baudrate, by sending the string
character by character.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 51

Program:
#include<lpc17xx.h>
void U0Write(char txdata)
{
while(!(LPC_UART0->LSR & 0x20));
LPC_UART0->THR=txdata;
}

void initUART0(void)
{
LPC_PINCON->PINSEL0 =(1<<4)|(1<<6);
LPC_UART0->LCR=0x83;
LPC_UART0->DLL=163;
LPC_UART0->DLM=0;
LPC_UART0->FCR =0x7;
LPC_UART0->FDR=0x0;
LPC_UART0->LCR = 0x03;
}

int main(void)
{
charmsg[]= "Hello World";
int i=0;
initUART0();

for(i=0;msg[i];i++)

{
U0Write(msg[i]);

}
}

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 52

Exp.No:6:
Demonstrate the use of an external interrupt to toggle an LED On/Off.
Connection details:

Description:
LPC1768 has four external interrupts EINT0-EINT3.
Port Pin PINSEL_FUNC_0 PINSEL_FUNC_1 PINSEL_FUNC_2
P2.10 GPIO EINT0 NMI
P2.11 GPIO EINT1 I2STX_CLK
P2_12 GPIO EINT2 I2STX_WS
P2.13 GPIO EINT3 I2STX_SDA

Note:
 since the two general purpose switches have been connected with port lines P2.11 and

P2.12, only two interrupts EINT1 and EINT2 have been used in this experiment.

http://exploreembedded.com/wiki/File:Lpc1768_external_interrupts.png

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 53

 By pressing the switch, the corresponding interrupt signal will be generated.
EINT Registers:

Below table shows the registers associated with LPC1768 external interrupts.
Register Description
PINSELx To configure the pins as External Interrupts
EXTINT External Interrupt Flag Register contains interrupt flags

for EINT0,EINT1, EINT2 & EINT3.
EXTMODE External Interrupt Mode register(Level/Edge Triggered)
EXTPOLAR External Interrupt Polarity(Falling/Rising Edge, Active

Low/High)

EXTINT Format:
31:4 3 2 1 0

RESERVED EINT3 EINT2 EINT1 EINT0

EINTx: Bits will be set whenever the interrupt is detected on the particular interrupt
pin.If the interrupts are enabled then the control goes to ISR.

Writing one to specific bit will clear the corresponding interrupt.

EXTMODE Format:
31:4 3 2 1 0

RESERVED EXTMODE3 EXTMODE2 EXTMODE1 EXTMODE0

EXTMODEx: This bits is used to select whether the EINTx pin is level or edge
Triggered.

0: EINTx is Level Triggered.
1: EINTx is Edge Triggered.

EXTPOLAR Format:
31:4 3 2 1 0

RESERVED EXTPOLAR3 EXTPOLAR2 EXTPOLAR1 EXTPOLAR0

EXTPOLARx: This bits is used to select polarity(LOW/HIGH,FALLING/RISING) of
the EINTx interrupt depending on the EXTMODE register.
0: EINTx is Active Low or Falling Edge (depending on EXTMODEx).
1: EINTx is Active High or Rising Edge (depending on EXTMODEx).

ALGORITHM:

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 54

1. Configure the pins p2.11 AND p2.12 as external interrupts in PINSELx
register.
2. Clear any pending interrupts in EXTINT.
3. Configure the EINTx as Edge/Level triggered in EXTMODE register.
4. Select the polarity(Falling/Rising Edge, Active Low/High) of the interrupt
in EXTPOLAR register.

5. Finally enable the interrupts by calling NVIC_EnableIRQ() with IRQ
number.

6. Define ISR1 to toggle the status of LED 1 for EINT1 and ISR2 to toggle the status of
LED2 for EINT2.

PROGRAM:
#include <lpc17xx.h>

#define PINSEL_EINT1 22 // interrupt 1
#define PINSEL_EINT2 24 // interrupt 2

#define LED1 25 // led at p1.25
#define LED2 26 // led at p1.26

#define SBIT_EINT1 1 //extint bit 1
#define SBIT_EINT2 2 //extint bit 2

#define SBIT_EXTMODE1 1 //extint mode bit 1
#define SBIT_EXTMODE2 2 //extint mode bit 2

#define SBIT_EXTPOLAR1 1 //extint polarity mode bit 1
#define SBIT_EXTPOLAR2 2 //extint polarity mode bit 2

void EINT1_IRQHandler(void)
{
 LPC_SC->EXTINT = (1<<SBIT_EINT1); /* Clear Interrupt Flag */
 LPC_GPIO1->FIOPIN ^= (1<< LED1); /* Toggle the LED1 everytime INTR1 is generated */
}

void EINT2_IRQHandler(void)
{
 LPC_SC->EXTINT = (1<<SBIT_EINT2); /* Clear Interrupt Flag */
 LPC_GPIO1->FIOPIN ^= (1<< LED2); /* Toggle the LED2 everytime INTR2 is generated */
}

