

 Atria Institute of Technology
 Department of Information Science and Engineering

Bengaluru-560024

ACADEMIC YEAR: 2021-2022

EVEN SEMESTER NOTES

Semester : 6th Semester

Subject Name

: File Structure

Subject Code

: 18IS61

Faculty Name

: Mrs. Ranjitha J

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Name of the Course: File Structure
NOTES

Introduction

The Heart of File Structure Design

Disks are slow compared to other parts of the computer. They are very slow compared to accessing

time of a memory on the other hand they provide enormous capacity to hold data at much less cost.

They are non-volatile and preserve the information even when the system is turned off. The driving

force behind file structure design is the disks relative slow access and the non-volatile capacity.

Secondary storage such as disks can pack thousand of megabytes in a small physical location.

Computer memory(RAM) is limited. However, relative to memory, access to secondary storage is

extremely slow(for example- getting information from slow RAM takes 120 nanosecond – 10-9

seconds. While getting information from disk disk takes 30 milliseconds – 10-3 seconds.

Good File Structure design will give us access to all the capacity without making our application

spend a lot of time waiting for the disk. A file structure is a combination of representation for data

in files and of operation for accessing the data. A file structure allows application to read write and

modify the data. It might also support finding the data that matches some search criteria or reading

through the data in some particular order.

A Short History of File Structure Design

1. General Goals – The general goals of R&D in file structure can be drawn directly from our

analogy.

 Get the information we need with one access to the disk.

 If that’s not possible, then get the information with as few accesses as possible.

 Group information so that we are likely to get everything we need with only one

trip to the disk.

2. Early work – Early Work assumed that files were on tape. Access was sequential and the

cost of access grew in direct proportion to the size of the file.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

3. The emergence of Disks and Indexes – As files grew very large, unaided sequential access

was not a good solution. Disks allowed for direct access and Indexes made it possible to

keep a list of keys and pointers in a small file that could be searched very quickly. With

the key and pointer, the user had direct access to the large, primary file.

4. The emergence of Tree Structures – As indexes also have a sequential flavour, when they

grew too much, they also became difficult to manage. The idea of using tree structures to

manage the index emerged in the early 60’s. However, trees can grow very unevenly as

records are added and deleted, resulting in long searches requiring many disk accesses to

find a record.

5. Balanced Trees – In 1963, researchers came up with the idea of AVL trees for data in

memory. AVL trees, however, did not apply to files because they work well when tree

nodes are composed of single records rather than dozens or hundreds of them. In the 1970’s

came the idea of B-Trees which require an O(logk N) access time where N is the number

of entries in the file and k, th number of entries indexed in a single block of the B-Tree

structure --> B-Trees can guarantee that one can find one file entry among millions of

others with only 3 or 4 trips to the disk.

6. Hash Tables – Retrieving entries in 3 or 4 accesses is good, but it does not reach the goal

of accessing data with a single request. From early on, Hashing was a good way to reach

this goal with files that do not change size greatly over time. Recently, Extendible Dynamic

Hashing guarantees one or at most two disk accesses no matter how big a file becomes.

Conceptual Toolkit: File Structure Literacy

Design problems & design tools – Decrease the number of disk accesses by collecting data into

buffers, blocks, or buckets. Manage the growth of these collections by splitting them and finding

new ways to combine these basic tools of file design.

Conceptual tools – methods of framing and addressing a design problem. Each tool combines ways

of representing data with specific operations.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Fundamental File Processing Operations

Physical Files and Logical Files

Operating System is responsible for associating a logical file in a program to a physical file in disk

or tape, writing to or reading from a file in a program is done through the Operating System.

 Physical file: physically exists on secondary storage; known by the operating system;

appears in its file directory .

 Logical file, what your program actually uses, a ‘pipe’ though which information can be

extracted, or sent.

 Operating system: get instruction from program or command line; link logical file with

physical file or device .

The figure specifies that the application program relies on the operating system to take care of the

details of the telephone switching system. Note that from the program point of view, input

devices(keyboard) and output devices(console, pointer, etc) are treated as files. places where bytes

come from or sent to. These may be thousand of physical files on a disk, but a program only have

a limited number of logical files open at the same time.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

To deal with Files

 – An object stream should be defined (The logical name)

 fstream file_name; // for Input and output.

 ifstream file_name; // for Input

 ofstream file_name; // for Output

 – Logical file should be connected to the physical file and the mode should be specified.

 • Filename.open(“Physical file name”, mod)

 Or

 • It can be done through the constructor

 – E.g., ofstream file_name(“test.txt”, ios::out);

The physical file has a name, for instance “account.txt”

The logical file has a logical name used for referring to the file inside the program. The logical

name is a variable inside the program, for instance “infile”.

Opening Files

The operating system would hook up the logical identifier with the physical file. Then need to

declare what intend to do with the file. In general two options are there open an existing file, create

a new file.

The open function called is used to create or open a file. This is present in the header “fcntl.h”.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Pmode- protection mode = 0751 = 111 101 001

 rwe rwe rwe

 (owner) (group) (others)

Example

Closing Files

Files are usually closed automatically by the operating system when a program terminate normally.

The execution of close statement within a program is needed only to protect it against data loss in

the event that the program is interrupted and to free up logical filenames for reuse.

Reading and writing

Reading and writing are fundamental to file processing; they are the actions that make file

processing an input/output(I/O) operation. The form of the read and write statements used in

different languages varies.

 Read and Write Functions.

 Files with C streams and C++ stream classes.

 Program in C++ to display the contents of a file.

 Detecting End-of-File.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

1. Read and Write Functions

Reading and writing at a relatively low level. It is useful to have a kind of systems-level

understanding of what happens when send and receive information to and from a file.

A low level read call requires three pieces of information, expressed as arguments to a

generic read function.

Source_file – the read call must know where it is to read from.(Remember, before we do

any reading, we must have already opened the file so the connection between a logical file and

a specific physical file or device exists.

Destination_addr – read must know where to place the information it reads from the input

file. In this function specify the destination by giving the first address of the memory block

where to store the data.

Size – Read must know how much information to bring in from the file. Here the argument

is supplied as a byte count.

A write statement is similar; the only difference is that the data moves in the other direction:

Destination_file – the logical file name that is used for sending the data.

Source_addr – write must know where to find the information it will send.

Size – the number of bytes to be written must be supplied.

2. Files with C streams and C++ stream classes

I/O operation in C and C++ are based on the concept of a stream. The first uses the standard

C functions defined in header file stdio.h. this is often referred to as C streams or C

input/output. The second uses the stream classes of header files iostream.h and fstream.h

this is often referred to as c++ streams.

Other files can be associated with streams through the use of the fopen function:

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

The return value file and the arguments filename and type have the following meanings:

The argument filename of the second constructor and the method open are just as seen

before. These two operations attach the fstream to a file. The value of mode controls the

way the file is opened, like the flags and type argument. The value is set with a bit-wise or

of constants defined in class ios.

3. Programs in C++ to display the contents of a file

The Program includes the following Steps:

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

4. Detecting End-of-File

 Each C++ stream has a state that can be queried with function calls.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

The function fail, which returns true(1) if the previous operation on the stream failed. A function

end_of_file can be used to test for end-of-file. As read from a file, the operating system keeps

track of our location in the file with a read/write pointer. This is necessary: when the next byte is

read, the system knows where to get it. The end_of_file function queries the system to see

whether the read/write pointer has moved past the last element in the file. If it has, end_of_file

returns true; otherwise it returns false.

Seeking

The action of moving directly to a certain position in a file is often called seeking. A seek requires

at least two pieces of information.

1. Seeking with C streams

2. Seeking with C++ Streams

Now, if want to move directly from the origin to the 373d position in a file called data, so no need

to move sequentially through the first 372 position. Instead, can say

1. Seeking with C streams

In unix a file can be viewed as very large array of bytes that are stored on secondary

memory. In an array of bytes in memory can move to any particular byte using a subscript.

The C stream seek function “fseek”provides a similar capability for files. Syntax of fseek

is:

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

2. Seeking with C++ streams

Seeking with C++ streams is almost similar to C streams with following syntactic differences:

 An object of type fstream has two file pointers. A get pointer for input and put pointer for

output. Two functions are used to move these pointers. Seekg moves the get pointer and

seekp moves the put pointer.

 The seek operations are methods of the stream classes. Hence the syntax is:

Here the value of origin comes from ios class. The values are:

 ios::beg – from beginning of the file.

 ios::cur – from current position.

 ios::end – from end of the file.

Example: file.seekg(373,ios::beg); file.seekp(373,ios::beg)

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Special Characters in Files

You may encounter some difficulty with extra, unexpected characters that turn up in your files

with character that disappear and with numeric counts that are inserted into your files. Some

example of the kinds of things you might encounter:

The Unix Directory Structure

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

A unix file system is a tree structured organization of directories, with the root of the tree signified

by the character /. All the directories including the root contains two types of files

Regular files and Directories.

Any file in the unix file system can be uniquely identified by the absolute pathname that begins

with root directory. all the pathname that begin with the current directory is called as relative

pathname. The special file names ‘.’ Stands for current directory and ‘..’ stands for parent directory.

Physical Devices and Logical Files

1. Physical Devices as Files

2. The Console, the keyboard, and standard error

3. I/O Redirection and pipes

1. Physical Devices as Files

2. The Console, the keyboard, and standard error

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

3. I/O Redirection and pipes

File-Related Header Files

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Unix File System Commands

Unix provides many commands for manipulating files. Unix manual for more information on

how to use them.

Disks

1. The organization of disks

2. Estimating capacities and space needs

3. Organizing tracks by sector

4. Organizing tracks by block

5. Nondata overhead

6. The cost of a disk access

7. Effect of block size on performance: a unix example

8. Disk as bottleneck

Disk drives belong to a class of devices known as direct access storage devices(DASDs) because

they make it possible to access data directly. DASDs are contrasted with serial devices, the other

major class of secondary storage devices. Serial devices use media such as magnetic tape that

permit only serial access, which means that a particular data item cannot be read or written until

all of the data preceding it on the tape have been read or written in order.

1. The organization of disks

Magnetic disks come in many forms. So called hard disks offer high capacity and low

cost per bit. Hard disks are the most common disk used for file processing.

The information stored on a disk is stored on the surface of one or more platters. The

arrangement is such that the information is stored in successive tracks on the surface of

the disks. Each track is often divided into number of sectors. A sector is the smallest

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

addressable portion of a disk. Disk drives have a number of platters. The tracks that are

directly above and below one another form a cylinder can be accessed without moving

the arm that holds the read/write head. Moving this arm is called seeking. The arm

movement is the slowest part of reading information from a disk.

2. Estimating capacities and space needs

Storage capacity of a disk range from hundreds of millions to billions of bytes. In a disk

each platter has two surfaces. So the number of tracks per cylinder is twice the number of

platters. The capacity of the disk is a function of the number of cylinders, the number of

tracks per cylinder and the capacity of the track.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

3. Organizing tracks by sector

 The physical placement of sector

The sectors are usually adjacent, fixed sized segments of tracks that happen to hold

a file. This is a good way to view the file logically, but it may not be a good way to

store sectors physically. If the sectors are placed one right after the other, all in the

same track we cannot read adjacent sectors. The disk controller after reading the

data, takes some time to process the received information before it is ready to accept

the next. If the sectors are placed physical adjacent to each other then we would

miss the start of the following sector while we are processing the one we have just

read in. Due to this would be able to read only one sector per revolution. This

problem can be solved by interleaving the sectors. An interval of several physical

sectors are left between logically adjacent sectors. For a disk of interleaving factor

of 5 the following figure shows the organization.

 Cluster

A cluster is a fixed number of contiguous sectors. Once a given cluster has been

found on a disk all sector in that cluster can be accessed without requiring an

additional seek. The file manager ties logical sectors to the physical location of the

cluster they belong to by using a file allocation table(FAT). Each entry in the FAT

is an entry giving the physical location of the cluster.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

 Extents

Extents of a file are those parts of the file which are stored in contiguous clusters.

It is preferable to store the entire file in one extent. But this may not be possible

due to various reasons like non availability of contiguous space errors in allocated

sectors etc.

 Fragmentation

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

4. Organizing tracks by block

Sometimes disk tracks are not divided into sectors, but into integral numbers of user-

defined blocks whose sizes can vary.

In the above figure illustrate the dtfference between one view of data on a sectored track

and that on a blocked track. A blocking organization does not present the sector-spanning

and fragmentation problems of sectors because blocks can vary in size to fit the logical

organization of the data. A block is usually organized to hold an integral number of logical

records. The term blocking factor is used to indicate the number of records trhat are to be

stored in each block in a file.

In blocking-addressing schemes, each block of data is usually accompanied by one or more

subblocks containing extra information about the data block. Typically there is a count

subblock that contains the number of bytes in the accompanying data block(figure 3.9a).

There may also be a key subblock containing the key for the last record in the data

block(figure.3.9b). When key subblocks are used, the disk controller can search a track for

a block with desired key. This approach can result in much more efficient searches than

normally possible with sector-addressable schemes, in which keys are generally cannot be

interpreted without first loading them into primary memory.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

5. Nondata overhead

Both blocks and sectors require that a certain amount of space be taken up on the disk in

form of nondata overhead. Some of the overhead consists of information that is stored on

the disk during performatting which is done before the disk can be used.

6. The cost of a disk access

A disk access can be divided into three distinct physical operations, each with its own

cost:

 Seek Time – the time taken for read/write head move to the required cylinder is

called seek time. The amount of time spent seeking during a disk access depends

on how far the arm/head has to move. Since it is difficult to know exactly how

many track will be traversed in every seek. We determine the average seek time.

Most hard disks available today have average seek time of less than 10

milliseconds.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

 Rotational Delay – the time taken for a disk to rotate and bring the required sector

under read/write head is called rotational delay. This is considered to be half of

the time taken for one rotation. If the hard disk spins at the speed of 500rpm thren

it takes 12ms to complete the rotation, so the rotational delay is 6ms.

 Transfer Time – the time taken to transfer one byte of data from track to

read/write head is called transfer time. Transfer time can be calculated using

7. Effect of block size on performance: a unix example

The results are summarized in table 3.2.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

8. Disk as bottleneck

Disk performance is increasing steadily, even dramatically, but disk speeds still lag far

behind local network speeds. A number of techniques are used to solve this problem. One

is multiprogramming, in which the CPU works on other jobs while waiting for the data to

arrive. But if multiprogramming is not available or if the process simply cannot afford to

lose so much time waiting for the disk, methods must be found to speed up disk I/O. One

technique now offered on many high-performance systems is called striping. Disk striping

involves splitting the parts of a file on several different drives, then letting the separate

drives deliver parts of the file to the network simultaneously. Disk striping can be used to

put different blocks of the file on different drives or to spread individual blocks onto

different drives.

Magnetic Tape

1. Types of Tape System

2. An Example of a High-Performance Tape System

3. Organization of Data on Nine-Track Tapes

4. Estimating Tape Length Requirements

5. Estimating Data Transmission Times

Many years ago tape systems were widely used to store application data. An application that

needed data from a specific tape would issue a request for the tape, which would be mounted by

an operator onto a tape drive. At present tapes are primarily used as archival storage. That is,

data is written to tape to provide low cost storage and then copied to disk whenever it is needed.

Tapes are very common as backup devices for PC systems. In high performance and high

volume applications, tapes are commonly stored in racks and supported by a robot system that is

capable of moving tapes between storage racks and tape drives.

1. Types of Tape System

 Table shows a comparison of some current systems. In the past, most computer

installations had a number of reel-to-reel tape drives and large numbers of racks or cabinets

holding tapes. The primary media was one-half inch magnetic tape on 10.5-inch reels with 3600

feet of tape.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

2. An Example of a High-Performance Tape System

3. Organization of Data on Nine-Track Tapes

 On a tape the logical position a byte within a file corresponds directly to physical

position relative to the start of the file. A surface of a typical tape consist of parallel tracks each

of which is a sequence of bits. If there are nine tracks the nine bits that are at corresponding

positions in the nine respective tracks are taken to constitute 1 byte plus a parity bit which is also

called as a frame. Frames are grouped into data block size may vary tapes are often read one

block at a time and as they cannot stop or start immediately, blocks are separated by interblock

gaps. The performance of the tape is measured by

 Tape Density: no. of bits per inch

 Tape Speed: no. of inches transmitted per sec

 Size of Interblock gap: space b/w any two data block.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

4. Estimating Tape Length Requirements

The length of the tape is calculated using the formula

Suppose it is required to store a backup of one million records on a 6250bpi tape which

would has a interblock gap of 0.3 inches and a blocking factor of 50. Calculate the tape

length required.

Given – no. of rec = 1000000

 Bpi= 6250

 g = 0.3 inches

 blocking factor = 50

to find – L ?

s= n*(b+g)

b= block size(bytes per block)/tape density(bytes per inch)

b= 50/6250

= 0.008 inch

s = 1000000*(0.008+0.3)

s = 308000 inch

s= 308000/12

s = 25666.6 feet

5. Estimating Data Transmission Times

Transmission rate is affected by tape density and tape speed. Transmission rate can be

calculated using

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

There are other factors that can influence performance, block size is generally considered to

be the one variable with the greatest influence on space utilization and data transmission rate.