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 55

int main()
{
SystemInit();

 LPC_SC->EXTINT = (1<<SBIT_EINT1) | (1<<SBIT_EINT2); /* Clear Pending interrupts */
 LPC_PINCON->PINSEL4 = (1<<PINSEL_EINT1) | (1<<PINSEL_EINT2); /* Configure
P2_11,P2_12 as EINT1/2 */
 LPC_SC->EXTMODE = (1<<SBIT_EXTMODE1) | (1<<SBIT_EXTMODE2);
 /* Configure EINTx as Edge Triggered*/
 LPC_SC->EXTPOLAR = (1<<SBIT_EXTPOLAR1)| (1<<SBIT_EXTPOLAR2); /* Configure
EINTx as Falling Edge */

 LPC_GPIO1->FIODIR = (1<<LED1) | (1<<LED2); /* Configure LED pins as OUTPUT */
 LPC_GPIO1->FIOPIN = 0x00;

NVIC_EnableIRQ(EINT1_IRQn); /* Enable the EINT1,EINT2 interrupts */
NVIC_EnableIRQ(EINT2_IRQn);
while(1)
 {
 // Do nothing
 }
}

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 56

Exp.No:7 (Beyond Syllabus)
Using the Internal PWM module of ARM controller generate PWM and vary itsduty cycle.
Connection Details:

LPC1768 has 6 PWM output pins which can be used as 6-Single edged or 3-Double edged. There as seven
match registers to support these 6 PWM output signals. Below block diagram shows the PWM pins and the
associated Match(Duty Cycle) registers.
PWM channel 1(Port Line P2.0) has been connected to the PWM output point in a trainer Kit.So configure
the P2.0 as a first alternate function to carry the PWM channel 1output using PINSEL4 register.
LPC1768 PWM Registers
The below table shows the registers associated with LPC1768 PWM Module.
Register Description

IR
Interrupt Register: The IR can be read to identify which of eight possible interrupt sources are
pending. Writing Logic-1 will clear the corresponding interrupt.

TCR
Timer Control Register: The TCR is used to control the Timer Counter
functions(enable/disable/reset).

TC
Timer Counter: The 32-bit TC is incremented every PR+1 cycles of PCLK. The TC is controlled
through the TCR.

PR Prescalar Register: This is used to specify the Prescalar value for incrementing the TC.

PC
Prescale Counter: The 32-bit PC is a counter which is incremented to the value stored in PR.
When the value in PR is reached, the TC is incremented.

MCR
Match Control Register: The MCR is used to control the reseting of TC and generating of
interrupt whenever a Match occurs.

MR0 Match Register: This register hold the max cycle Time(Ton+Toff).
MR1-
MR6

Match Registers: These registers holds the Match value(PWM Duty) for corresponding PWM
channels(PWM1-PWM6).

PCR
PWM Control Register: PWM Control Register. Enables PWM outputs and selects PWM channel
types as either single edge or double edge controlled.

LER Load Enable Register: Enables use of new PWM values once the match occurs.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 57

Register Configuration
The below table shows the registers associated with LPC1768 PWM.

TCR
31:4 3 2 1 0
Reserved PWM Enable Reserved Counter Reset Counter Enable
Bit 0 – Counter Enable
This bit is used to Enable or Disable the PWM Timer and PWM Prescalar Counters
0- Disable the Counters
1- Enable the Counter incrementing.
Bit 1 – Counter reset
This bit is used to clear the PWM Timer and PWM Prescalar Counter values.
0- Do not Clear.
1- The PWM Timer Counter and the PWM Prescale Counter are synchronously reset on the next positive
edge of PCLK.
Bit 3 – PWM Enable
Used to Enable or Disable the PWM Block.
0- PWM Disabled
1- PWM Enabled

MCR
31:21 20 19 18 - 5 4 3 2 1 0
Reserved PWMMR6S PWMMR6R PWMMR6I - PWMMR1S PWMMR1R PWMMR1I PWMMR0S PWMMR0R PWMMR0I
PWMMRxI
This bit is used to Enable or Disable the PWM interrupts when the PWMTC matches PWMMRx (x:0-6)
0- Disable the PWM Match interrupt
1- Enable the PWM Match interrupt.
PWMMRxR
This bit is used to Reset PWMTC whenever it Matches PWMRx(x:0-6)
0- Do not Clear.
1- Reset the PWMTC counter value whenever it matches PWMRx.
PWMMRxS
This bit is used to Stop the PWMTC,PWMPC whenever the PWMTC matches PWMMRx(x:0-6).
0- Disable the PWM stop o match feature
1- Enable the PWM Stop feature. This will stop the PWM whenever the PWMTC reaches the Match register
value.