The other factors have included- gap size, tape speed , and recording density- are often

beyond the control of the user. Another factor that can sometimes be important is the time it

takes to start and stop the tape.

Disk versus Tape

FOR

COMPARISON
MAGNETIC TAPE MAGNETIC DISK

Basic Used for backup, and

storage of less frequently

used information.

Used as a secondary storage.

Physical Plastic thin, long, narrow

strip coated with magnetic

material.

Several platters arranged above each

other to form a cylinder, each platter

has a read-write head.

Use Idle for sequential access. Idle for random access.

Access Slower in data accessing. Fast in data accessing.

Update Once data is fed, it can't be

updated.

Data can be updated.

Data loss If the tape is damaged, the

data is lost.

In a case of a head crash, the data is

lost.

Storage Typically stores from 20 GB

to 200 GB.

From Several hundred GB to

Terabytes.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

CD-ROM

Introduction to CD-ROM

1. A Short History of CD-ROM

2. CD-ROM as a File Structure Problem

Stands for "Compact Disc Read-Only Memory." A CD-ROM is a CD that can be read by a

computer with an optical drive. The "ROM" part of the term means the data on the disc is "read-

only," or cannot be altered or erased. Because of this feature and their large capacity, CD-ROMs

are a great media format for retail software. The first CD-ROMs could hold about 600 MB of data,

but now they can hold up to 700 MB. CD-ROMs share the same technology as audio CDs, but

they are formatted differently, allowing them to store many types of data.

1. A Short History of CD-ROM

CD-ROM is the offspring of videodisc technology developed in the late 1960s and early

1970s, before the advent of the home VCR. The goal was to store movies on disc. The

consumer products industry spent a great deal of money developing the different

technologies, including several approaches to optical storage, then spent years fighting over

which approach should become standard.

The surviving format is one called LaserVision. The LaserVision format supports

recording in both a constant linear velocity (CLV) format that maximizes storage capacity

and a constant angular velocity (CAV) format that enables fast seek performance. By using

the CAV format to access individual video ‘frames quickly, a number of organizations,

including the MIT Media Lab, produced prototype interactive video discs that could be

used to teach and entertain.

In the early 1980s, a number of firms began looking at the possibility of storing digital,

textual information on LaserVision discs. LaserVision stores data in an analog form; it is,

after all, storing an analog video signal. Different firms came up with different ways of

encoding digital information in analog form so it could be stored on the disc.

This time they worked with other players in the consumer products industry to develop a

licensing system that resulted in the emergence of CD audio as a broadly accepted, standard

format as soon as the first discs and players were introduced. CD audio appeared in the

Expense Magnetic tapes are less

expensive.

Magnetic disk is more expensive.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

United States in early 1984. CD-ROM, which is a digital data format built on top of the

CD audio standard, emerged shortly thereafter. The first commercially available CD-ROM

drives appeared in 1985.

In 1985 the firms emerging from the videodisc/digital data industry, all of which were

‘relatively small, called together many of the much larger firms moving into the CD-ROM

industry to begin work on a standard file system that would be built on top of the CD-ROM

format. In a rare display of cooperation, the different firms, large and small, worked out

the main features of a file system standard by early summer of 1986; that work has become

an official international standard for organizing files on CD-ROM.

2. CD-ROM as a File Structure Problem

CD-ROM presents interesting file structure problems because it is a medium with great

strengths and weaknesses. The strengths of CD-ROM include its high storage capacity,

its inexpensive price, and its durability. The key weakness is that seek performance on a

CD-ROM is very slow, often taking from a half second to a second per seek.

Physical Organization of CD-ROM

1. Reading Pits and Lands

2. CLV instead of CAV

3. Addressing

4. Structure of a Sector

In this Physical organization of CD-ROM having 4 types.\

1. Reading Pits and Lands

CD-ROM is a descendent of CD Audios. i.e., listening to music is sequential and does not

require fast random access to data.

Reading Pits and Lands: CD-ROMs are stamped from a glass master disk which has a

coating that is changed by the laser beam. When the coating is developed, the areas hit by

the laser beam turn into pits along the track followed by the beam. The smooth unchanged

areas between the pits are called lands. When we read the stamped copy of the disc, we

focus a beam of laser light on the track as it moves under the optical pickup. The pits scatter

the light, but the lands reflect most of it back to the pickup. This alternating pattern of high-

and low-intensity reflected light is the signal used to reconstruct the original digital

information.

1’s are represented by the transition from pit to land and back again. 0’s are represented by

the amount of time between transitions. The longer between transitions, the more 0s we

have. Given this scheme, it is not possible to have 2 adjacent 1s: 1s are always separated

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

by 0s. As a matter of fact, because of physical limitations, there must be at least two 0s

between any pair of 1s.

Raw patterns of 1s and 0s have to be translated to get the 8-bit patterns of 1s and 0s that

form the bytes of the original data.

EFM encofing (Eight to Fourteen Modulations) turns the original 8 bits of data into 14

expanded bits that can be represented in the pits and lands on the disk.

Since 0s are represented by the length of time between transition, the disk must be rotated

at a precise and constant speed. This affects the CD-ROM drive’s ability . to seek quickly.

2. CLV instead of CAV

Sl.No. Constant Linear Velocity(CLV) Constant Angular Velocity(CAV)

1. Tracks are in spiral format Tracks are in circular format

2. Generally used to store audio data

(songs)

Used to store normal data(files)

3. Rate of spinning of disk would

change as data is read from outer

sector towards inner sector

Rate of spinning remains constant as

data is read from outer sector towards

inner sector

4. All the sectors contain equal amount

of data so no wasteage of memory

Sector in outer track contain less data

compared to inner track so some

memory is wasted.

5. Seek performance is poor Seek performance is relatively good

6.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

3. Addressing

Different from the “regular” disk method. Each second of playing time on a CD is divided

into 75 sectors. Each sector holds 2 Kilobytes of data. Each CD-ROM contains at least one

hour of playing time.

==> The disc is capable of holding at least 60 min * 60 sec/min * 75 sector/sec * 2

Kilobytes/sector = 540, 000 Kbytes. Often, it is actually possible to store over 600, 000

KBytes. Sectors are addressed by min:sec:sector e.g., 16:22:34.

4. Structure of a Sector

When we want to store sound, we need to convert a wave pattern into digital form. Figure

3.14 shows a wave. At any given point in time, the wave has a specific amplitude.

Figure 3.15 The effect of sampling at less than twice the frequency of the wave. CD audio uses 16

bits to store each amplitude measurement; that means that the “ruler” we use to measure the height

of the wave has 65,536 different gradations. To approximate a wave accurately through digital

sampling, we need to take the samples at a rate that is more than twice as frequent as the highest

frequency we want to capture. This makes sense if you look at the wave in Fig. 3.15.

CD-ROM divides up this “raw” sector storage as shown in Fig. 3.16 to provide 2 kilobytes of user

data storage, along with addressing information, error detection, and error correction information.

The error correction information is necessary because, although CD audio contains redundancy

for error correction, it is not adequate to meet computer data storage needs. The audio error

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

correction would result in an average of one incorrect byte for every two discs. The additional

error correction information stored within the 2352-byte sector decreases this error rate to 1

uncorrectable byte in every twenty thousand discs.

CD-ROM Strengths & Weaknesses

1. Seek Performance – the chief weakness of CD-ROM is the random access performance.

The current magnetic disk technology takes 30 msec to access the data, while CD-ROM

would take 500msec.

2. Data Transfer Rate – A CD-ROM reads 70 sectors per sec this data transfer rate

definition cannot be changed. It is a modest transfer rate about five times faster than the

transfer rate for floppy disks. This transfer rate is fast enough relative to CD-ROM’s seek

performance.

3. Storage Capacity – A CD-ROM holds more than 600 megabytes of data. This is a huge

amount of memory for storage. Many typical text databases and document collections

published on CD-ROM use only a fraction of memory with such large capacity it enables

us to build indexes and other structures that can help us overcome the disadvantage of

seek performance of CD-ROM.

4. Read Only Access – CD-ROM is a publishing medium, a storage device that cannot be

changed after manufacture. The major advantage is that we never have to worry about

updating. This simplifies the file structure design.

5. Asymmetric Writing & Reading – with CD-ROM we create files that are placed on the

disc once , then we distribute the disc, which is accessed millions of times with CD-ROM

we make investment in intelligent carefully designed file structures only once, users can

enjoy the benefits of this investment again and again.

Storage as a Hierarchy

The best mixture of devices for a computing system depends on the needs of the system’s users,

we can imagine any computing system as a hierarchy of storage devices of different speed,

capacity, and cost. Figure 3.17 summarizes the different types of storage found at different levels

in such hierarchies and shows approximately how they compare in terms of access time, capacity,

and cost.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

A Journey of a Byte

1. The file Manager

2. The I/O Buffer

3. The byte leaves memory: the I/O processor & disk controller

What happens when the program statement: write(textfile, ch, 1) is executed ?

Part that takes place in memory:

Statement calls the Operating System (OS) which overseas the operation.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

In this journey of a byte there will be a 3 types.

1. The file Manager

File manager (Part of the OS that deals with I/O).

2. The I/O Buffer

The file manager determines whether the sector that is to contain the P is already in memory or

needs to be loaded into memory. If the sector needs to be loaded, the file manager must find an

available system I/O buffer space for it and then read it from the disk. Once it has the sector in a

buffer in memory, the file manager can deposit the P into its proper position in the buffer (Fig.

3.20). The system 1/O buffer allows the file manager to read and write data in sector-sized or

block-sized units. In other words, it enables the file manager to ensure that the organization of data

in memory conforms to the organization it will have on the disk.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

3. The byte leaves memory: the I/O processor & disk controller

I/O Processor: Wait for an external data path to become available (CPU is faster than data-

paths ==> Delays)

Disk Controller:

 I/O Processor asks the disk controller if the disk drive is available for writing.

 Disk Controller instructs the disk drive to move its read/write head to the right track

and sector.

 Disk spins to right location and byte is written.

Buffer Management

1. Buffer Bottlenecks.

2. Buffering Strategies.

In this buffer management concept there are two types let’s in detail.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

1. Buffer Bottlenecks.

that a file manager allocates I/O buffers that are big enough to hold incoming data, but we

have said nothing so far about how many buffers are used. In fact, it is common for file

managers to allocate several buffers for performing I/O. To understand the need for several

system buffers, consider what happens if a program is performing both input and output on

one character at a time and only one I/O buffer is available. When the program asks for its

first character, the I/O buffer is loaded with the sector containing the character, and the

character is transmitted to the program. If the program then decides to output a -inaracter,

the I/O buffer is filled with the sector into which the output character needs to go,

destroying its original contents. Then when the next input character is needed, the buffer

contents have to be written to disk to make room for the (original) sector containing the

second input character, and so on.

2. Buffering Strategies.

What happens to data travelling between a program’s data area and secondary storage?

The use of Buffers: Buffering involves working with a large chunk of data in memory so

the number of accesses to secondary storage can be reduced.

 Multiple Buffering

Assume a program that is writing to a disk, writing or reading from a disk is the

consuming. To utilize CPU efficiently the following method can be used while

writing contents to disk. We can maintain two buffers, the contents from one buffer

can be written to the disk while the other buffer can be filled. Once the contents are

written the jobs of the buffer can be exchanged. This process of swapping the roles

of two buffer after each output or input is called double buffering.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

 Move mode and locate mode

For the program to use the contents of system buffer, it needs to be copied to the

programs data area. The time taken to move the contents would be substantial. This

way of handling buffer data is called move mode as it involves moving chunks of

data from one place in memory to another before it is accessed. There are two ways

that move mode can be avoided:

The file manager can directly perform I/O operation between secondary storage and

program data area, no extra move is required.

The file manager can provide the location where the system buffers are present by

presenting pointers.

Both the techniques of handling buffer is called locate mode. When locate mode is

used program is able to operate directly on data eliminating the need to transfer data

between I/O buffer and program buffer.

 Scatter/Gather I/O

While reading a file with many blocks and each block many consists of a header

followed by data. In order to process the data we need to remove header and move

it to separate buffer, remove data and move it to separate buffer with scatter input,

a single read call identifies not one, but a collection of buffer into which data from

a single block is to be scattered. The converse of scatter input is gather output with

gather output several buffers can be gathered and written with a single write call;

this avoids the need to copy them to a single output buffer.

I/O in Unix

1. The Kernel

the process of transmitting data from a program to an external device can be described as

proceeding through a series of layers. The topmost layer deals with data in logical,

structural] terms. This reflects the view that an application has of what goes into a file. The

layers that follow collectively carry out the task of turning the logical object.into a

collection of bits on a physical device, Likewise, the topmost'I/O layer in Unix deals with

data primarily in logical terms. This layer in Unix consists of processes that impose certain

logical views on files. Processes are associated with solving some problem, such as

counting the words in the file or searching for somebody's address. The components of the

kernel that do I/O are illustrated in

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Figure 3.23. The kernel views all I/O as operating on a sequence of bytes, so once we pass

control to the kernel all assumptions about the logical view of a file are gone. The decision

to design Unix this way—to make all operations below the top layer independent of an

application’s logical view of a file—is unusual. It is also one of the main attractions in

choosing Unix as a focus for this text, for Unix lets us make all of the decisions about the

logical structure of a file, imposing no restrictions on how we think about the file beyond

the fact that it must be built from a sequence of bytes.

When your program executes a system call such as ‘

write (fd, &ch, 1);

the kernel is invoked immediately. The routines that let processes communicate directly with the

kernel make up the system call interface. In this case, the system call instructs the kernel to write

a character to a file. The kernel I/O system begins by connecting the file descriptor (£d) in your

program to some file or device in the file system. It does this by proceeding through a series of

four tables that enable the kernel to find its way from a process to the places on the disk that will

hold the file they refer to. The four tables are

 file descriptor table;

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

 an open file table, with information about open files;

 a file allocation table, which is part of a structure called an index node;

 a table of index nodes, with one entry for each file in use.

Although these tables are managed by the kernel’s I/O system, they are, in a sense,

“owned” by different parts of the system:

 The file descriptor table is owned by the process (your program).

 The open file table and index node table are owned by the kernel.

 The index node is part of the file system.

The four tables are invoked in turn by the kernel to get the information it needs to write to your

file on disk. Let’s see how this works by looking at the functions of the tables. The file descriptor

table (Fig. 3.24a) is a simple table that associates each of the file descriptors used by a process

with an entry in another table, the open file table. Every process has its own descriptor table, which

includes entries for all files it has opened, including the “files” stdin, stdout, and stderr. The open

file table (Fig. 3.24b) contains entries for every open file. Every time a file is opened or created, a

new entry is added to the open file table. These entries are called file structures, and they contain

important information about how the corresponding file is to be used, such as the read/write mode

used when it was opened. The information is found in an index node, more commonly referred to

as an inode (Fig. 3.25). An inode is a more permanent structure than an open file table’s file

structure. A file structure exists only while a file is open for access, but an inode exists as long as

its corresponding file exists. For this reason, a file’s inode is kept on disk with the file (though not

physically adjacent to the file).

2. Linking File Names to File

It is instructive to look a little more closely at how a file name is linked to the corresponding

file. All references to files begin with a directory, for it is in directories that file names are

kept. In fact, a directory is just a small file that contains, for each file, a file name together

with a pointer to the file’s inode on disk.!2 This pointer from a directory to the inode of a

file is called a hard link.

3. Normal Files, Special Files, & Sockets

The “everything is a file” concept in Unix works only when we recognize that some files

are quite a bit different from others. Can observe in previous Fig. 3.23 that the kernel

distinguishes among three different types of files. Normal files are the files that this text is

about. Special files almost always represent a Stream of characters and control signals that

drive some device, such as a line printer or a graphics device. The first three file descriptors

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

in the descriptor table (Fig. 3.24a) are special files. Sockets are abstractions that serve as

endpoints for interprocess communication.

4. Block I/O

The three different types of files access their respective devices via three different I/O

systems: the block I/O system, the character I/O system, and the network I/O system.

Henceforth we ignore the second and third categories, since it is normal file I/O that we

are most concerned with in this text. The block I/O system is the Unix counterpart of the

file manager in the journey of a byte. It concerns itself with how to transmit normal file

data, viewed by the user as a sequence of bytes, onto a block-oriented device like a disk or

tape.

5. Device Drivers

For each peripheral device there is a separate set of routines, called a device driver, that

performs the I/O between the I/O buffer and the device. A device driver is roughly

equivalent to the I/O processor program described in the journey of a byte.

6. The Kernel & File Systems

The Unix concept of a file systent. A Unix file system is a collection of files, together with

secondary information about the files in the system. A file system includes the directory

structure, the directories, ordinary files, and the inodes that describe the files.

7. Magnetic Tape & Unix

Important as it 1s to computing, magnetic tape is somewhat of an orphan in the Unix view

of I/O. A magnetic tape unit has characteristics similar to both block I/O devices (block

oriented) and character devices (primarily used for sequential access) but does not fit nicely

into either category. Character devices read and write streams of data, not blocks, and block

devices in general access blocks randomly, not sequentially.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Fundamental File Structure Concepts, Managing Files of Records

Field & Record Organization

1. A Stream File

2. Field Structures

3. Reading a Stream of Fields

4. Record Structures

5. A record structure that uses a length indicator

6. Mixing numbers & characters: use of a file dump

In this field & record organization there are 6 types.

1. A Stream File

The the objects we wish to store contain name and address information about a collection

of people. “Using Objects in C++,” to store information about individuals, Figure 4.1 (and

filewritestr.cpp) gives a C++ function (operator <<) to write the fields of a Person toa file

as a stream of bytes.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

2. Field Structures

Various ways of adding structure to files to maintain the identity of fields.

 Method 1 – Fix the length of fields.

 Method 2 – Begin each field with a length indicator.

 Method 3 – Separate the fields with delimiter.

 Method 4 – Use a “Keyword = Value” expression to identify fields.

1. Method 1 – Fix the length of fields

In this method we organise fields by limiting the maximum size of each field. This is called

as fixed length fields. As the fields are of predictable lengths, we can pull them back out

of the file simply by counting our way to the file simply by counting our way to the end of

the file.

The disadvantage of the method

 Padding is required to bring the fields upto a fixed length makes the file much

larger.

 Data might be lost if it is too long to fit into the allocated amount of space.

 Due to the above mentioned problems the fixed field approach to structing data is

inappropriate for data that contains a large amount of variability in the length of fields. Fixed

length field is a very good solution if the fields are already fixed in length or there is very little

variation in field lengths.

2. Method 2 – Begin each field with a length indicator

The end of the field can be reached by knowing the length of the field. The length of each

field can be stored at the begin of each field. These fields are called length based fields.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

3. Method 3 – separate the fields with delimiters

The identity of fields can be preserved by separating them with delimiter. We need to

choose some special characters that will not appear in a field and insert that delimiter into

the file after writing each field.

4. Method 4 – use a “keyword = value” expression to identify fields

It is the first structure in which a field provides information about itself. Such self

describing structures are very useful tools for organizing files in many application Using

this structure it is easy to tell what are all fields present in a file. It is easy to identify the

missing fields. The main disadvantage of this structure is the 50% or more of the files space

could be taken up by the keywords.

3. Reading a Stream of Fields

It contains the implementation of the extraction operation. Extensive use is made of the

istream method get line. The arguments to get line are a character array to hold the string,

a maximum length, and a delimiter. Get line reads up to the first occurrence of the delimiter,

or the end-of-line, whichever comes first.

Method-1

Method-2

Method-3

Method-4

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

4. Record Structures

 Method 1 – Make Records a Predictable number of bytes

 Method 2 – Make records a predictable number of fields

 Method 3 – Begin each record with a length indicator

 Method 4 – Use an index to keep track of addresses

 Method 5 – Place a delimiter at the end of each record

Method 1 – Make Records a Predictable number of bytes

A fixed length record file is one in which each records contains the same number of bytes.

The size can be determined by adding the maximum space occupied by each field. Though

the size of the entire record is fixed, the fields inside the record can be varying size or of

fixed size.

Method-1

Method-2

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Method 2 – Make records a predictable number of fields

In this method the number of fields in each record is fixed. This method is also called as

fixed field count structure. Assuming that every record has six fields then each record can

be displayed by counting the fields modulo six.

Method 3 – Begin each record with a length indicator

In this method every record would begin with integer. The first field would contain an

integer value which would indicate the length of record in bytes. This method is

commonly used in handling variable length records.

Method 4 – Use an index to keep track of addresses

In this method we use an index to keep a byte offset for each record in the original file. The

byte offset allows us to find the beginning of each successive record and compute the length

of each record. We look up the position of the record in the index then seek to the record

in the data file.

Method 5 – Place a delimiter at the end of each record

In this method at the end of each record we place a special character which we encountered

indicates the end of the record. The delimiter character must not get in the way of

processing.

Method-3

Method-4

Method-5

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

5. A record structure that uses a length indicator

6. Mixing numbers & characters: use of a file dump

1- writestr

2

3- readstr

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Using Classes to Manipulate Buffers

1. Buffer Class for Delimited Text Fields

2. Extending Class Person with Buffer Operations

3. Buffer Classes for Length-Based and Fixed-Length Fields

In this concept there are 3 types,

1. Buffer Class for Delimited Text Fields

The first buffer class, DelimTextBuffer, supports variable-length buffers whose fields are

represented as delimited text. A part of the class definition is given as Fig. 4.11. The full

definition is in filedeltext.h The following code segment declares objects of class Person

and class DelimTextBuf fer, packs the person into the buffer, and writes the buffer to a file:

http://www.csgnetwork.com

/asciiset.html

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

2. Extending Class Person with Buffer Operations

The buffer classes have the capability of packing any number and type of values, but they

do not record how these values are combined to make objects. In order to pack and unpack

a buffer for a Person object, for instance, we have to specify the order in which the members

of Person are packed and unpacked. It included operations for packing and unpacking the

members of Person objects in insertion (<<) and extraction (>>) operators.

3. Buffer Classes for Length-Based and Fixed-Length Fields

Representing records of length-based fields and records of fixed-length fields requires a

change in the implementations of the Pack and Unpack methods of the delimited field class,

but the class definitions are almost exactly the same. The main members and methods of

class LengthTextBuf fer are given in Fig. 4.12. The full class definition and method

implementation are given in lentext.h and lentext.cpp

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Using Inheritance in the C++ Stream Classes

1. Inheritance in the C++ Stream Classes

2. A Class Hierarchy for Record Buffer Objects

In this concept there are two types,

1. Inheritance in the C++ Stream Classes

The main advantage of inheritance is that it helps us to reuse the code. C++ incorporates

inheritance to allow multiple classes to share members and method. One or more base class

define member and methods which are then used by subclasses. Actually the fstream class

is defined in the same manner fstream inherits properties of iostream. Iostream inherits

properties from istream and ostream. Fstream also inherits properties from fstream base.

Fstream class uses multiple inheritance i.e a classcan have more than one base class. In

case of multiple inheritance, both the parent class can have common methods. When

inherited both the copies would be present in the child class. To avoid this we can use the

virtual keyword in the parent class.

2. A Class Hierarchy for Record Buffer Objects

In buffer class hierarchy the IOBuffer class is at the top most level. The common methods

required for fixed length buffer and variable length buffer is present. The variable length buffer

class and fixed length buffer class would have their own implementation of various pack() and

unpack() methods depending upon the field structure used.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Managing Fixed-Length, Fixed-Field Buffers

Class FixedLengthBuffer .is the subclass of IOBuffer that supports read and write of fixed-length

records. For this class, each record is of the same size. Instead of storing the record size explicitly

in the file. Along with the record, the write method just writes the fixed-size record. The read

method must know the size in order to read the record correctly. Each FixedLengthBuf fer object

has a protected field that records the record size, Class FixedFieldBuffer, as shown in Fig. 4.17

and files fixfld.hand fixfld.cpp, supports a fixed set of fixed-length fields.

class FixedFieldBuffer keeps track of the field sizes. The protected member FieldSize holds the

field sizes in an integer array. The AddField method Is used to specify field sizes.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

An Object-Oriented Class for Record Files

An object of class Buf ferFile is created from a specific buffer object and can be used to open and

create files and to read and write records. Figure 4.18 has the main data methods and members of

BufferFile. Once a BufferFile object has been created and attached to an operating system file,

each read or write is performed using the same buffer. Hence, each record is guaranteed to be of

the same basic type. The following code sample shows how a file can be created and used with a

DelimFieldBuffer

A buffer is created, and the BufferFile object file is attached to it. Then Open and Read methods

are called for file. After the Read, buffer contains the packed record, and buffer.Unpack puts the

record into myobject.

Record Access

1. Record Keys

2. A Sequential Search

3. Unix tools for sequential processing

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

4. Direct access

In this Record Access there are four types,

1. Record Keys

When looking for an individual record, it is convenient to identify the record with a key

based on record contents. The key should be unique so that duplicate entries can be

avoided.

Foe example, in the previous section example we might want to access the “Ames record”

or the “Mason record” rather than thinking in terms of the “first record” or “second record”.

When we are looking for a record containing the last name Ames we want to recognize it

even if the user enters the key in the form “AMES”, “ames” or “Ames”. To do this we must

define a standard form of keys along with associated rules and procedures for converting

keys into this standard form. This is called as canonical form of the key.

2. A Sequential Search

Reading through the file, record by record, looking for a record with a particular key is

called sequential searching. In general the work required to search sequentially for a

record in a file with ‘n’ records in proportional to n: i.e the sequential search is said to be

of the order O(n).

This efficiency is tolerable if the searching is done on the date present in the main

memory, but not for, which has to be extracted from secondary storage device, due to

high delay involved in accessing the data. Instead of extracting the records from the

secondary storage device one at a time sequential we can access some set of records at

once from the hard disk, store it in main memory and do the comparisons. This is called

as record blocking. In some cases sequential search is superior like:

Repetitive hits: Searching for patterns in ASCII files. Searching records with a certain

secondary key value.

Small Search Set: Processing files with few records.

Devices/media most hospitable to sequential access: tape, binary file on disk

3. Unix tools for sequential processing

The most common file structure used in Unix is ASCII file with newline character as record

delimiter. All files created on Unix would have the same structure, such files are easy to

process.

Some of the UNIX commands which perform sequential access are:

Cat: displays the content of the file sequentially on the console.

%cat filename

Example: %cat myfile

Ames Mary 123 Maple Stillwater OK74075

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Mason Alan 90 Eastgate Ada OK74820

wc: counts the number of words lines and characters in the file

%wc filename

Example: %wc myfile

2 14 76

grep: (generalized regular expression) Used for pattern matching

%grep string filename

Example: % grep Ada myfile

Mason Alan 90 Eastgate Ada OK74820

4. Direct access

The most radical alternative to searching sequentially through a file for a record is a

retrieval mechanism known as direct access. The major problem with direct access is knowing

where the beginning of the required record is. One way to know the beginning of the required

record or byte offset of the required record is maintaining a separate index file. The other way is

by relative record number RRN. If a file is a sequence of records, the RRN of a record gives its

position relative to the beginning of the file. The first record in a file has RRN 0, the next has RRN

1, and so forth. To support direct access by RRN, we need to work with records of fixed length. If

the records are all the same length, we can use a record’s RRN to calculate the byte offset of the

start of the record relative to the start of the file. For example if we are interested in the record with

an RRN of 546 and our file has fixed length record size of 128 bytes per record, we can

calculate the byte offset of a record with an RRN of n is

Byte offset = 546 * 128 = 69888

In general Byte offset = n * r where r is length of record.

More about Record Structures

1. Choosing a record structure and record length.

Once we decide to fix the length of our records so we can use the RRN to give us direct

access to a record, we have to decide on a record length. Clearly, this decision is related to

the size of the fields we want to store in the record. Sometimes the decision is easy. Suppose

we are building a file of sales transactions that contain the following information about

each transaction:

•A six-digit account number of the purchaser,

•Six digits for the date field,

•A five-character stock number for the item purchased,

•A three-digit field for quantity, and

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

•A ten-position field for total cost.

These are all fixed-length fields; the sur of the field lengths is 30 bytes.

there are two general approaches we can take toward organizing fields within a fixed-

length record. The first, illustrated in Fig. 5.1(a) and implemented in class

FixedFieldBuffer, uses fixed-length fields inside the fixed-length record. This is the

approach we took for the sales transaction file previously described. The second approach,

illustrated in Fig. 5.1(b), uses the fixed-length record as a kind of standard-sized container

for holding something that looks like a variable-length record. The first approach has the

virtue of simplicity: it is very easy to “break out” the fixed-length fields from within a

fixed-length record. The second approach lets us take advantage of an averaging-out effect

that usually occurs: the longest names are not likely to appear in the same record as the

longest address field.

2. Header Records

It is often necessary or useful to keep track of some general information about a file to

assist in future use of the file. A header record is often placed at the beginning of the file

to hold information such as number of records, type of records the file contains, size of the

file, date and time of file creation, modification etc. Header records make a file self

describing object, freeing the software that accesses the file from having to know a priori

everything about its structure. The header record usually has a different structure than the

data record.

3. Adding header to c++ buffer classes

The full definition of our buffer class hierarchy, has been extended to include methods that

support header records. Class TOBuf fer includes the following methods:

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Encapsulating Record Operations in a Single Class

A good object-oriented design for making objects persistent should provide operations to read and

write objects directly. So far, the write operation requires two separate operations: pack into a

buffer and write the buffer to a file.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

File Access & File Operation

In our discussions we have looked at

 Variable-length records,

 Fixed-length records,

 Sequential access, and

 Direct access.

The first two of these relate to aspects of file organization; the last two have to do with file

access. The interaction between file organization and file access is a useful one; we need to look

at it more closely before continuing. Most of what we have considered so far falls into the

category of file organization:

 Can the file be divided into fields?

 Is there a higher level of organization to the file that combines the fields into records?

 Doall the records have the same number of bytes or fields?

 How do we distinguish one record from another?

 How do we organize the internal structure of a fixed-length record so we can distinguish

between data and extra space?

We have seen that there are many possible answers to these questions and that the choice of a

particular file organization depends on many things, including the file-handling facilities of the

language you are using and the use you want to make of the file.

Prepared By,

Ranjitha J

Assistant Professor

Dept, of ISE

Atria Institute of Technology

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Name of the Course: File Structure
NOTES

Organization of Files for Performance, Indexing

Data Compression

Data compression involves encoding the information in a file in such a way that it takes up less

space. Various techniques are available for compressing data. Few of them are very general and

some are designed for specific kinds of data, such as speech, pictures, text or instrument data.

The main advantage of data compressions is:

 Use less storage, resulting in cost saving

 Can be transmitted faster, decreasing the access time

 Can be processed faster sequentially

Various Techniques of Data Compression

1. Using a different notation

Fixed length fields are good candidates for compression of this type. For example, if a

class person contains a field by name state which would occupy 2 ASCII bytes i.e., 16

bits compression can be done in the following manner. As there are only fifty states, we

could represent all possible states in only 6 bits, i.e. we can encode all state names in a

single 1 byte field, resulting in a space saving of 1 byte or 50%, per occurrence of the

state field.

2. Supressing repeating sequences (Run Length Encoding)

Sparse arrays are good candidates for run length encoding. It is an example of

redundancy reduction. Run length encoding algorithm is a simple one whose associated

costs rarely affect performance appreciably. The algorithm works in the following

manner

 We choose one special unused byte value to indicate that run length encoding

starts

 Copy the contents to file in a sequence, except where the same data value occurs

more than once in succession

 Where the same value occurs more than once in succession, we substitute the

following 3 bytes in order

o The special run length code indicator(ff)

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

o The value that is repeated

o The number of times that the value is repeated

 Example: 22 23 24 24 24 24 24 25 26 28 28 28 27 29 29 29 29 29 24

 Run length indicator is ff

 22 23 ff 24 05 25 26 ff 28 03 27 ff 29 05 24

3. Assigning variable length codes

Variable length codes are based on the principle that some values occur more frequently

than others, so the codes for those values should take the least amount of space. Variable

length codes are another form of redundancy reduction. This scheme is the oldest and

most common of the variable length codes, the morse code. The problem with morse

code is that the look up table is static and the codes generated would not change

depending upon the occurrence of the characters in the current input. Inorder to overcome

this problem need dynamically generate the look up table.

Huffman code determines the probabilities of each values occurring in the data set and

then builds a binary tree in which the search path for each value represents the code for

that value. More frequently occurring value are given shorter search paths in the tree.

This tree is turned into a table that can be used to encode and decode the data.

letter a b c d e f g

probability 0.4 0.1 0.1 0.1 0.1 0.1 0.1

code 1 010 011 0000 0001 0010 0011

abef 101000010010

4. Irreversible compression techniques

It is based on the assumption that some information can be sacrificed. This compression

is less common in data files. This is applied only those files where at times when the

information that is lost is of little or no value. An example of irreversible compression

would be shrinking a raster image from say 400-by-400 pixels to 100-by-100 pixels. The

new image contains 1 pixel for every 16 pixels in the origin image.

5. Compression in Unix

Berkeley and system unix provide various compression routines. System has routines

called pack and unpack which uses Huffman code on a byte-by-byte basis. Pack routines

used for compression achieves 25 to 40 percent reduction on text files. The pack routine

during compression automatically appends .z at the end signaling that the file has

compressed using the standard compression algorithm. Berkely unix uses routines called

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

compress and uncompress which uses an effective dynamic method called -ziv compress

method appends .z at the end of the compressed file.

Reclaiming Space in Files

1. Record deletion & storage compaction

2. Deleting fixed-length records for reclaiming space dynamically

3. Deleting variable-length records

4. Storage fragmentation

5. Placement strategies

Let us consider a file of records (fixed length or variable length)

►We know how to create a file, how to add records to a file, modify the content of a record. These

actions can be performed physically by using the various basic file operations we have seen (fopen,

fclose, fseek, fread, fwrite)

►What happens if records need to be deleted?