PCR
31:15 14-9 8-7 6-2 1-0
Unused PWMENA6-PWMENA1 Unused PWMSEL6-PWMSEL2 Unused
PWMSELx
This bit is used to select the single edged and double edge mode form PWMx (x:2-6)
0- Single Edge mode for PWMx
1- Double Edge Mode for PWMx.
PWMENAx

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 58

This bit is used to enable/disable the PWM output for PWMx(x:1-6)
0- PWMx Disable.
1- PWMx Enabled.

LER
31-7 6 5 4 3 2 1 0
Unused LEN6 LEN5 LEN4 LEN3 LEN2 LEN1 LEN0
LENx
This bit is used Enable/Disable the loading of new Match value whenever the PWMTC is reset(x:0-6)
PWMTC will be continously incrementing whenever it reaches the PWMMRO, timer will be reset depeding
on PWMTCR configuraion. Once the Timer is reset the New Match values will be loaded from MR0-MR6
depending on bits set in this register.
0- Disable the loading of new Match Values
1- Load the new Match values from MRx when the timer is reset.

PWM Working
The TC is continuously incremented and once it matches the MR1(Duty Cycle) the PWM pin is pulled Low.
TC still continues to increment and once it reaches the Cycle time(Ton+Toff) the PWM module does the
following things:

 Reset the TC value.
 Pull the PWM pin High.
 Loads the new Match register values.

Steps to Configure PWM
1. Configure the GPIO pins for PWM operation in respective PINSEL register.
2. Configure TCR to enable the Counter for incrementing the TC, and Enable the PWM block.
3. Set the required pre-scalar value in PR. In our case it will be zero.
4. Configure MCR to reset the TC whenever it matches MR0.
5. Update the Cycle time in MR0. Here, it will be 100.
6. Load the Duty cycles for required PWM1 channel in respective match register MR1.
7. Enable the bits in LER register to load and latch the new match values.
8. Enable the pwm channel 1 in PCR register.

PROGRAM:
#include<lpc17xx.h>
void delay(unsigned int k)
{
unsignedinti,j;
for(i=0;i<k;i++)
for(j=0;j<60000;j++);
}
#define SBIT_CNTEN 0
#define SBIT_PWMEN 2
#define SBIT_PWMMR0R 1

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 59

#define SBIT_PWMENA1 9
#define PWM_1 0
int main()
{
int dc;
SystemInit();
LPC_PINCON->PINSEL4=(1<<PWM_1);
LPC_PWM1->TCR=(1<<SBIT_CNTEN)|(1<<SBIT_PWMEN);
LPC_PWM1->PR=0x00;
LPC_PWM1->MCR=(1<<SBIT_PWMMR0R);
LPC_PWM1->MR0=100;
LPC_PWM1->PCR=(1<<SBIT_PWMENA1);
while(1)
{
for(dc=0;dc<100;dc++)
{
LPC_PWM1->MR1=dc;
delay(5);
}
for(dc=100;dc>0;dc--)
{
LPC_PWM1->MR1=dc;
delay(5);
}

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 60

EXP.NO:8:
Interface and Control a DC Motor.
Connection details:

 Use all the register configuration as used in PWM experiment .
 Use PWM channel 3(P2.2) instead of PWM channel 1(P2.0).

Algorithm:
Steps to Configure PWM

1. Configure the GPIO pins for PWM operation in respective PINSEL register.
2. Configure TCR to enable the Counter for incrementing the TC, and Enable the PWM block.
3. Set the required pre-scalar value in PR. In our case it will be zero.
4. Configure MCR to reset the TC whenever it matches MR0.
5. Update the Cycle time in MR0. Here, it will be 100.
6. Load the Duty cycles for required PWM3 channel in respective match register MR3.
7. Enable the bits in LER register to load and latch the new match values.
8. Enable the pwm channel 1 in PCR register.

steps to control the speed of DC motor:
After configuring the PWM module,
1. Read the status of the switch 1. For each press, decrease the MR3 by 10.
check whether it is greater than 0.Else assume MR3 is always zero for further
continuous press of Switch 1.
2. Read the status of the switch 2. For each press, increase the MR3 by 10. Check whether it is
less than 100.Else assume MR3 is always 99 for further continuous press of Switch 2.