►There is no basic operation that allows us to remove part of a file. Record deletion should be

taken care by the program responsible for file organization

In this there are 5 types

1. Record deletion & storage compaction

Storage compaction makes files smaller by looking for places in a file where there is no

data at all and recovering this space. Any record-deletion strategy must provide some

way for us to recognize records as deleted. A simple and usually workable approach is to

place a special mark in each deleted record.

Figures 6.3(a) and 6.3(b) show a name and address file. Here the second record is

marked as deleted. Once we are able to recognize a record as deleted, the next question is

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

how to reuse the space from the record. Approaches to this problem that rely on storage

compaction do not reuse the space for a while. The records are simply marked as deleted

and left in the file for a period of time. Programs rising the file must include logic that

causes them to ignore records that are marked as deleted. One benefit to this approach is

that it is usually possible to allow the user to undelete a record with very little effort. This

is particularly easy if you keep the deleted mark in a special field rather than destroy

some of the original data, as in our example.

The reclamation of space from the deleted records happens all at once. After deleted

records have accumulated for some time, a special program is used to reconstruct the file

with all the deleted records squeezed out as shown in Fig. 6.3(c). If there is enough space,

the simplest way to do this compaction is through a file copy prog ram that ships over the

deleted records. It is also possible, though more complicated and time-consuming, to do

the compaction in place. Either of these approaches can be used with both fixed- and

variable-length records. The decision about how often to run the storage compaction

program can be based on either the number of deleted records.

2. Deleting fixed-length records for reclaiming space dynamically

Storage compaction is the simplest and most widely used of the storage reclamation

methods we discuss. There are some applications, however, that are too volatile and

interactive for storage compaction to be useful. In these situations, need to reuse the space

from deleted records as soon as possible. So discussion of such dynamic storage

reclamation with a second look at fixed-length record deletion, since fixed-length records

make the reclamation problem much simpler.

In general, to provide a mechanism for record deletion with subsequent reutilization of the

freed space, need to be able to ensure 2 things:

 That deleted records are marked in some special way, and

 That we can find the space that deleted records once occupied so we can reuse that

space when we add records.

 Space reiitilization can take the form of looking through the file, record by

record, until deleted record is found.

 Linked List

The use of a linked list for stringing together all of the available records can meet

both of these needs. A linked list is a data structure in which each element or node

contains some kind of reference to its successor in the list. In Fig. 6.4 we use a -1

in the point- er field to mark the end of the list. When a list is made up of deleted

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

records that have become available space within the file, the list is usually called

an avail list.

 Stacks

The simplest way to handle a list is as a stack. A stack is a list in which all insertions

and removals of nodes take place at one end of the list. So, if we have an avail list

managed as a stack that contain5 relative record numbers (RRN) 5 and 2, and then

add RRN 3, it looks like this before and after the addition of the new node:

When a new node is added to the top or front of a stack, we 5ay that it is pushed

onto the stack. If the next thing that happens is a request for some available space,

the request is filled by taking RRN 3 from the avail list. This is called popping the

stack. The list returns to a state in which it contains only records 5 and 2.

 Linking and stacking deleted records

Stack implementation using linked list. The two criteria for rapid access to

reusable space from deleted records.

1. A way to know immediately if there are empty slots in the file, and

2. A way to jump directly to one of those slots if it costs.

Record 5 is the first record on the avail list (top of the stack) as it is the record that

is most recently deleted. Following the linked list, we see that record 5 points to

record 3. Since the link field for record 3 contains -1, which is our end-of-list

marker, we know that record 3 is the last slot avail- able for reuse.

Figure 6.5(b) shows the same file after record 1 is also deleted. Note that the

contents of all the other records on the avail list remain unchanged. Treating the list

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

as a stack results in a minimal amount of list reorganization when we push and pop

records to and from the list. If we now add a new name to the file, it is placed in

record 1, since RRN 1 is the first available record. The avail list would return

to the configuration shown in Fig. 6.5(a). Since there are still two record slots on

the avail list, we could add two more names to the file without increasing the size

of the file.

 Implementing fixed-length record deletion

Implementing mechanisms that place deleted records on a linked avail list and that

treat the avail list as a stack is relatively straightforward. We need a suitable place

to keep the RRN of the first available record on the avail list. Since this is

information that is specific to the data file, it can be carried in a header record at

the start of the file.

When we delete a record, we must be able to mark the record as delet- ed and then

place it on the avail list. A simple way to do this is to place an

* (or some other special mark) at the beginning of the record as a deletion mark,

followed by the RRN of the next record on the avail list.

Once we have a list of available records within a file, we can reuse the space

previously occupied by deleted records. For this we would write a single function

that returns either

o the RRN of a reusable record slot or

o the RRN of the next record to be appended if no reusable slots are

available.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

3. Deleting variable-length records

We have seen that to support record reuse through an avail list, we need

 A way to link the deleted records together into a list (that is, a place to put a link

field);

 An algorithm for adding newly deleted records to the avail list; and

 An algorithm for finding and removing records from the avail list when we are

ready to use them.

 An Avail List of Variable-Length Records

Begin with a variable-length record file containing the three records for Ames,

Morrison, and Brown introduced earlier. Figure 6.6(a) shows that the file

looks like (miv us the header) before any deletions, and Fig. 6.6(b) shows what

it looks like after the deletion of the second record. The periods in the deleted

record signing discarded characters.

 Adding and Removing Records

It is possible, even likely, that we need to search through the avail list for a record

slot that is the right size. We can’t just pop the stack and expect the first available

record to be big enough. Finding a proper slot on the avail 1ist now means

traversing the list until a record slot that is big enough to hold the new record is

found.

For example, suppose the avail list contains the deleted record slots shown in Fig.

6.7(a), and a record that requires 55 bytes is to be added. 3ince the avail list i5

not empty, we traverse the records whose sizes are 47 (too small), 38 (too small),

and 72 (big enough). Having found a slot big enough to hold our record, we

remove it from the avail list by creating new link that jumps over the record as

shown in Fig. 6.7(b). If we had reached the end of the avail list before finding a

record that was large enough, we would have appended the new record at the end

of the file.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

4. Storage fragmentation

the fixed-length record version of our three-record file (Fig. 6.8). The dots at the ends of

the records represent characters we use as padding between the last field and the end of

the records. The padding is wasted space; it is part of the cost of using fixed-length

records. Wasted space within a record is called internal fragmentation.

Compare the fixed- length example with the one in Fig. 6.9, which uses the variable length

record structure—a byte count followed by delimited data fields. The only space (other

than the delimiter5) that is not used for holding data in each record is the count field. If we

assume that this field uses 2 bytes, this amounts to only 6 bytes for the three-record file.

The fixed-length record file wastes 24 bytes in the very first record.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Figure 6.10 shows how the problem could occur with our sample file when the second

record in the file is deleted and the following record is added:

Ham|All28 ElmlAda|OK|70332I

It appears that escaping internal fragmentation is not so easy. The slot vacated by the

deleted record is 37 byres larger than is needed for the new record. Since we treat the extra

37 bytes as part of the new record, they are not on the avail list and are therefore unusable,

But instead of keeping the 64-byte record slot intact, suppose we break it into two parts:

one part to hold the new Ham record, and the other to be placed back on the avail list. Since

we would take only as much space as necessary for the Ham record, there would be no

internal fragmentation.

Figure 6.11 shows what our file looks like if we use this approach to insert the record for

Al Ham. We steal the space for the Ham record from the end of the 64-byte slot and leave

the first 35 bytes of the slot on the avail list. (The available space is 35 rather than 37 bytes

because we need 2 bytes to form a new size field for the Ham record.) The 35 bytes still on

the avail list can be used to hold another record.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

 Figure 6.12 shows the effect of inserting the following 25-byte record:

As we would expect, the new record is carved out of the 35-byte record that is on the avail

list. The data portion of the new record requires 25 bytes, and we need 2 more bytes for

another size field. This leaves 8 bytes in the record still on the avail list.

These 8 bytes are not usable, even though they are not trapped inside any other record. This

is an example of external fragmentation.

5. Placement strategies

There are several strategies for selecting a record from AVAIL LIST when adding a new

record:

First-Fit Strategy –

AVAIL LIST is not sorted by size. – First record large enough to hold new record is

chosen.

► Example: – AVAIL LIST: size=10,size=50,size=22,size=60 – record to be added:

size=20 – Which record from AVAIL LIST is used for the new record?

Best-Fit Strategy –

AVAIL LIST is sorted by size. – Smallest record large enough to hold new record is

chosen.

► Example: – AVAIL LIST: size=10,size=22,size=50,size=60 – record to be added:

size=20 – Which record from AVAIL LIST is used for the new record?

Worst-Fit Strategy –

AVAIL LIST is sorted by decreasing order of size. – Largest record is used for

holding new record; unused space is placed again in AVAIL LIST.

► Example: – AVAIL LIST: size=60,size=50,size=22,size=10 – record to be added:

size=20 – Which record from AVAIL LIST is used for the new record?

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Internal Sorting and Binary Searching

1. Finding Things in Simple Field and Record Files

Sequential search is one of the simplest forms of file searching. The file is searched

one record at a time, until a record is found with a particular key Sequential search is

slow:

• If there are n records in the file, you may have to look at all of them before you find

the one you want

• If the key you are looking for is in the file, on average you will need to look through

n/2 records before finding it Sequential search is said to be O(n), because the time it

takes is proportional to n.

Although sequential search is slow, it is not appalling Sequential search always looks

at the adjacent record in the file next

o Therefore, it makes good use of the fact that every read of a file does

not result in a disk access

o A big chunk of the file is read into a buffer in main memory

o So most reads of the file will not actually result in disk accesses

2. Binary Search

Let’s take an example:

• Suppose we’re looking for a student with id number 76634 in a file of 10,000 fixed

length records

• Assume further than the file has been sorted into ascending order of student

numbers

• We start by comparing 76634 with the student number of the record in the middle of

the file, that is record 5,000

• If record 5000’s student number if greater than 76634, we know that 76634 will be

found in the first half of the file

• If it is less than 76634, then we know 76634 can be found in the

second half of the file

• Assuming it we know that 76634 is in the first half, we now compare this with the

student number of the record at position 2,500 to find out which quarter of the file

76634 is in

• The process is repeated until either 76634 is found or we have narrowed the number

of potential records to zero

• This is called binary search

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

3. Binary Search Versus Sequential Search

The difference becomes dramatic if there are a lot of records in the file

• When we double the number of records, we double the number of comparisons for

sequential search

• When we double the number of records, we add one to the number of comparisons

for binary search

• But, even though it might take sequential search 5,000 comparisons, and binary

search only 14 comparisons, does not mean that binary search is 5,000 / 14 = 357

times faster than sequential search

4. Sorting a Disk File in Memory

Consider the operation of any internal sorting algorithm with which you are familiar.

The algorithm requires multiple passes over the list that is to be sorted, comparing and

reorganizing the elements. Some of the items in the list are moved a long distance from

their original positions in the list. If such an algorithm were applied directly to data

stored on a disk, it is clear that there would be a lot of jumping around, seeking, and

rereading of data. This would be a very slow operation—unthinkably slow.

5. The Limitations of Binary Searching and Internal Sorting

If we have a sorted file we can find a record quickly with binary search.

But binary search is still not ideal:

Problem 1: binary search requires several disk accesses:

• Although binary search is a tremendous improvement over sequential search, those

disk accesses are still expensive

• Ideally we would be able to find the data in just one or two accesses

• Ideally, we would be able to work out at which record number the data is stored

from the key.

Problem 2: Keeping a file sorted can be very expensive

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

• When we add records to the file, we need to resort the file. This can be very, very

expensive. If we add records as often as we search for records, we will spend

most of our time sorting the file. Even if we can find the position to put the new

record into cheaply, we need to move records to make space for the new record

Better solutions will have at least one of the following

features:

• They will not involve re−ordering the file when a new record is added

• They will use data structures that allow rapid, efficient re−ordering of the file

Problem 3: An Internal sort works only on small files

An internal sort works only if we can read the entire contents of a file into the

computer’s electronic memory. If the file is so large that we cannot do that, we need a

different kind of sort.

Keysorting

Keysort, sometimes referred to as tag Sort, is based on the idea that when we sort a file in memory

the only things that we really need to sort are the record keys; therefore, we do not need to read

the whole file into memory during the sorting process. Instead, we read the keys from the file into

memory, sort them, and then rearrange the records in the file according to the new ordering of the

keys.

1. Description of the Method

Suppose a file needs to be sorted, but it is too big to fit into main memory. To sort the

file, we only need the keys. Suppose that all the keys fit into main memory

►Idea

– Bring the keys to main memory plus corresponding RRN

– Do internal sorting of keys

– Rewrite the file in sorted order

How much effort we must do?

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

 Read file sequentially once

 Go through each record in random order (seek)

 Write each record once (sequentially)

Keysort Algorithm

2. Limitations of the keysort method

Limitations - Can be more expensive than first appears

 Applies only to files on disk

 Reads each record twice

 Second read involves reading records in sorted order which may require a

random seek on disk

 Writes are sequential but interleaved with random seeks

 Size of file that can be sorted is limited by the number of key/pointer pairs that

can be contained in RAM

3. Another solution: why bother to write the file back?

This is an instance of one of our favorite categories of solutions to computer science

problems: if some part of a process begins to look like a bottleneck, consider skipping

it altogether. Ask if you can do without it. Instead of creating a new, sorted copy of the

file to use for searching, we have created a second kind of file, an index file, that is to

be used in conjunction with the original file. If we are looking for a particular record,

we do our binary search on the index file and then use the RRN stored in the index file

record to find the corresponding record in the original file.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

4. Pinned Records

Remember that in order to support deletions we used AVAIL LIST AVAIL LIST, a list

of available records. The AVAIL LIST AVAIL LIST contains info on the physical

information of records. In such a file, a record is said to be pinned. If we use an index

file index file for sorting, the AVAIL LIST AVAIL LIST and positions of records

remain unchanged. This is a good news.

What is an Index?

An index is a table containing a list of keys and corresponding reference fields. All indexes are

based on the concept of keys and references. Even though indexes are very simple they still

provide a powerful tool for file processing. It is an alternative tool to scan a file sequentially to

find a record. An index let us impose order on a file without rearranging the file. Indexing gives

us keyed access to variable length record file.

A Simple Index for Entry-Sequenced File

Simple indexes use simple arrays. An index lets us impose order on a file impose order on a file

without rearranging the file. Indexes provide multiple access paths multiple access paths to a file

multiple indexes multiple indexes (like library catalog providing search for author, book and

title). An index can provide keyed access to variable-length record files.

Index is sorted (main memory). Records appear in file in the order they entered.

How to search for a recording with given LABEL ID?

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

– Binary search (in main memory) in the index: find LABEL ID, which leads us to the

referenced field.

– Seek for record in position given by the reference field.

How to make a persistent index

– i.e. how to store the index into a file when it is not in main memory.

How to guarantee that the index is an accurate reflection of the contents of the file

– This is tricky when there are lots of additions, deletions and update.

Class Text Index of Fig. 7.4 encapsulates the index data and index operations. The full

implementation of class Text Index- An index is implemented with arrays to hold the keys and

record references. Each object is declared with a maximum number of entries and can be used

for unique kéys (no duplicates) and for nonunique keys (duplicates allowed). The methods

Insert and Search do most of the work of indexing. The protected method Find locates the element

key and returns its index. If the key is not in the index, Find returns -1. This method is used by

Insert, Remove, and Search. In the case of class Text Index, the protected members Keys and

Recaddr s are created dynamically by the constructor and should be deleted by the destructor to

avoid an obvious memory leak:

TextIndex::-TextIndex ()(delete Keys; delete RecAddrs;}

Using the index to provide access to the data file by Label ID is a simple matter. The code to use

our classes to retrieve a single record by key from a recording file is shown in the function

RetrieveRecording:

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

with an open file and an index to the file in memory, RetrieveRecording puts together the index

search, file read, and buffer unpack operations into a single function. Keeping the index in memory

as the program runs also lets us find records by key more quickly with an indexed file than with a

sorted one since the binary searching can be performed entirely in memory.

Using Template Classes in C++ for Object I/O

It is the C++ template feature that supports parameterized function and class definitions, and

RecordFile is a template class. As shown in Fig. 7.5, class RecordFile includes the parameter

RecType, which is used as the argument type for the read and write methods of the class. Class

RecordFile is derived from Bufferfile, which provides most of the functionality. The constructor

for RecordFile is given inline and simply calls the Bufferfile constructor.