PROGRAM:

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 61

#include<lpc17xx.h>
#define cnten 0
#define pwnen 2
#define P2_2 4
#define MROR 1
#define pwnch3 11
#define SW1 11
#define SW2 12
void delay(unsigned int k)
{
unsignedintx,y;
for(x=0;x<k;x++)
for(y=0;y<90000;y++);
}
int main (void)
{
inti=100;
LPC_PINCON->PINSEL4=(1<<P2_2);
LPC_PWM1->TCR=(1<<cnten)|(1<<pwnen) ;
LPC_PWM1->MCR=(1<<MROR);
LPC_PWM1->PCR=(1<<pwnch3);
LPC_PWM1->PR=0x0;
LPC_PWM1->MR0=100;
while(1)
{
LPC_PWM1->MR3=i;
delay(5);
if(!((LPC_GPIO2->FIOPIN>>SW1)&0X1))
{
while(!((LPC_GPIO2->FIOPIN>>SW1)&0X1));
i=i-10;
if(i<=0)
i=0;
}
else if(!((LPC_GPIO2->FIOPIN>>SW2)&0X1))
{
while(!((LPC_GPIO2->FIOPIN>>SW2)&0X1));
i=i+10;
if(i>100)
i=99;

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 62

}
}
}

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 63

Exp.No: 9:
Interface a 4x4 keyboard and display the key code on an LCD.
Connection Details:

Program:
#include "lpc17xx.h"
#include "lcd.h"

///
// Matrix Keypad Scanning Routine
//
// COL1 COL2 COL3 COL4
// 0 1 2 3 ROW 1
// 4 5 6 7 ROW 2
// 8 9 A B ROW 3
// C D E F ROW 4
//

#define COL1 0
#define COL2 1
#define COL3 4
#define COL4 8

#define ROW1 9
#define ROW2 10
#define ROW3 14
#define ROW4 15

#define COLMASK ((1<<COL1) |(1<< COL2) |(1<< COL3) |(1<< COL4))
#define ROWMASK ((1<<ROW1) |(1<< ROW2) |(1<< ROW3) |(1<< ROW4))

#define KEY_CTRL_DIR LPC_GPIO1->FIODIR
#define KEY_CTRL_SET LPC_GPIO1->FIOSET

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 64

#define KEY_CTRL_CLR LPC_GPIO1->FIOCLR
#define KEY_CTRL_PIN LPC_GPIO1->FIOPIN

/////////////// COLUMN WRITE /////////////////////
voidcol_write(unsigned char data)
{
unsignedint temp=0;

temp=(data) & COLMASK;

 KEY_CTRL_CLR |= COLMASK;
 KEY_CTRL_SET |= temp;
}

///////////////////////////////// MAIN ///////////////////////////////////////
int main (void)
{
unsigned char key, i;
unsigned char rval[] = {0x77,0x07,0x0d};
unsigned char keyPadMatrix[] =
{
 '4','8','B','F',
 '3','7','A','E',
 '2','6','0','D',
 '1','5','9','C'
};
SystemInit();
init_lcd();

 KEY_CTRL_DIR |= COLMASK; //Set COLs as Outputs
 KEY_CTRL_DIR &= ~(ROWMASK); // Set ROW lines as Inputs

 lcd_putstring16(0,"Press HEX Keys..");// 1st line display
 lcd_putstring16(1,"Key Pressed = ");// 2nd line display

while (1)
 {
key = 0;
for(i = 0; i< 4; i++)
 {
 // turn on COL output one by one

col_write(rval[i]);

 // read rows - break when key press detected
if (!(KEY_CTRL_PIN & (1<<ROW1)))
break;

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 65

key++;
if (!(KEY_CTRL_PIN & (1<<ROW2)))
break;

key++;
if (!(KEY_CTRL_PIN & (1<<ROW3)))
break;

key++;
if (!(KEY_CTRL_PIN & (1<<ROW4)))

break;

key++;
 }

if (key == 0x10)
lcd_putstring16(1,"Key Pressed = ");

else
{

lcd_gotoxy(1,14);
lcd_putchar(keyPadMatrix[key]);

}
 }

}

LCD code:-

#include "lpc17xx.h"
#include "lcd.h"
voidLcd_CmdWrite(unsigned char cmd);
voidLcd_DataWrite(unsigned char dat);
#define LCDRS 9
#define LCDRW 10
#define LCDEN 11

#define LCD_D4 19
#define LCD_D5 20
#define LCD_D6 21
#define LCD_D7 22
#define LcdData LPC_GPIO0->FIOPIN
#define LcdControl LPC_GPIO0->FIOPIN
#define LcdDataDirn LPC_GPIO0->FIODIR
#define LcdCtrlDirn LPC_GPIO0->FIODIR
#define LCD_ctrlMask ((1<<LCDRS)|(1<<LCDRW)|(1<<LCDEN))

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 66

#define LCD_dataMask ((1<<LCD_D4)|(1<<LCD_D5)|(1<<LCD_D6)|(1<<LCD_D7))
void delay(unsigned int count)
{
int j=0, i=0;
for (j=0;j<count;j++)
for (i=0;i<30;i++);
}

voidsendNibble(char nibble)
{
LcdData&=~(LCD_dataMask); // Clear previous data
LcdData|= (((nibble >>0x00) & 0x01) << LCD_D4);
LcdData|= (((nibble >>0x01) & 0x01) << LCD_D5);
LcdData|= (((nibble >>0x02) & 0x01) << LCD_D6);
LcdData|= (((nibble >>0x03) & 0x01) << LCD_D7);
}

voidLcd_CmdWrite(unsigned char cmd)
{
sendNibble((cmd>> 0x04) & 0x0F); //Send higher nibble
LcdControl&= ~(1<<LCDRS); // Send LOW pulse on RS pin for selecting Command register
LcdControl&= ~(1<<LCDRW); // Send LOW pulse on RW pin for Write operation
LcdControl |= (1<<LCDEN); // Generate a High-to-low pulse on EN pin
delay(100);
LcdControl&= ~(1<<LCDEN);

delay(10000);

sendNibble(cmd& 0x0F); //Send Lower nibble
LcdControl&= ~(1<<LCDRS); // Send LOW pulse on RS pin for selecting Command register
LcdControl&= ~(1<<LCDRW); // Send LOW pulse on RW pin for Write operation
LcdControl |= (1<<LCDEN); // Generate a High-to-low pulse on EN pin
delay(100);
LcdControl&= ~(1<<LCDEN);

delay(1000);
}

voidLcd_DataWrite(unsigned char dat)
{
sendNibble((dat>> 0x04) & 0x0F); //Send higher nibble
LcdControl |= (1<<LCDRS); // Send HIGH pulse on RS pin for selecting data register
LcdControl&= ~(1<<LCDRW); // Send LOW pulse on RW pin for Write operation
LcdControl |= (1<<LCDEN); // Generate a High-to-low pulse on EN pin
delay(100);
LcdControl&= ~(1<<LCDEN);

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 67

delay(1000);

sendNibble(dat& 0x0F); //Send Lower nibble
LcdControl |= (1<<LCDRS); // Send HIGH pulse on RS pin for selecting data register
LcdControl&= ~(1<<LCDRW); // Send LOW pulse on RW pin for Write operation
LcdControl |= (1<<LCDEN); // Generate a High-to-low pulse on EN pin
delay(100);
LcdControl&= ~(1<<LCDEN);

delay(1000);
}
voidlcd_clear(void)
{
Lcd_CmdWrite(0x01);
}
intlcd_gotoxy(unsigned char x, unsigned char y)
{
unsigned char retval = TRUE;

if((x > 1) && (y > 15))
 {
retval = FALSE;
 }
else
 {
if(x == 0) Lcd_CmdWrite(0x80 + y);

else if(x==1) Lcd_CmdWrite(0xC0 + y);
 }
returnretval;
}
voidlcd_putchar(unsigned char c)
{
Lcd_DataWrite(c);
}
voidlcd_putstring(char *string)
{
while(*string != '\0')
 {
lcd_putchar(*string);
string++;
 }
}
void lcd_putstring16(unsigned char line, char *string)
{
unsigned char len = 16;

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 68

lcd_gotoxy(line, 0);
while(*string != '\0' &&len--)
 {
lcd_putchar(*string);
string++;
 }
}
voidinit_lcd(void)
 {
LcdDataDirn |= LCD_dataMask; // Configure all the LCD pins as output
LcdCtrlDirn |= LCD_ctrlMask;

 // Initialize Lcd in 4-bit mode
Lcd_CmdWrite(0x03);
delay(2000);
Lcd_CmdWrite(0x03);
delay(1000);
Lcd_CmdWrite(0x03);
delay(100);
Lcd_CmdWrite(0x2);
Lcd_CmdWrite(0x28);
Lcd_CmdWrite(0x0e);
Lcd_CmdWrite(0x06);
Lcd_CmdWrite(0x01);
delay(1); // display on

}

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 69

Exp.No:10:
Measure Ambient temperature using a sensor and SPI ADC IC.

Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI) is an interface bus commonly used to send data between microcontrollers and
small peripherals such as shift registers, sensors, and SD cards. It uses separate clock and data lines, along
with a select line to choose the device.