The definitions of pFile and rFile just given are not consistent With use of a template class. The

actual declarations and calls are:

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

RecordFile <Person> pFile; pFile . Read (p);

RecordFile <Recording> rFile; rFile . Read (p);

Class RecordFile accomplishes the goal of providing object- oriented 1/O for data. Adding I/O to

an existing class (class Recording, for example) requires three steps:

Object Oriented Support for Indexed, Entry-Sequenced Files of Data Objects

1. Operations Required to Maintain an Indexed File

The support and malntenance of an entry-sequenced file coupled with a simple index

requires the operations to handle a number of different tasks. Besides the

RetrieveRecording function described previously, other operations used to find things by

means of the index include the following:

 Creating the files – two files must be created. A data file to hold the data objects

and index file to hold the primary key index. Both index file and the data file are

created as empty files with header records.

 Loading the index into memory – only the index file would be loaded into the

memory using the index file corresponding record in the file is read through the

reference in the index file.

 Rewriting the index file from memory – the index file that was loaded on to memory

needs to be rewritten back to the index file on the close operation. The action of

rewriting the index is very important to guard against power failure, the operator

turning the machine off at the wrong time and other such disasters. One of the

dangers associated with copy of an index on disk might be out of date and we should

prevent our programs from using such out dated index copy using some safeguard

measures. The following two mechanism can be implemented in the program to

avoid such problem.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

o – there should be mechanism that permits the program to know when the

index is out of date. This can be done by setting a status flag as soon as the

copy of the index in memory is changed.

o – if a program detects that an index is out of date, the program must have

access to a procedure that reconstructs the index from the data file and this

must be done automatically by the program.

 Record Addition – adding a new record to the data file requires that we also add an

entry to the index file. Index is always in a sorted order, so adding a new entry

means that rearrangement is required to place the new entry at the correct location.

All the required rearrangement can be done quickly as the entire is in the memory

and no file access is required.

 Record Deletion – the main advantage of indexed file organisation is that the record

in file need not be moved around to maintain an ordering on the file inorder to delete

a record we just remove the corresponding entry from index and the space created

can be filled up shifting the other entries to close up the space. This operation may

not be expensive as the entire index is the memory and no file operation is done. At

end a new file can be created for only those entire that are present in the index file.

 Record Updating –

o the update changes the value of the key field,

o the update does not affect the key field.

In the first type of update an recording in both index as well as the data file is

required. In the second type reordering is required only if the size of the new

record is more than the available space.

2. Class TextIndexedFile

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Class TextIndexedFile is defined in Fig. 7.7. It supports files of data objects with primary

keys that are strings. As expected, there are methods: Create, Open, Close, Read (sequential

and indexed), Append, and Update. In order to ensure the correlation between the index

and the data file, the members that represent the index in memory (Index), the index file

(IndexFile), and the data file (DataFile) are protected members. The only access to these

member is for the user is through the methods.

The Key method is used to extract the hey value from the record. A search of the index is

used to determine if the key is already in the file. If not, the record is appended to the data

file, and the resulting address is inserted into the index along with the key.

3. Enhancement to Class TextIndexedFile

 Other types of keys

TextIndexedFile

o support a variety of data object classes, but restrict the keytype to string

(char *)

=> change a class to a template class

(1) add a template parameter

- replace char * by keyType

(2) replace a class name with the parameter name

- produce a template class SimpleIndex with a parameter for the key type

 Data object class hierarchies

TextIndexedFile

o every object stored in a RecordFile must be of the same type

o Can the I/O classes support objects that are of a variety of types but all

from the same type hierarchy ?

 if the type hierarchy supports virtual pack methods, the Append

and Update will correctly add records to indexed files

 if BaseClass supports Pack, Unpack, and Key (virtual functions),

the class TextIndexedFile<BaseClass> will correctly output

objects derived from BaseClass

o What about Read ?

o in a virtual function call, the type of the calling object determines which

method to call

BaseClass * obj = new subclass1;

obj->Pack(Buffer); //virtual function calls

obj->Unpack(Buffer);

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

o the type of the object referenced by obj (*obj) determines which Pack and

Unpack are called

o In the case of Pack

 information from *obj, of type subclass1, is transferred to

Buffer

o In the case of Unpack

 information from Buffer is transferred to *obj

 if Buffer has been filled from an object of class subclass2 or

BaseClass, the unpacking cannot be done correctly

 the source of information (contents of buffer) determines the type of

the object in the Unpack, not the memory object

=> Read must be able to determine reliably the type of the target object

 Multirecord index files

TextIndexedFile

o the entire index fits in a single record

TextIndex Index;

BufferFile IndexFile;

o the maximum # of records in the file is fixed when the file is created

=> Modify class TextIndexedFile to allow the index to be an array of TextIndex

objects

=> Add protected methods Insert, Delete, and Search to manipulate the arrays of

index object

 Optimization of operation

Use binary search in the Find method, which is used by Search, Insert, and

Remove.

o Avoid writing the index record back to the index file when it has not

been changed

o add a flag (where ?) to the index object to signal when it has been

changed

 Set to false when the record is initially loaded into memory and

set to true whenever the index record is modified by the Insert

and Remove methods

 Close method can check this flag and write the record only

when necessary

o useful for manipulating multirecord index files

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Indexes That are Too Large to Hold in Memory

 Disadvantages of simple indexes, which is too large to hold in memory

 binary searching of the index requires several seeks

 binary searching of an index on secondary storage is not fast

 index rearrangement due to record addition or deletion requires

shifting or sorting records on secondary storage

these problems are no worse than those associated with any file that is

sorted by key

 Advantages over the use of a data file sorted by key, even if the index cannot be

held in memory

 can use a binary search to access to a record in a variable-length record

file

 sorting and maintaining the index can be less expensive than the data file

 can rearrange the keys without moving the data records, when pinned

records are involved in the data files

 can use multiple indexes to provide multiple views of a data file

Indexing to Provide Access by Multiple Keys

Suppose that you are looking at a collection of recordings with the following information about

each of them: Identification Number, Title..

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Secondary key fields - relate a secondary key to a primary key and after consulting the secondary

key index, consult the primary key index. In the above Fig 7.9 it’s a Class definition for secondary

key index and a read function. Two binding methods

(1) Direct addressing - binding of a secondary key to a specific address the secondary key

references(Beethoven) is directly related to a byte offset(256)

(2) Indirect addressing - binding of a secondary key to a specific primary key the secondary key

references(Beethoven) is related to a primary key(DG18807)

Record Addition - when a secondary index is present, adding a record to the file means adding

and entry to the secondary index. The cost of doing this is very similar to the cost of adding an

entry to the primary index: either records must be shifted, or a vector of pointers to structures needs

to be rearranged. As with primary indexes, the cost of doing this decreases greatly if the secondary

index can be read into memory and changed there. Note that the key field in the secondary index

file is stored in canonical form (all of the composers' names are capitalized), since this is the form

we want to use when we are consulting the secondary index.

Record Deletion - Deleting a record usually implies removing all references to that record in the

file system. So removing a record from the data file would mean removing not only the

corresponding entry in the primary index but also all of the entries in the secondary indexes that

refer to this primary index entry. The problem with this is that secondary indexes, like the primary

index, are maintained in sorted order by key. Consequently, deleting an entry would involve

rearranging the remaining entries to close up the space left open by deletion.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Record Updating - That the primary key index serves as a kind of protective buffer, insulating

the secondary indexes from changes in the data file. This insulation extends to record updating

as well. If our secondary indexes contain references directly to byte offsets in the data file, then

updates to the data file that result in changing a record's physical location in the file also require

updating the secondary indexes. But, since we are confining such detailed information to the

primary index, data file updates affect the secondary index only when they change either the

primary or the secondary key. There are three possible situations:

 Update changes the secondary key: if the secondary key is changed, we may have to

rearrange the secondary key index so it stays in sorted order. This can be a relatively

expensive operation.

 Update changes the primary key: this kind of change has a large impact on the primary

hey index but often requires that we update only the affected reference field (Label ID in

our example) in all the secondary indexes. This involves searching the secondary indexes

(on the unchanged secondary keys) and rewriting the affected fixed-length field. It does

not require reordering of the secondary indexes unless the corresponding secondary key

occurs more than once in the index. If a secondary key does occur more than once, there

may be some local reordering, since records having the same secondary key are ordered

by the reference field (primary key).

 Update confined to other fields: all updates that do not affect either the primary or

secondary key fields do not affect the secondary keys index, even if the update is

substantial. Note that if there are several secondary key indexes associated with a file,

updates to records often affect only a subset of the secondary indexes.

Retrieval Using Combinations of Secondary Keys

Secondary key indexes are useful in allowing the following kinds of queries:

 Find all records with composer “BEETHOVEN”

 Find all records with composer “BEETHOVEN” and title “Symphony No.9”

 Use the matched list and primary key index to retrieve the two records from the file.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Improving the Secondary Index Structure: Inverted lists

Two difficulties found in the proposed secondary index structures:

 We have to rearrange the secondary index file even if the new record to be added

in for an existing secondary key.

 If there are duplicates of secondary keys then the key field is repeated for each

entry, wasting space.

Solution 1

Make the secondary key index record consist of secondary key + array of references to records

with secondary key.

Problems:

 The array will take a maximum length and we may have more records.

 We may have lots of unused spaces in some of the arrays(wasting space in internal

fragmentation).

Solution 2: Inverted Lists

Organize the secondary key index as an index containing one entry for each key and a pointer to

a linked list of references.

Beethoven is a secondary key that appears in records identified by the LABLE IDs: ANG3795,

DG139201, DG18807 and RCA2626(check this by following the links in the linked list).

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Advantages:

 Rearrangement of the secondary key index file is only done when a new composer’s

name is added or an existing composer’s name is changed. Deleting or adding recordings

by a composer can be done by placing a “-1” in the reference field in the secondary index

file.

 Rearrangement of the secondary index file is quicker since it is smaller.

 Smaller need for rearrangement causes a smaller penalty associated with keeping the

secondary index file in disk.

 The LABEL ID list file never needs to be sorted since it is entry sequenced

 We can easily reuse space from deleted records from the LABEL ID list file since its

records have fixed-length.

Disadvantages:

 Lost of “locality” : labels of recordings with same secondary key are not contiguous in

the LABEL ID list file(seeking). To improve this, keep the LABEL ID list file in main

memory, or, if too big, use paging mechanisms.

Selective Indexex

We can build selective indexes, such as:

Recordings released prior to 1970, recordings since 1970.

This may be useful in queries involving Boolean “and” operations: “retrieve all the recordings by

Beethoven released since 1970”.

 Binding

In our example of indexes, when does the binding of the index to the physical location of the

record happens?

For the primary index, binding is at the time the file is constructed. For the secondary index, it is

at the time the secondary index is used.

Advantages of postponing binding (as in our example):

 We need small amount of reorganization when records are added/deleted.

 It is a safer approach : important changes are done in one place rather than in many

places.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Disadvantages:

 It results in slower access time (binary search in secondary index plus binary search in

primary index).

When to use a tight binding?

 When data file is nearly static (little or no adding, deleting or updating of records).

 When rapid retrieval performance is essential. Example: Data stored in CD-ROM should

use tight binding.

When to use the bind-at-retrieval system?

 When record additions, deletions and updates occur more often.

Prepared By,

Ranjitha J

Assistant Professor

Dept, of ISE

Atria Institute of Technology

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Name of the Course: File Structure
NOTES

Consequential Processing and the Sorting of Large Files, Multi-

Level Indexing and B-Trees

A Model for Implementing Consequential Processes

Consequential operations involve the coordinated processing of two or more sequential lists to

produce a single output list. Sometimes the processing results in a merging, or union, of the items

in the input lists; sometimes the goal is a matching, or intersection, of the items in the lists; and

other times the operation is a combination of matching and merging.

1. Matching Names in Two Lists

2. Merging Two Lists

3. Summary of the Consequential Processing Model

We present a Single, Simple model that can be the basis for the construction of any kind of

consequential process.

1. Matching Names in two lists

Suppose we want to output the names common to the two lists Shown in Fig. 8.1. This

operation is usually called a match operation, or an intersection. We assume, for the

moment, that we will not allow duplicate names within a list and that the lists are sorted

in ascending order.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

At each step in the processing of the two lists, we can assume that we have two items to

compare: a current item from List 1 and a current item from List 2. Let's call these two

current items Item (l) and Item (2). Compare the two items to determine whether Item (1)

is less than, equal to, or greater than Item (2):

If Item (1) is less than Item (2), we get the next item from List I;

If Item (1) is greater than Item (2), we get the next item from List 2; and

If the items are the same we output the item and get the next items from the two lists.

It turns out that this can be handled very cleanly with a single loop containing one three-

way conditional statement, as illustrated in the algorithm of Fig. 8.2.

Although the match procedure appears to be quite simple, there are a number of matters

that have to be dealt with to make it work reasonably well.

 Initializing: We need to arrange things in such a way that the procedure gets going

properly.

 Getting and accessing the next list item: we need simple methods that support

getting the next list element and accessing it.

 Synchronizing: we have to make sure that the current item from one list is never

so far ahead of the current item on the other list that a match will be missed.

Sometimes this means getting the next item from List 1, sometimes from List 2,

sometimes from both lists.

 Handling end-of-file conditions: when we get to the end of either List I or List 2,

we need to halt the program.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

 Recognizing errors: when an error occurs in the data (for example, duplicate items

or items out of sequence), we want to detect it and take some action.

2. Merging Two Lists

The three-way-test, single- loop model for consequential processing can easily be modified

to handle merging of lists simply by producing output for every case of the if-then-else

construction since a merge is a union of the list contents. Method Merge2Lists is given in

Fig.8.5. Once again, you should use this logic to work, step by step, through the lists

provided in Fig. 8.1 to see how the resynchronization is handled and how the use of the

high values forces the procedure to finish both lists before terminating.

3. Summary of the Consequential Processing Model

The essential components of the model are:

 Initializing: We need to arrange things in such a way that the procedure gets going

properly.

 Getting and accessing the next list item: we need simple methods that support

getting the next list element and accessing it.

 Synchronizing: we have to make sure that the current item from one list is never

so far ahead of the current item on the other list that a match will be missed.

Sometimes this means getting the next item from List 1, sometimes from List 2,

sometimes from both lists.

An important

difference b/w

matching & merging

is that with merging

must read completely

through each of the

lists.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

 Input and output files are sequence checked by comparing the previous item value

with the new item value when a record is read.

 Handling end-of-file conditions: when we get to the end of either List I or List 2,

we need to halt the program.

 Recognizing errors: when an error occurs in the data (for example, duplicate items

or items out of sequence), we want to detect it and take some action.

Application of the Model to a General Ledger Program

1. The Problem

2. Application of the Model to the Ledger Program

1. The Problem

Suppose we are given the problem of designing a general ledger posting program as part

of an accounting system. The systern includes a journal file and a ledger file. The ledger

contains month-by- month summaries of the values associated with each of the

bookkeeping accounts. A sample portion of the ledger, containing only checking and

expense accounts, is illustrated in Fig. 8.6. The journal file contains the monthly

transactions that are ultimately to be posted to the ledger file. Figure 8.7 shows these

journal transactions.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Once the journal file is complete for a given month, meaning that it contains all of the

transactions for that month, the journal must be posted to the ledger. Posting involves

associating each transaction with its account. in the ledger.

How is the posting process implemented?

Clearly, it uses the account number as a key to relate the Journal

transactions to the ledger records. A better solution is to begin by collecting all the journal

transactions that relate to a given account. This involves sorting the journal transactions by

account number, producing a list ordered as in Fig. 8.9. Now we can create our output list

by working through both the ledger and the sorted journal consequentially, meaning that

we process the two lists sequentially and in parallel. This concept is illustrated in Fig. 8.10.

2. Application of the Model to the Ledger Program

The monthly ledger posting program must perform two tasks:

 It needs to update the ledger file with the correct balance for each account for the

current month.

 It must produce a printed version of the ledger that not only shows the beginning

and current balance for each account but also lists all the journal transactions for

the month.

As you can see in figure 8.11, the printed output from the monthly ledger posting

program shows the balances of all ledger accounts, whether or not there were

transactions for the account. In summary, there are three different steps in processing

the ledger entries:

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

 Immediately after reading a new ledger object, we need to print the header line

and initialize the balance for the next month from the previous month's balance.

 For each transaction object that matches, we need to update the account balance.

 After the last transaction for the account, the balance line should be printed.

This is the place where a new ledger record could be written to create a new

ledger file.

Figure 8.13 has the code for the three-way-test loop of method PostTransactions.

 The reasoning behind the three-way test is as follows:

 If the ledger (master) account number (Item [1]) is less-than the journal (transaction)

account number (Item[2]), then there are no more transactions to add to the ledger account

this month (perhaps there were none at all), so we print the ledger account balances

(ProcessEndMaster) and read in the next ledger account (NextItemlnList(I)). If the account

exists (MoreMasters is true), we print the title line for the new account

(ProcessNewMaster).

 If the account numbers match, then we have a journal transaction that is to be posted to the

current ledger account. We add the transaction amount to the account balance for the new

month (ProcessCurrentMaster), print the description of the transaction (ProcessItem(2)),

then read the next journal entry (NextItemlnList(1)).