ADC (Analog to Digital Converter):

The Microchip Technology Inc. MCP3202 is a successive approximation 12-bit Analog-to-Digital (A/D)
Converter with on-board sample and hold circuitry. The MCP3202 is programmable to provide a single
pseudo-differential input pair or dual single-ended inputs. Differential Nonlinearity (DNL) is specified at ±1
LSB, and Integral Nonlinearity (INL) is offered in ±1 LSB (MCP3202-B) and ±2 LSB (MCP3202-C)
versions. Communication with the device is done using a simple serial interface compatible with the SPI
protocol. The device is capable of conversion rates of up to 100ksps at 5V and 50ksps at 2.7V.The MCP3202
is a Dual Channel 12-Bit A/D Converter with SPI Serial Interface By Microchip . In this tutorial i will
interface this ADC using lpc1768 microcontroller using SPI Protocol in mode(0,0) . Maximum clock rate
supported by MCP3202 is 1.8 MHz.

Fsample= 100 KSPS

Fclk = 18*Fsample

Configuring SPI Control Register :

Serial Peripheral interface allows high speed synchronous data
communication betweenlpc1768microcontrollers.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 70

first we need to send start bit , it is last bit of first byte we are going to send to ADC and then we have to
select Configuration modes.there are two modes single ended and pseudo differential mode here choose
single ended mode . MSBF bit choses order of format of byte either MSB first or LSB first herechoose MSB
bit first format so MSBF=1.ransferingSecondbyte=0xA0forchannel0and Secondbyte=0xE0 for channel 1.
ADC will return B11 to B8 of data in the lower nibble of byte so we need to perform some mathematical
manipulation. after that we need to send any byte to receive third byte of data.

Pin Assignment with LPC1768:

 SPI - ADC LPC1768 Lines SPI - ADC

MCP
3202

CS P0.28

CLK P0.27

Dout P3.26

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 71

Din P3.25

ALGORITHM:

PROGRAM:
#include <LPC17xx.H>
#include <stdint.h>
#include <stdio.h>
#include "delay.h"
#include "spi_manul.h"
#include "lcd.h"
#define pulse_val 2

main()
{
unsignedintspi_rsv=0;
float vin;
charbuf[20];
SystemInit ();
lcd_init();
lcd_str("SPI 3202-b");
delay(60000);
delay(60000);
while(1)
 {
lcd_clr();
lcd_cmd(0x80);
spi_rsv = spi_data1(15);
vin = ((spi_rsv& 0xfff) * (3.3)) / 4096 ;
sprintf(buf,"Temp: %0.2f degC",(vin*100));
lcd_str(buf);
delay(50000);
delay(50000);
 }
}

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 72

SPI ADC data fetching program:-
#include <LPC17xx.H>
#include "delay.h"
#define pulse_val 2
#define CLK 1<<27
#define CS 1<<28
#define DDOUT 26
#define DOUT 1<<25
#define DIN 1<<26
#define spi_stst 0
unsignedintspi_data(char sel)
{
charclks = 4;
 LPC_GPIO0->FIODIR |= CS|CLK;
 LPC_GPIO3->FIODIR = DOUT;

 LPC_GPIO0->FIOSET = CS|CLK;
 LPC_GPIO3->FIOCLR = DOUT;
nop_delay(100);
#if spi_stst
if (LPC_GPIO3->FIOPIN & DIN)
 {
return 'P';
 }
#endif
 LPC_GPIO0->FIOCLR = CS;

nop_delay(pulse_val);
while(clks)
 {

 LPC_GPIO0->FIOCLR = CLK;
nop_delay(pulse_val);

 LPC_GPIO3->FIOPIN = (sel& 1) << DDOUT;
sel = sel>> 1;

 LPC_GPIO0->FIOSET = CLK;
nop_delay(pulse_val);

clks--;
 }
 LPC_GPIO0->FIOCLR = CLK;

nop_delay(pulse_val);
if (!(LPC_GPIO3->FIOPIN & DIN))
 {
return 'U';
 }

clks = 12;

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 73

while(clks)
 {
clks--;

 LPC_GPIO0->FIOCLR = CLK;
nop_delay(pulse_val);
 LPC_GPIO0->FIOSET = CLK;
nop_delay(pulse_val);

 }
nop_delay(pulse_val);

if (!(LPC_GPIO3->FIOPIN & DIN))
 {
return 'U';
 }
return 'Z';
}
unsignedint spi_data1(char sel)
{
unsignedintspi_reg=0;
charclks = 12;
 LPC_GPIO0->FIODIR |= CS|CLK;
 LPC_GPIO3->FIODIR = DOUT;