 If the journal account is less- than the ledger account, then it is an unmatched journal

account, perhaps due to-an input error. We print an error message

(ProcessTransactionerror) and continue with the next transaction.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Extension of the Model to include Multiway Merging

The most common application of consequential processes requiring more than two input files is a

K-Way merge, in which want to merge K input lists to create a single, sequentially ordered output

list. K is often referred to as the order of a K-way merge.

1. A K-way Merge Algorithm

2. A Selection Tree for Merging Large Numbers of Lists

1. A K-way Merge Algorithm

This merging operation can be viewed as a process of deciding which of two input items

has the minimum value, outputting that item, then moving ahead in the list from which that

item is taken. In the event of duplicate input items, move ahead in each list.

Suppose an array of lists and array of the items (or keys) that are being used from each list

in the consequential process:

The main loop for the merge processing requires a call to a MinIndex function to find of

item with the minimum collating sequence value and an inner loop that finds all lists that

are using that item:

If that single item(key) occurs in only one list in this case the procedure becomes simpler.

The resulting merge procedure clearly differs in many ways from our initial three-way-

test, single-loop merge for two lists. Here we determine which lists have the key with the

lowest value, output that key, move ahead one key in each of those lists, and loop again.

The procedure is as simple as it is powerful.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

2. A Selection Tree for Merging Large Numbers of Lists

The K-way merge described earlier works nicely if K is no larger than 8 or so. When we

begin merging a larger number of lists, the set of sequential comparisons to find the key

with the minimum value becomes noticeably expensive.

The use of a selection tree is an example of the classic time- versus space trade-off we so

often encounter in computer science. The concept underlying a selection tree can be readily

communicated through a diagram such as that in Fig. 8.15.

The selection tree is a kind of tournament tree in which each higher-level node represents

the "winner" (in this case the minimum key value) of the comparison between the two

descendent keys. The minimum value is always at the root node of the tree. If each key has

an associated reference to the list from which it came, it is a simple matter to take the key

at the root, read the next element from the associated list, then run the tournament again.

Since the tournament tree is a binary tree, its depth is ceiling function log2K.

for a merge of K lists. The number of comparisons required to establish a new tournament

winner is, of course, related to this depth rather than being a linear function of K.

A Second Look at Sorting in Memory

Consider the problem of sorting a disk file that is small enough to fit in memory. The operation

we described involves three separate steps:

 Read the entire file from disk into memory.

 Sort the records using a standard sorting procedure.

 Write the file back to disk.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

The total time taken to sort the file is the sum of the times for the three steps. This procedure is

much faster than sorting the file in place, on the disk, because both reading and writing are

sequential and each record is read once and written once.

The three operations involved in sorting a file that is small enough to fit into memory, is there any

way to perform some of them in parallel? If we have only one disk drive, clearly can’t overlap the

reading and writing operations, but how about doing either the reading or writing (or both) at the

same time that can sort the file?

1. Overlapping Processing and I/O: Heapsort

Most of the time when we use an internal sort, we have to wait until we have the whole

file in memory before we can start sorting. Is there an sorting algorithm that is reasonably

fast and that can begin sorting numbers immediately as they are read rather than waiting

for the whole file to be in memory?

In fact there is it is called heapsort.

Heapsort solves the problem by keeping all of the keys in a structure called a heap.

A heap is a binary tree with the following properties:

 Each node has - a single key, and that key is greater than or equal to the key at its

parent node.

 It is a complete binary tree, which means that all of its leaves are on no more than

two levels and that all of the keys on the lower level are in the leftmost position.

 Because of properties 1 and 2, storage for the tree can be allocated Sequentially as

an array in such a way that the root node is index 1 and the indexes of the left and

right children of node i are 2i and 2i + 1, respectively. Conversely, the index of

the parent of node j is[j/2].

2. Building the heap while reading the file

Heap sort algorithm for sorting in decreasing order.

 Build a min heap from the i/p data.

 At this point, the smallest item is stored at the root of the heap by 1. finally,

heapify the root of the tree.

 Repeat step2 while the size of the heap is less.

The main members of s simple class Heap and its Insert methods that adds a string to the

heap.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

If you want to learn in detail – Refer this link

https://drive.google.com/file/d/1RnKDX0VTgXrAyaecmcfxtMMuZLUHs-

Tt/view?usp=sharing

https://drive.google.com/file/d/1RnKDX0VTgXrAyaecmcfxtMMuZLUHs-Tt/view?usp=sharing
https://drive.google.com/file/d/1RnKDX0VTgXrAyaecmcfxtMMuZLUHs-Tt/view?usp=sharing

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

3. Sorting while writing to the file

The Following Steps:

 Determine the value of the key in the first position of the heap. This is the

smallest value in the heap.

 Move the largest value in the heap into the first position, and decrease the number

of elements by one. The heap is now out of order at its root.

 Reorder the heap by exchanging the largest element with the smaller of its

children and moving down the tree to the new position of the largest element until

the heap is back in order.

Merging as a way of sorting large files on disk

Characteristics of the file to be sorted:

 80,00,000 records

 Size of a record = 100 bytes

 Size of the key = 10 bytes

Memory available as a work area : 10MB (not counting memory used to hold program, operating

system, I/O buffers, etc.)

Total file size = 800 MB

Total number of bytes for all the keys = 80 MB

So, we cannot do internal sorting nor keysorting.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Idea:

 Forming runs: bring as many records as possible to main memory, do internal sorting and

save it into a small file. Repeat this procedure until we have read all the records from the

original file.

 Do a multiway merge of the sorted files.

In our example, what could be the size of a run?

Available memory = 10 MB = 10,000,000 bytes

Record size = 100 bytes

Number of records that can fit into available memory = 100000 records

Number of runs = 80 runs

1. How much time does a merge sort take?

 Reading records into memory for sorting and forming runs

sort the file in 10-megabyte chunks, we read 10 megabytes at a time from the file.

In a sense, memory is a 10-megabyte input buffer that we fill up eighty times to

form the eighty runs. In computing the total time to input each run, we need to

include the amount of time it takes to access each block (seek time + rotational

delay), plus the amount of time it takes to transfer each block. We keep these two

times separate because, as we see later in our calculations, the role that each plays

can vary significantly depending on the approach used.

 Writing sorted runs to disk

The two steps above are done as follows:

Read a chunk of 10 MEGS; write a chunk of 10 MEGS (repeat this 80 times)

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

In terms of basic disk operations, we spend:

For reading: 80 seeks1 + transfer time for 800 MB

Same for writing.

 Reading sorted runs into memory for merging

 In order to minimize “seek” read one chunk of each run, so 80 chunks. Since the

memory available is 10 MB each chunk can have 10,000,000/80 bytes = 125,000

bytes = 1,250 records.

How many chunks to be read for each run?

Size of a run/size of a chunk = 10,000,000/125,000 = 80

Total number of basic “seeks” = Total number of chunks (counting all the runs) is

80 runs * 80 chunks/run = 802 chunks.

Reading each chunk involves basic seeking.

 Writing sorted file to disk, the number of basic seeks depends on the size of the

output buffer: bytes in file/bytes in output buffer.

For example, if the output buffer contains 200 K, the number of basic seeks is:

200000000/200000=4,000.

 From step 1-4 as the number of records (N) grows, step 3 dominates the running time.

2. Sorting a file that is ten times larger

In sorting phase, chunks of data small enough to fit in main memory are read stored, and

written out to a temporary file. In merge phase, the sorted sub-files are combined into a

single large file. Finally merge the resulting runs together into successively bigger runs,

until the file is sorted.

3. The cost of increasing the file size

The principle that as files grow large, so can except the time required for our merge sort

to increase rapidly. It would be nice if could find some ways to reduce this time. There

are several ways:

 Allocate more hardware (e.g., disk drives, memory), and I/O channel.

 Perform the merge in more than one step – this reduces the order of each merge

and increases the run sizes.

 Algorithmically increase the length of each run.

 Find ways to overlap I/O operations.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

4. Hardware-based improvements

 Increasing the amount of memory

Increasing memory space ought to have a substantial effect on total sorting time. A

larger memory size means longer and fewer initial runs during the sort phase, and

it means fewer seeks per run during the merge phase. The product of fewer runs

and fewer seeks per run means a substantial reduction in total seeks.

 Increasing the number of disk drives

If a separate read/write head for every run and no other users contending for use of

the same read/write heads, there would be no delay due to seek time after the

original runs are generated. The primary source of delay would now be rotational

delays and transfers, which would occur every time a new block had to be read.

 Increasing the amount of memory.

If there is only one I/O channel, no two transmissions can occur at the same time,

and the total transmission time is the one we have computed. But if there is a

separate I/O channel for each disk drive, I/O can overlap completely.

5. Decreasing the number of seeks using multiple step merges

The merge pattern that would minimize the number of comparisons for our sample

problem, in which we want to merge 800 runs, would be the 800-way merge considered.

Looked at from a point of view that ignores the cost of seeking.

6. Increasing run length using replacement selection

Replacement selection can be implemented as follows:

1. Read a collection of records and sort them using heapsort. This creates a heap of sorted

values. Call this heap the primary heap.

2. Instead of writing the entire primary heap in sorted order (as we do in a normal

heapsort), write only the record whose key has the lowest value.

3. Bring in a new record and compare the value of its Key with that of the key that has

just been output.

a. If the new key value is higher, insert the new record into its proper place in the

primary heap along with the other records that are being selected for output.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

b. If the new record’s key value is lower, place the record in a secondary heap of

records with key values lower than those already written. (It cannot be put into the

primary heap because it cannot be included in the run that is being created.)

4. Repeat step 3 as long as there are records left in the primary heap and there are records

to be read. When the primary heap is empty, make the secondary heap into the primary

heap, and repeat steps 2 and 3.

7. Replacement selection plus multiple steps merging

While these comparisons highlight the advantages of replacement selection over memory

sorting, we would probably not in reality choose the one-step merge patterns. And we have

seen that two-step merges can result in much better performance than one-step merges.

8. Using two disk drives with replacement selection

Two disk drives to which we can assign the separate dedicated tasks of reading and

writing during replacement selection. One drive, which contains the original file, does

only input, and the other does only output. This has two very nice results: (1) it means

that input and output can overlap, reducing transmission time by as much as 50 percent;

and (2) seeking is virtually eliminated.

9. More drives? More processors?

Possibilities include the following:

 Mainframe computers, many of which spend a great deal of their time sorting,

commonly come with two or more processors that can simultaneously work on

different parts of the same problem.

 Vector and array processors can be programmed to execute certain kinds of

algorithm orders of magnitude faster than scalar processors.

 Massively parallel machines provide thousands, even millions, of processors that

can operate independently and at the same time communicate in complex ways

with one another.

 Very fast local area networks and communication software make it relatively easy

to parcel out different parts of the same process to several different machines.

10. Effects of multiprogramming

The reasons for multiprogramming is to allow the operating system to find ways to

increase the efficiency of the overall system by overlapping processing and I/O among

different jobs. So, the system could be performing I/O for our job while it is doing CPU

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

processing on others, and vice versa, diminishing any delays caused by overlap of I/O

and CPU processing within our job.

11. A conceptual toolkit for external sorting

 For in-memory sorting, use heapsort for forming the original list of sorted elements

in a run. With it and double buffering, we can overlap input and output with internal

processing.

 Use as much memory as possible. It makes the runs longer and provides bigger

and/or more buffers during the merge phase.

 If the number of initial runs is so large that total seek and rotation time is much

greater than total transmission time, use a multistep merge. It increases the amount

of transmission time but can decrease the number of seeks enormously.

 Consider using replacement selection for initial run formation, especially if there is

a possibility that the runs will be partially ordered.

 Use more than one disk drive and I/O channel so reading and writing can overlap.

This is especially true if there are no other users on the system.

 Keep in mind the fundamental elements of external sorting and their relative costs,

and look for ways to take advantage of new architectures and ‘systems, such as

parallel processing and high-speed local area networks.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Multilevel Indexing and B-Trees

Invention of the B-Tree

Invented in 1969, B-trees are still the prevailing data structure for indexes in relational databases

and many file systems (Comer 1979), (Weikum and Vossen 2002). Large means that the index is

too large for main memory and must be stored on a secondary store like a hard disk (HD).

Statement of the Problem

The main problem with keeping an index on secondary storage is, accessing secondary storage is

slow. This can be broken into two more specific problems.

1. Searching the index must be faster than binary searching

Searching for a key on a disk often involves seeking to different disk tracks. A search that

has to look in more than three or four location before finding the key often requires more

time than is desirable as seeking is very expensive.

2. Insertion and deletion must be as fast as search

Inserting a key into an index often involves moving a large number of the other keys in

the index, index maintenance becomes nearly impossible on secondary storage for

indexes. Thus, insertion and deletion must have only local effect in the index rather than

requiring massive reorganization.

Indexing with Binary Search Trees

The major problem with binary search tree was that the file had to be sorted order. We could sort

the file once, but maintaining the sorted file was difficult. Every time a record was added we need

to find the exact location and move all the records such that we create the space to insert the new

record in order to overcome the problem of maintaining the files in sorted order we have the tree

structure, using the concept of indexing we can implement binary keys into the files we no longer

have to sort the file on addition of every new key to the file we need only link it to the appropriate

leaf node to the tree. The following figure shows the binary search tree representation of the list of

keys.

1. AVL Trees

2. Paged Binary Trees

3. Problems with Paged Trees

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

1. AVL(Adelson, Velski,Landis) Trees

Example -

AVL tree provides different reorganization techniques or rotation in order to balance the

tree constructed during the binary search tree in order to make them a Optimal Solution.

The property of the AVL tree is that the height of the left subtree, the height of the right

subtree range the balanced factor {0,1,-1} if the value process other than this range (0,1,-

1). One of the rotation is applied to make it into a balanced tree.

B C G E F D A – B WILL BE A ROOT NODE

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

2. Paged Binary Trees

Disk utilization of a binary search tree is extremely inefficient that is when we read the

node of a binary search tree, there are only three useful pieces of information the key

value and the left subtree and the right subtree. A disk as a capacity to read more amount

of data and more amount of bytes but seen we are getting a single node a lot of disk

created is wasted here

So, to overcome that

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

 we can used different tree structure we can call that as paged binary tree where in the

binary tree is divided into number of pages. So each pages can have multiple nodes so each

page will have a root node and its corresponding child node. Here we have divided node

and the pages containing the 7 nodes each when a binarytree is on secondary storage if you

want to search for an element which is in the last position so for that only 2 access of disk

is enough.

 The number of seeks required for a worst-case search of a completely full, balanced binary

tree is log2(N+1).

 Where N is the number of keys in the tree, the number of seeks required for the paged

versions of a completely full, balanced tree is log k+1(N+1)

3. Problems with Paged Trees

In the construction of a paged binary tree the first element would always become the root

for the successive inputs depending upon the values they are either placed to the left or to

the right. If a wrong element is placed at the root node than the tree would not be balanced.

In an unbalanced binary search tree we would require more number of read operations to

fetch the leaf node or in other words advantage of page binary tree used only if the tree is

balanced whether the tree is balanced or not is always decided by the first element placed

in the tree. To overcome this problem, we have B-Tree in which the root node is

automatically decided depending upon the input provided.

Example – 4 3 2 1 5 6 7 8 9 10

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Multilevel Indexing: A Better Approach to Tree Indexes

A single record index puts a limit on the number of keys allowed and for a very large file we need

multi record indexes. A multi record index consists of a sequence of simple index record. The keys

in one record in the list are all smaller than the keys of the next record. A binary search is possible

on a file that consists of an ordered sequence. Consider a large file of 80 megabyte with 80,00000

records, 100 bytes each and 10-byte key. An index of this file has 80,00000 key reference pairs

divided among a sequence of index records. If we put 100 key reference pairs in a single index

record, we would have an index 80,000 records in index. To this index file we can build an index

this would consist of 800 records this is the second level of index so this can be continued to third

level, the index would contain only 8 records, finally to the fourth level, the index consists of just

one record with 8 keys.

B-Tree: Working up from the Bottom

B-trees are multilevel indexes that solve the problem of linear cost of insertion and deletion. This

is what makes B-trees so good, and why they are now the standard way to represent indexes. The

solution is twofold. First, don’t require that the index records be full. Second, don’t shift the

overflow keys to the next record; instead split an overfull record into two records, each half full.

Deletion takes a similar strategy of merging two records into a single record when necessary.

Each node of a B-tree is an index record. Each of these records has the same maximum number of

key-reference pairs, called the order of the B-tree.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Example of Creating a B-Tree

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

An Object-Oriented Representation B-Tree Nodes in Memory

1. Class BTreeNode: Representing B-Tree Nodes in Memory

A B-tree is an index file associated with a data file. Most of the operations on B-trees,

including insertion and deletion, are applied to the B-tree nodes in memory. The B-tree file

simply stores the nodes when they are not in memory. Hence, we need a class to represent

the memory resident B-tree nodes. Note that a BTreeNode object has methods to insert and

remove a key and to split and merge nodes. There are also protected members that store

the file address of the node and the minimum and maximum number of keys. You may

notice that there is no search method defined in the class. The search method of the base

class SimpleIndex works perfectly well.

It is important to note that not every data member of a BTreeNode has to be stored when

the object is not in memory. The difference between the memory and the disk

representations of BTreeNode objects is managed by the pack and unpack operations. The

call to the SimpleIndex constructor creates an index record.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

For this class, the order of the B-tree node (member MaxBKeys) is one less than the value

of MaxKeys, which is a member of the base class SimpleIndex. Making the index record

larger allows the Insert method to create an overfull node. The caller of BTreeNode: : Insert

needs to respond to the overflow in an appropriate fashion. Similarly, the Remove method

can create an underfull node, Method Insert simply calls SimpleIndex: : Insert and then

checks for overflow. The value returned is 1 for success, 0 for failure, and —1 for overflow:

2. Class BTree: Supporting Files of B-Tree Nodes

class BTreé which uses in-memory BTreeNode objects, adds the file access portion, and

enforces the consistent size of the nodes. This contain the definition of class BTree. Here

are methods to create, open, and close a B-tree and to search, insert, and remove key-

reference pairs. In the protected area of the Class, we find methods to transfer nodes from

disk to memory (Fetch) and back to disk (Store). There are members that hold the root node

in memory and represent the height of the tree and the file of index records. Member Nodes

is used to keep a collection of tree nodes in memory and reduce disk accesses.

B-Tree Methods Search, Insert, and Others

1. Searching - Searching a node in a B-Tree

 Perform a binary search on the records in the current node.

 If a record with the search key is found, then return that record.

 If the current node is a leaf node and the key is not found, then report an

unsuccessful search.

 Otherwise, follow the proper branch and repeat the process.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Example –

2. Insertion

There are two important observations we can make about the insertion, splitting, and

promotion process:

- It begins with a search that proceeds all the way down to the leaf level, and

- After finding the insertion location at the léaf level, the work of insertion, overflow

detection, and splitting proceeds upward from the bottom.

Consequently, we can conceive of our iterative procedure as having three phases:

1. Search to the leaf level, using method FindLeaf, before the iteration;

2. Insertion, overflow detection, and splitting on the upward path;

3. Creation of a new root node, if the current root was split.

Example refer the creation of B-Tree

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

4. Create, Open, and Close

Method Create has to write the empty root node into the file BTreeFile so that its first

record is reserved for that root node. Method Open has to open BTreeFile and load the

root node into memory from the first record in the file. Method Close simply stores the

root node into BTreeFile and closes it.

5. Testing the B-Tree

B-Tree Nomenclature

The literature on B-trees is not uniform in its terminology

Bayer and McCreight (1972), Comer (1979), and others define the order of B-tree as the

minimum number of keys that can be in a page of a tree.

Knuth (1998) avoids the problem by defining the order to be the maximum number of children

(which is one more than the maximum number of keys).

The term leaf is also inconsistent. Bayer and McCreight (1972) considered the leaf level to be the

lowest level of keys, but Knuth considered the leaf level to be one level below the lowest keys.

There are many possible implementation choices. In some designs, the leaves may hold the entire

data record; in other designs, the leaves may only hold pointers to the data record.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Formal Definition of B-Tree Properties

- Every page has a maximum of m descendants.

- Every page, except the root and the leaves has at least m/2 descendants.

- The root has at least two descendants

- All the leaves appear on the same level

- The leaf level forms a complete, ordered index of the associated data file.

Worst-Case Search Depth

It is important to have a quantitative understanding of the relationship between the page size of a

B-tree, the number of keys to be stored in the tree, and the number of levels that the tree can

extend. For example, you might know that you need to store 1 000 000 keys and that, given the

nature of your storage hardware and the size of your keys, it is reasonable to consider using a B-

tree of order 512 (maximum of 511 keys per page). Given these two facts, you need to be able to

answer the question: In the worst case, what will be the maximum number of disk accesses

required to locate a key in the tree?

For a B-tree of order m, the minimum number of descendants from the root page is 2, so the

second level of the tree contains only 2 pages. Each of these pages, in turn, has at least [m/2 |

descendants. The third level, then, contains 2 x [m/2] pages. Since each of these pages, once

again, has a minimum of [m/2] descendants, the general pattern of the relation between depth

and the minimum number of descendants takes the following form:

Assume that we have N keys in the leaves.

 N ≥ 2 × [m/2]d-1

So, d ≤1+ log[m/2] (N/2).

For N=1,000,000 and order m=512, we have

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

d ≤ 1+ log[256] (N/2).

 d ≤ 3.37

So we can say that given 1000000keys, a Btree of order 512 has a depth of no more than three

levels.

Deletion, Merging, and Redistribution

The rules that state the following:

Every page except for the root and the leaves has at least[m/2] descendants.

A page contains at least [m/2] keys and no more than m keys.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

The rules for deleting a key

The rules for deleting a key K from a node n :

1. If n has more than the minimum number of keys and K is not the largest key in n, simply

delete K from n.

2. If n has more than the minimum number of keys and K is the largest key in n, delete K

from n and modify the higher level indexes to reflect the new largest key in n.

3. If n has exactly the minimum number of keys and one of the siblings has “few enough

keys”, merge n with its sibling and delete a key from the parent node

4. If n has exactly the minimum number of keys and one of the siblings has extra keys,

redistribute by moving some keys from a sibling to n, and modify higher levels to reflect

the new largest keys in the affected nodes.

Redistribution

Underflow in the leaf node:

∗ Try to redistribute (balancing) the entries from the left sibling if possible.

 ∗ Try to redistribute (balancing) the entries from the right sibling if possible.

 ∗ If the redistribution is not possible, then the three nodes are merged into two leaf nodes. In this

case, underflow may propagate to internal nodes because one fewer tree pointer and search value

are needed. This can propagate and reduce the tree levels.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Redistribution During Insertion: A Way to Improve Storage Utilization

Redistribution during insertion is a way of avoiding, or at least postponing, the creation of new

pages. Rather than splitting a full page and creating two approximately half-full pages, the

redistribution place some of the overflowing keys into another page. It is possible to quantify this

efficiency of space usage by viewing the amount of space used to store information as a percentage

of the total amount of space required to hold the B-tree.

B*Trees

B-trees in 1973, Knuth (1998) extends the notion of redistribution during insertion to include

new rules for splitting. He calls the resulting variation on the fundamental B-tree form a B* tree.

B* Trees are variation of B-Tree. These trees have the following properties.

- Every page has a maximum of m descendants.

- Every page except for the root has at least [(2m-1)/3] descendants.

- The root has at least two descendants.

- All leaves appear on the same level.

Buffering of Pages: Virtual B-Trees

B-tree size >> main memory (in practice)

- Need buffering pages of B-tree

- Better to keep the root page in the main memory

Buffer replacement algorithm:

LRU Replacement – Least Recently Used the process of accessing the disk to bring in a page

that is not already in the buffer is called a page fault, There are two causes of page faults:

1. We have never used the page.

2. It was once in the buffer but has since been replaced with a new page.

The first cause of page faults is unavoidable: if we have not yet read in and used a page, there is

no way it can already be in the buffer. But the second cause is one we can try to minimize

through buffer management.

Replacement based on page height – There is another, more direct way to use the hierarchical

nature of the. B- tree to guide decisions about page replacement in the buffers. Our simple,

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

keep-the-root strategy exemplifies this alternative: always retain the pages that occur at the

highest levels of the tree.

Importance of virtual B-Trees – As we have emphasized, to fall into that trap is to lose sight of

the original problem: to find a way to reduce the amount of memory required to handle large

indexes. We did not, however, need to reduce the amount of memory to the amount required for-

a single index page. It is usually possible to find enough memory to hold a number of pages.

Doing so can dramatically increase system performance.

Variable-Length Records and Keys

In many applications the information associated with a key varies in length. Secondary indexes

that reference inverted lists are an excellent example of this. One way to handle this variability is

to place the associated information in a separate, variable-length record file; the B-tree would

contain a reference to the information in this other file. Another approach is to allow a variable

number of keys and records in a B-tree page. Up to this point we have regarded B-trees as being

of some order m. Each page has a fixed maximum and minimum number of keys that it can legally

hold. The notion of a variable-length record and, therefore, a variable number of keys per page is

a significant departure from the point of view we have developed so far. A B-tree with a variable

number of keys per page clearly has no single, fixed order.

Prepared by,

Ranjitha J

Dept. of ISE

AIT, Bangalore

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Name of the Course: File Structure
NOTES

Indexed Sequential File Access and Prefix B+ Tree

Indexed Sequential Access

Single organization

Indexed: seen as a set of records that is indexed by key

B-tree: for excellent indexed access

Sequential: returning records in order by key (physically contiguous records -- no seeking)

Usage of B-tree for a cosequential processing retrieve all the records in order by key B-tree file of

N records, following the N pointers from the index requires N random seeks into the record file.

=> inefficient process. Indexed sequential access method for both interactive random access and

cosequential batch processing (example- student record systems at universities, - it requires keyed

access to individual records while also requiring a large amount of batch processing, as when

grades are posted or when fees are paid during registration).

Maintaining a Sequence Set

1. The Use of Blocks

2. Choice of Block Size

First, they focus on the problem of keeping a set of records in physical order by key as records

are added and deleted. We refer to this ordered set of records as a sequence set. Once if find a

good way of maintaining a sequence set, then will find some way to index it as well.

1. The Use of Blocks

The Grouping of the records into a set of sequence is called block.

Sorting and resorting the entire sequent set as records are added and deleted very

expensive process. Block the basic unit of input and output the size of buffers: can hold

an entire block. Blocks for collecting the records a way to localize the changes restrict the

effects of an insertion or deletion to just a part of the sequence set.

Blocks of sequence set in order insertion of new records into a block overflow can be

handled by a block-splitting process divide (split) the records between two blocks and

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

rearrange the links analogous to, but not the same that of a B-tree just divide two blocks

between two blocks and rearrange the links no promotion of key.

Deletion of records from a block underflow: less than half full ,

a neighbouring node: also, half full => merge, neighbouring nodes: more than half full =>

redistribution analogous to, but not the same that of a B-tree.

2. Choice of Block Size

Consideration 1 – the block size should be such that can hold several blocks in memory at

once.

Consideration 2 – the block size should be such that can access a block without having to

bear the cost of a disk seek within the block read or block write operation.

Block the maximum guaranteed extent of physical sequentiality make each block equal to

the size of a cluster (i.e., the minimum number of sectors allocated at a time).

Insert the new record

CARTER in Block2 but

in Block2 there is a

overflow in Block2.

So, it will split and

that split record will

insert in other new

block4 with the

linked field.

Delete the record

DAVIS in Block4.

So, it leads to

underflow so it

will concatenate

the Block4.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Adding a Simple Index to the Sequence Set

Created a mechanism for maintaining a set of records so we can access them sequentially in order

by key. It is based on the idea of grouping the records into blocks then maintaining the blocks, as

records are added and deleted, through splitting, merging, and redistribution. Now let’s see

whether can find an efficient way to locate some specific block containing a particular record,

given the record’s key.

Index of fixed-length records contain the key for the last record in each block.

The requirement that the index be held in memory is important for two reasons:

In find of specific records by means of a binary search of the index. Binary searching works well

if the searching takes place in memory, but, as saw in the B-trees, it requires too many seeks if

the file is on a secondary storage device.

As the blocks in the sequence set are changed through splitting, merging, and redistribution, the

index has to be updated. Updating a simple, fixed-length record index of this kind works well if

the index is relatively small and contained in memory.

B+-tree the use of a B-tree index for sequence set of blocks.

The Content of the Index: Separators Instead of Keys

The purpose of the index are building is to assist us when the searching for a record with a

specific key. The index must guide us to the block in the sequence set that contains the record, if

it exists in the sequence set at all. The index serves as a kind of road map for the sequence set.

Given this view of the index set as a road map, can take the very important step of recognizing in

the index set. Our real need is for separators. If a string comparison between the key and any

of these separators shows that the key precedes the separator.

Sequence set of Blocks

Key + Offset address (Block

Number)= Simple Index for

the sequence set

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Separator can be treated as variable-length entities within index structure save space by placing

the shortest separator in the index structure.

The Simple Prefix B+ Tree

The B-tree index (index set) plus the sequence set it forms the file structure called a simple prefix

B+ Tree. The Simple prefix indicates that the index set contains shortest separators, or prefixes of

the keys. Let’s see the Figure 10.7 and search for the record with the key EMBRY, start at the root

of the index set, comparing EMBRY with the separator E, Since EMBRY comes after E, So branch

to the right, retrieving the node containing the separators F and FOLKS. Since EMBRY comes

before even the first of these separators, we follow the branch that is to the left of the F separator,

which leads us to block 4, the correct block in the sequence set.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

The Simple Prefix B+ Tree and its Maintenance

1. Changes Localized to Single Blocks in the Sequence Set

Deletions on the sequence set delete the records for EMBRY and FOLKS limited to

changes within blocks. The record that was formerly the second record in block 4 (let’s

say that its key is ERVIN) is now the first record. Similarly, the former second record in

block 6 (we assume it has a key of FROST) now starts that block. These changes can be

seen in Fig. 10.8.

The new record becomes the first record in block 4, but no change in the index set is

necessary. This is not surprising: this decided to insert the record into block 4 on the basis

of the existing information in the index set. It follows that the existing information in the

index set is sufficient to allow us to find the record again.

2. Changes Involving Multiple Blocks in the Sequence Set

Addition of records to the sequence set can change the number of blocks in the sequence

set => need additional separators in the index set.

Search- Embry Compare E < Embry so it will move

Towards right side

Compare F < Embry so it will

move Towards left side

No Change

Sequence set

blocks

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Deletion of records from the sequence set if we have fewer blocks, we need fewer

separators Changes to the index set handled by B-tree insertion and deletion.

Example of a B-tree of order three the maximum number of separators is two

 Example of a B-tree of order three (Cont’d) insertion into block1 in the sequence set split

block 1 => block 1 and block 7 change to the sequence set addition of a block in the

sequence set need a new separator, with a value of AY cause a split and promotion of BO

to the root. Example of a B-tree of order three (Cont’d)

 Example of a B-tree of order three (Cont’d) deletion of a record from block 2 of the

sequence set cause an underflow condition in the sequence set need a concatenation of

Adding the

new record

in the block

If CAMP

record is

Deleted so,

Block 3 will be

merged with

block2

Merged

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

blocks 2 and 3 (assumption) remove block 3 remove the separator CAM that distinguish

between blocks 2 and 3 cause an underflow in the index set node => merging need a

concatenation of index nodes bring BO back down from the root. Block split in the

sequence set results in a node split in the index set. Block merge(concatenation) in the

sequence set results in a node merge(concatenation) in the index set.

 Insertions and deletions in the index set are handled as B-tree operations Record insertion

and deletion always take place in the sequence set

Index Set Block Size

The size and structure of an index node for the index set is usually the same as the physical size

of a block in the sequence set. There is a reason for using a common block size for the index and

sequence sets:

Common block size for the index and sequence sets the block size that is best for the sequence

set is usually best for the index set a common block size makes it easier to implement a

buffering scheme to create a virtual simple prefix B+ tree. The index set blocks and sequence

set block are often mingled with in the same file to avoid seeking between two separate files

while accessing the simple prefix B+. Use of one file for both kinds of blocks is simpler if the

block sizes are the same.

Internal Structure of Index Set Blocks: A Variable-Order B-Tree

Separators are chosen instead of keys so that can hold more separators in a single node but if the

order of B-tree is fixed then the number of separators stored inside a node would also be fixed.

The main motivation for using separators would not be effectively used. Inorder to use it efficiently

need to store more separator for which the order of the B-tree should be variable.

Large, fixed-size block for the index set for a variable # of variable-length separators a variable-

order B-tree how to search through variable-length separators a block can hold a large number of

separators once we read a block into memory, binary search rather than sequential search is needed.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

The binary search is applied on the block, corresponding key is fetched and corresponding block

containing the key is fetched. To fetch the block, need the block number. Thus make the node as

variable order then each node should contain separator count, total length of separator,

relative block numbers.

Separator count – this helps us find the middle element in the index to the separator so begin our

binary search.

Total length of separators – the index block would begin after the separator block so need to

know the offset at which the index would begin.

Relative Block Number – this is used to fetch the block containing the record.

Loading a Simple Prefix B+ Trees

Split or redistribution of blocks in the sequence set and, in the index, set in order to maintain B+

tree splitting and redistribution are relatively expensive involve searching down through the tree

for each insertion then reorganization the tree.

When we are loading the B+ tree, begin by sorting the records that are to be loaded place the

records into sequence set blocks, one by one, starting a new block make the transition between two

sequence set blocks determine the shortest separator for the blocks collect separators into an index

set block.

Search –

Apply

Binary

Search

(10/2 =5,

so it will

move to

a left)

Left half Right half

5/2=2.5
Record is

found in

between

this two

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

 Four sequence set blocks and one index set block

 Building of two index set levels

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

 Growth of index set built up from the sequence set.

B+ Trees

B+ tree does not involve the use of prefixes as separators separators in the index set are copies of

the actual keys Fig. 10.17: initial loading steps for a B+ tree

Difference between a B+ tree and a simple prefix B+ tree distinguish between the role of the

separators in the index set and keys in the sequence set difficult to make distinction when the

separators are exact copies of the keys. B+ tree without the use of shortest separators.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

B-Tree, B+ Tree and Simple Prefix B+ Trees in Perspective

B-Trees

Information can be found at any level of the B-trees can take up less space than does a B+ trees

because there is no need for additional storage to hold separators sequential access obtained

through an in-order traversal of the tree not workable because of all the seeking required to retrieve

the actual record information if the B-trees merely contains pointers to records.

B＋ Trees

Separation of the index set and the sequence set separators: copies of the keys advantages of the

B+ trees over B-trees sequence set can be processed in a truly linear, sequential way, providing

efficient access to records in order by key B+ tree approach can often result in a shallower tree

than would B-tree approach.

Simple Prefix B+ Trees

separation of the index set and the sequence set (same as the B+ trees) sequence set can be

processed in a truly linear, sequential way (the same as the B+ trees) separators : smaller than the

actual keys allow us to build a shallower tree than B+ trees separator compression and consequent

increase in branching factor -> use an index set block structure that support variable length fields

Prepared by,

Ranjitha J

Assistant Professor

Dept. of ISE

Atria Institute of Technology

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Name of the Course: File Structure
NOTES

Hashing, Extendible Hashing

Introduction

Sequential access efficiency is O (N). B trees/ B+ trees efficiency is O(logK N). Both are

dependent on ‘N’ where N is the number of records in the file i.e file size. So there was a need for

a technique whose efficiency is independent of the size of the file. This lead to Hashing which

provides an efficiency of O(1).

What is Hash?

Hash function is a function h(k) that transforms a key into an address.

a = h(K)

h (hash function), K (key), a (home address)

Example

K=BASS

h = (first char * second char) mod 1000

a = h(K) = (66 * 65) mod 1000 = 4,290 mod 1000 = 290

Collision – two different keys may be sent to the same address generating a collision.

Example

key-LOWELL=>a=(76*79)mod1000=6,004mod1000=4

 OLIVIER => a = (79 * 76) mod 1000 = 6,004 mod 1000 = 4

Several ways to reduce the number of collisions

1. Spread out the records

Collision occurs when two or more records compete for the same address. If we could find

hashing algorithm that distributes the records fairly randomly among the available

addresses, then we would not have large number of records clustering around certain

address.

2. Use extra memory

It is easier to find a hash algorithm that avoids collisions if we have only a few records to

distribute among many addresses than if we have about the same number of records as

addresses. Example chances of collisions are less when 10 records need to be distributed

among 100 address space. Whereas chances of collision are more when 10 records need to

be distributed among 10 address space. The obvious disadvantage is wastage of space.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

3. Put more than one record at a single address

Create a file in such a way that it can store several records at every address. Example, if

each record is 80 bytes long and we create a file with 512-byte physical records, we can

store up to six records at each address. This is called as bucket technique.

A Simple Hashing Algorithm

3 Steps

1. Represent the key in numerical form

2. Fold and add

3. Divide by a prime number and use the remainder as the address

Example

Step 1. Represent the Key in Numerical Form

Step 2. Fold and Add

76 79 | 87 69 | 76 76 | 32 32 | 32 32 | 32 32

7679 + 8769 + 7676 + 3232 + 3232 = 30588

(30588+3232 = 33820)

7679 + 8769 = 16448 => 16448 mod 19937 = 16448

16448 + 7676 = 24124 => 24124 mod 19937 = 4187

4187 + 3232 = 7419 => 7419 mod 19937 = 7419

7419 + 3232 = 10651 => 10651 mod 19937 = 10651

10651 + 3232 = 13883 => 13883 mod 19937 = 13883

Step 3. Divide by the Size of the Address Space

a = s mod n (n: # of address in file)

a = 13883 mod 100 = 83

a = 13883 mod 101 = 46

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Hashing and Record Distribution

1. Distributing Records among Addresses

The figure below shows three different distributions of seven records among nine

addresses.

If the hash function distributes seven records in ten addresses without any collision then it

is called as uniform distribution as shown in figure ‘a’.

If all the seven records are hashed to the same home address, then it is called as worst

distribution as shown in the figure ‘b’.

Figure ‘c’ illustrates a distribution in which the records are somewhat spread out, but

with a few collisions. This is called as Acceptable distribution.

2. Some Other Hashing Methods

Some methods those are potentially better than random. The simple hashing algorithm

explained in section 7.2 which has three steps are designed to take advantage of natural

ordering among the keys. The next two methods can be tried when for some reasons, the

better than random methods do not work.

 Square the key and take the mid (Mid Square method): This method involves

treating the key as single large number, squaring the number and extracting

whatever number of digits are required from the middle of the result.

For example: consider the key 453, its square is (453)2 = 205209. Extracting the

middle two digits yields a number 52 which is between 0 – 99.

 Radix Transformation: This method involves converting the key from one base

system to another base system, then dividing the result with maximum address

and taking the reminder.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

For example: If the hash address range is 0 – 99 and key is (453). Converting this

number to base 11 system results in (382)11. Then 382 mod 99 = 85. So, 85 is the

hash address.

3. Predicting the distribution of records

The Poisson Distribution

When single key is hashed, there are two possible outcomes with respect to the given

address:

If there are 10 addresses (N=10)

If suppose two keys are hashed. So, the two applications of the hashing functions are

independent of one another, the probability that both will produce the given address is a

product:

Even other outcomes are also possible when two keys are hashed. For example, the second

key could hash to an address other than the given address. The probability of this is the

product.

P(BABBA) = 0.81*0.001 = 0.00081

=

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

In general, when want to know the probability of a certain sequence of outcomes, such as

BABBA, can replace each A & B

The 6 in the expression 6b2a2 represents the number of ways two Bs and two As can be

distributed among four places. So, that “r trials result in r-x As and x Bs”. The probability

of each such way is

and the number of such ways is given by the formula

This is the well-known formula for the number of ways of selecting x items out of a set of

r items. It follows that when r keys are hashed, the probability that an address will be

chosen x

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

This expression has the disadvantage that it is awkward to compute.

(Try it for 1000 addresses and 1000 records: N=r=1000.) Fortunately, for large values of

N and r, there is a function that is a very good approximation for p(x) and is much easier

to compute. It is called the poisson function.

The poisson Function applied to hashing, p(x) is given by

Here 1000 addresses (N=1000) and 1000 records whose keys are hashed to the addresses

(r=1000).

In general, if there are N addresses, then the expected number of addresses with x records

assigned to them is Np(x).

4. Predicting collisions for a full file

Suppose you have a hashing function that you will believe will distribute records

randomly and you want to store 10000 records in 10000 addresses. How many addresses

do you expect to have no records assigned to them?

Since r= 10 000 and N= 10 000, r/N = 1. Hence the proportion of addresses with 0

records assigned should be

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

The number of addresses with no records assigned is

How many addresses should have one, two, and three records assigned, respectively?

Since the 3679 addresses corresponding to x = 1 have exactly one record assigned to them,

their records have no synonyms. The 1839 addresses with two records apiece, however,

represent potential trouble. If each such address has space only for one record, and two

records are assigned to them, there is a collision, this means that 1839 records: will fit into

the addresses, but another 1839 will not fit. There will be 1839 overflow records. This is a

bad situation that thousands of records that do not fit into the addresses assigned by the

hashing function. need to develop a method for handling these overflows records. But first,

let’s try to reduce the number of overflow records.

How much Extra Memory should be used?

1. Packing Density

2. Predicting Collisions for Different Packing Densities

The formula for packing density (r/N) occurs twice in the poisson formula

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Here the same behavior is exhibited by 500 records distributed among 1000 addresses as

by 500000 records distributed among 1000000 addresses.

Suppose that 1000 addresses are allocated to hold 500 records in a randomly hashed file,

and that each address can hold one record. The packing density for the file is r/N =

500/1000 = 0.5.

Lets us answer the following questions about the distribution of records among the

available addresses in the file:

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Collision resolution by progressive overflow

1. Progressive Overflow / linear probing works as follows:

is a collision resolution technique which places overflow records at the first empty

address after the home address; if the file is full the search comes back to where it began.

Only then it is clear that the file is full and no empty address is available.

 With progressive overflow, a sequential search is performed beginning at the

home address and if end of the address is reached, then wrap around is done and

the search continuous from the beginning address in the file.

 The search is continued until the desired key or a blank record is found.

 If the file is full the search comes back to where it began. Only then it is clear that

the record is not in the file.

Example

2. Search Length

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Buckets

Bucket: An area of a hash table with a single hash address which has room for more than one

record.

When using buckets, an entire bucket is read or written as a unit. (Records are not read

individually).

The use of buckets will reduce the average number of probes required to find a record.

1. Effects of Buckets on Performance

We will compare the following two alternatives

1. Storing 750 data records into a hashed file with 1000 addresses, each holding 1 record.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

2. Storing 750 data records into a hashed file with 500 bucket addresses, each bucket

holding 2 records

► In both cases the packing density is 0.75 or 75%.

► In the first case r/N=0.75.

► In the second case r/N=1.50

Estimating the probabilities as defined before:

2. Implementation Issues

1. Bucket Structure

A Bucket should contain a counter that keeps track of the number of records stored in it.

 Empty slots in a bucket may be marked ‘//.../’

 Example: Bucket of size 3 holding 2 records

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

2. Initializing a file for hashing

 Decide on the Logical Size (number of available addresses) and on the number of

buckets per address.

 Create a file of empty buckets before storing records. An empty bucket will look

like

3. Loading a hash file

 When inserting a key, remember to:

 Be careful with infinite loops when hash file is full

Making Deletions

Deletions in a hashed file have to be made with care

Hashed File using Progressive Overflow

1. Tombstones for handling deletions

Making Deletions: Delete ‘MORRIS’ Making Deletions: Delete ‘MORRIS’

If ‘MORRIS’ is simply erased, a search for ‘SMITH’ would be unsuccessful

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Search for ‘SMITH’ would go to home address (position 5) and when reached 7 it would

conclude ‘SMITH’ is not in the file!

Solution- Replace deleted records with a marker indicating that a record once lived there

A search must continue when it finds a tombstone, but can stop whenever an empty slot

is found.

2. Implications of Tombstones for Insertion

Only insert a tombstone when the next record is occupied or is a tombstone.

Insertions should be modified to work with tombstones: if either an empty slot or a

tombstone is reached, place the new record there.

3. Effects of Deletions and Additions on Performance

The presence of too many tombstones increases search length.

Solutions to the problem of deteriorating average search lengths:

Deletion algorithm may try to move records that follow a tombstone backwards towards

its home address. Complete reorganization: re-hashing Use a different type of collision

resolution technique.

Other Collision Resolution Techniques

1. Double Hashing

The first hash function determines the home address

 If the home address is occupied, apply a second hash function to get a number c

(c relatively prime to N)

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

 c is added to the home address to produce an overflow addresses: if occupied,

proceed by adding c to the overflow address, until an empty spot is found.

Hashed file using double hashing.

2. Chained Progressive Overflow

Similar to progressive overflow, except that synonym are linked together with pointers.

The objective is to reduce the search length for records within clusters.

3. Chained with a Separate Overflow Area

Move overflow records to a Separate Overflow Area

A linked list of synonyms starts at their home address in the Primary data area,

continuing in the separate overflow area.

When the packing density is higher than 1 an overflow area is required.

4. Scatter Tables: Indexing Revisited

Similar to chaining with separate overflow, but the hashed file contains no records, but

only pointers to data records.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Patterns of Record Access

The information about what records get accessed most often, can optimize their location so that

these records will have short search lengths.

By doing this, try to decrease the effective average search length even if the nominal average

search length remains the same.

A small percentage of the records in a file account for a large percentage of the accesses :

 80 / 20 Rule

80% of the accesses are performed on 20% of the records.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Extendible Hashing

How Extendible Hashing Works

1. Tries

The key idea behind extendible hashing is to combine conventional hashing with another

retrieval approach called the tries. Tries are also sometimes referred to as radix searching

because the branching factor of the search tree is equal to the number of alternative symbols

(the radix of the alphabet) that can occur in each position of the key.

Suppose want to build a tries that stores the keys able, abrahms, Adams, anderson,

andrews, and Baird. A schematic form of the tries is shown in Fig. 12.1. As you can see,

the searching proceeds letter by letter through the key. Because there are twenty-six

symbols in the alphabet, the potential branching factor at every node of the search is

twenty-Six.

Notice that in searching a tries we sometimes use only a portion of the key. We use more

of the key as we need more information to complete the search. This use-more-as-we-need-

more capability is fundamental to the structure of extendible hashing.

2. Turning the Tries into a directory

The tries with a radix of 2 in our approach to extendible hashing: search decisions are

made on a bit-by-bit basis. We will not work in terms of individual keys but in terms of

buckets containing keys.

Suppose have bucket A containing keys that, when hashed, have hash addresses that

begin with the bits 01. Bucket B contains keys with hash addresses beginning with 10 and

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

bucket C contains keys with addresses that start with 11. Figure 12.3 shows a trie that

allows us to retrieve these buckets.

How should we represent the tries?

Rather than representing the tries as a tree, flatten it into an array of contiguous records,

forming a directory of hash addresses and pointers to the corresponding buckets.

Step 1: The first Step in turning a tree into an array involves extending it so it is a

complete binary tree with all of its leaves at the Same level as shown in Fig. 12.4 (a).

Even though the initial 01s enough to select bucket A, the new form of the tree also uses

the second address bit so both alternatives lead to the same bucket.

Step 2: Once extended the tree this way, can collapse it into the directory structure shown

in Fig. 12.4(b). Now have a Structure that provides the kind of direct access associated

with hashing.

3. Splitting to handle overflow

The goal in an extendible hashing system is to find a way to increase the address space in

response to overflow.

Suppose insert records that cause bucket A to overflow. In this case the solution is

Simple: since addresses beginning with 00 and 01 are mixed together in bucket A, can

Split bucket A by putting all the 01 addresses in a new bucket D, while keeping only the

00 addresses in A.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

So, use the full 2 bits to divide the addresses between two buckets. Don’t need to extend

the address space; simply make full use of the address information that already have. The

figure shows the directory and buckets after the split.

Let's consider a more complex case, starting once again with the directory and buckets in

Fig. l2.4 (b), suppose that bucket B overflows. How to split bucket B and where to attach

the new bucket after the split? Unlike our previous example, do not have additional,

unused bits of address space that can press into duty as split the bucket now need to use 3

bits of the hash address in order to divide up the records that hash to bucket B. The tries

illustrated in Fig. 12.6

(a) makes the distinctions required to complete the split. Figure 12.6

(b) shows what this tries looks like once it is extended into a completely full binary tree

with all leaved at the same level, and Fig.

(c) shows the collapsed, directory form of the tries.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Implementation

Creating the address

The function Hash is a simple variation on the fold-and-add hashing algorithm. Because extendible

hashing uses more bits of the hashed address as they are needed to distinguish between buckets,

we need a function MakeAddress that extracts a portion of the full hashed address. We also use

MakeAddress to reverse the order of the bits in the hashed address, making the lowest-order bit of

the hash address the highest-order bit of the value used in extendible hashing. By reversing the bit

order, working from right to left, we take advantage of the greater variability of low-order bit

values.

Deletion

1. Overview of the Deletion Process

If extendible hashing is to be a truly dynamic system like B-trees or AVL trees, it must be

able to shrink files gracefully as well as grow them.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

Reducing the size of the address space restores the directory and bucket structure to the

arrangement, before the additions and splits that produced the structure. Reduction consists

of collapsing each adjacent pair of directory cells into a single cell. This is easy, because

both cells in each pair point to the same bucket. Note that this is nothing more than a

reversal of the directory splitting procedure that use when need to add new directory cells.

2. A Procedure for Finding Buddy Buckets

The method works by checking to see whether it is possible for there to be a buddy bucket.

Clearly, if the directory depth is 0, meaning that there is only a single bucket, there cannot

be a buddy. The next test compares the number of bits used by the bucket with the number

of bits used in the directory address space.

3. Collapsing the Directory

The other important support function used to implement deletion is the function that

handles collapsing the directory. Collapsing directory begins by making sure that we are

not at the lower limit of directory size. The test to see if the directory can be collapsed

consists of examining each pair of directory cells to see if they point to different buckets.

As soon as find Such a pair, we know that- we cannot collapse the directory. If we get all

the way through the directory without encountering such a pair, then can collapse the

directory.

The collapsing operation consists of` allocating space for a new array of bucket addresses

that is half the size of the original and then copying the bucket references shared by each

cell pair to a single cell in the new directory.

Extendible Hashing Performance

1. Space Utilization for buckets

Fagin, Nievergelt, Pippenger, and Strong include analysis and simulation of extendible

hashing performance. Both the analysis and simulation show that the space utilization is

strongly periodic, fluctuating between values of 0.53 and 0.94. The analysis portion of

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

their paper suggests that for a given number of records r and a block size of b, the

average number of blocks N is approximated by the formula

2. Space