 LPC_GPIO0->FIOSET = CS|CLK;
 LPC_GPIO3->FIOSET = DOUT;
 LPC_GPIO3->FIOPIN = DIN;

nop_delay(100);

 LPC_GPIO0->FIOCLR = CS;
 //start condi

 LPC_GPIO0->FIOCLR = CLK;
 LPC_GPIO3->FIOSET = DOUT;
nop_delay(pulse_val);
 LPC_GPIO0->FIOSET = CLK;
nop_delay(5);

 //single mode
 LPC_GPIO0->FIOCLR = CLK;
 LPC_GPIO3->FIOSET = DOUT;

nop_delay(pulse_val);
 LPC_GPIO0->FIOSET = CLK;
nop_delay(5);
 //chanl 1
 LPC_GPIO0->FIOCLR = CLK;
 LPC_GPIO3->FIOSET = DOUT;

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 74

nop_delay(pulse_val);
 LPC_GPIO0->FIOSET = CLK;
nop_delay(5);
 //msb first
 LPC_GPIO0->FIOCLR = CLK;
 LPC_GPIO3->FIOSET = DOUT;

nop_delay(pulse_val);
 LPC_GPIO0->FIOSET = CLK;
nop_delay(5);
 //smpling
// LPC_GPIO0->FIOCLR = CLK;
// nop_delay(pulse_val);
// LPC_GPIO0->FIOSET = CLK;
// nop_delay(2);

 //null bit
 LPC_GPIO0->FIOCLR = CLK;
nop_delay(pulse_val);
 LPC_GPIO0->FIOSET = CLK;
// while ((LPC_GPIO3->FIOPIN & DIN) == DIN);
// if(!(LPC_GPIO3->FIOPIN & DIN));
// {
// return 'U';
// }
nop_delay(5);

clks = 12;
while(clks)
 {
 LPC_GPIO0->FIOCLR = CLK;

nop_delay(pulse_val);
 LPC_GPIO0->FIOSET = CLK;
if((LPC_GPIO3->FIOPIN & DIN))
 {
spi_reg |= 1<<(clks-1);
 }
else
 {

spi_reg = spi_reg;
 }
clks--;
nop_delay(5);

 }
nop_delay(1);
returnspi_reg;
}

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 75

LCD display program:-

#include <LPC17xx.H>
#include "delay.h"
#define RRW (7<<9)
#define DATA_L (15<<19)
voidlcd_pin(void)
{
 LPC_GPIO0->FIODIR |= RRW|DATA_L;
}

voidlcd_cmd(unsigned char cmd)
{

LPC_GPIO0->FIOPIN =(((cmd& 0xf0)>> 4) << 19)| (1<<11);
delay(200);
LPC_GPIO0->FIOPIN =(((cmd& 0xf0)>> 4) << 19);

LPC_GPIO0->FIOCLR |= RRW|DATA_L;
delay(10);

LPC_GPIO0->FIOPIN = (((cmd& 0xf)) << 19)| (1<<11);
delay(200);
LPC_GPIO0->FIOPIN = (((cmd& 0xf)) << 19);

}

voidlcd_data(unsigned char cmd)
{
LPC_GPIO0->FIOPIN =(1<<9)|(((cmd& 0xf0)>> 4) << 19)| (1<<11);

delay(200);
LPC_GPIO0->FIOPIN =(((cmd& 0xf0)>> 4) << 19);

LPC_GPIO0->FIOCLR |= RRW|DATA_L;
delay(10);

LPC_GPIO0->FIOPIN = (1<<9)|(((cmd& 0xf)) << 19)| (1<<11);
delay(200);
LPC_GPIO0->FIOPIN = (((cmd& 0xf)) << 19);

}
voidlcd_init(void)
{
lcd_pin();
lcd_cmd(0x03);
delay(3000);
lcd_cmd(0x03);

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 76

delay(1000);
lcd_cmd(0x03);
delay(100);
lcd_cmd(0x2);
lcd_cmd(0x28);
lcd_cmd(0x0e);
lcd_cmd(0x06);
lcd_cmd(0x01);
delay(1);
}

voidlcd_str(char *lstr)
{
while(*lstr)
 {
lcd_data(*lstr);

lstr++;
 }
}

voidlcd_clr(void)
{

lcd_cmd(0x03);
delay(10);
lcd_cmd(0x2);
lcd_cmd(0x28);
lcd_cmd(0x0e);
lcd_cmd(0x06);
lcd_cmd(0x01);
delay(10);
}

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 77

Exp.No:11: (Beyond syllabus)
Interface 12 bit internal ADC to convert the analog to digital and display the same on LCD.
Connection Details:

ALGORITHM:
Steps for Configuring ADC

1. Configure the GPIO pin for ADC function using PINSEL register.

2. Enable the CLock to ADC module.

3. Deselect all the channels and Power on the internal ADC module by setting
ADCR.PDN bit.

4. Select the Particular channel for A/D conversion by setting the corresponding bits in
ADCR.SEL

5. Set the ADCR.START bit for starting the A/D conversion for selected channel.

6. Wait for the conversion to complete, ADGR.DONE bit will be set once conversion is
over.

7. Read the 12-bit A/D value from ADGR.RESULT.

8. Use it for further processing or just display on LCD.

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 78

PROGRAM:
#include "lpc17xx.h"
#include "lcd.h"
#define VREF 3.3 //Reference Voltage at VREFP pin, given VREFN = 0V(GND)
#define ADC_CLK_EN (1<<12)
#define SEL_AD0_2 (1<<2) //Select Channel AD0.2
#define CLKDIV 1 //ADC clock-divider (ADC_CLOCK=PCLK/CLKDIV+1) = 12.5Mhz
@ 25Mhz PCLK
#define PWRUP (1<<21) //setting it to 0 will power it down
#define START_CNV (1<<24) //001 for starting the conversion immediately
#define ADC_DONE (1U<<31) //define it as unsigned value or compiler will throw #61-D
warning
#define ADCR_SETUP_SCM ((CLKDIV<<8) | PWRUP)
////////// Init ADC0 CH2 /////////////////
Init_ADC()
{
 // Convert Port pin 0.25 to function as AD0.2
 LPC_SC->PCONP |= ADC_CLK_EN; //Enable ADC clock

LPC_ADC->ADCR = ADCR_SETUP_SCM | SEL_AD0_2;
LPC_PINCON->PINSEL1 |= (1<<18) ; //select AD0.2 for P0.25

}

////////// READ ADC0 CH:2 /////////////////
unsignedintRead_ADC()
{
unsignedinti=0;
LPC_ADC->ADCR |= START_CNV; //Start new Conversion

while((LPC_ADC->ADDR2 & ADC_DONE) == 0); //Wait untill conversion is
finished

i = (LPC_ADC->ADDR2>>4) & 0xFFF; //12 bit Mask to extract result

}
////////// DISPLAY ADC VALUE /////////////////
Display_ADC()
{
unsignedintadc_value = 0;
charbuf[4] = {5};
float voltage = 0.0;

adc_value = Read_ADC();
sprintf((char *)buf, "%3d", adc_value); // display 3 decima place

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 79

lcd_putstring16(0,"ADC VAL = 000 "); //1st line display
lcd_putstring16(1,"Voltage 00 V"); //2nd line display
lcd_gotoxy(0,10);
lcd_putstring(buf);
voltage = (adc_value * 3.3) / 4095 ;
lcd_gotoxy(1,8);
sprintf(buf, "%3.2f", voltage);
lcd_putstring(buf);

}
////////// MAIN /////////////////
int main (void)
{
init_lcd();
Init_ADC();
 lcd_putstring16(0,"** MICROLAB **");
 lcd_putstring16(1,"** INSTRUMENTS **");
delay(60000);
delay(60000);
delay(60000);
 lcd_putstring16(0,"ADC Value.. ");
 lcd_putstring16(1,"voltage.......");
while(1)
 {

Display_ADC();
delay(100000);

 }
}

EMBEDDED SYSTEMS LAB MANUAL

Department of ECE, Atria IT Page 80

DEPARTMENT VISION & MISSION
VISION

To become a pioneer in developing competent professionals with societal and ethical values through
transformational learning and interdisciplinary research in the field of Electronics and
Communication Engineering.

MISSION
The department of Electronics and Communication is committed to:

M1: Offer quality technical education through experiential learning to produce competent
engineering professionals.

M2: Encourage a culture of innovation and multidisciplinary research in collaboration with
industries/universities.

M3: Develop interpersonal, intrapersonal, entrepreneurial and communication skills among
students to enhance their employability.

M4: Create a congenial environment for the faculty and students to achieve their desired goals
and to serve society by upholding ethical values.

	DEPARTMENT OF ELECTRONICS AND COMMUNICATION
	SUBJECT CODE: 18ECL66
	DEPARTMENT OF ELECTRONICS AND COMMUNICATION EMBEDDED SYSTEMS LAB MANUAL
	DEPARTMENT VISION & MISSION
	MISSION

	LPC1768 PWM Registers
	Register Configuration
	PWM Working
	Steps to Configure PWM
	Steps to Configure PWM
	Serial Peripheral Interface (SPI)
	
	DEPARTMENT VISION & MISSION
	MISSION

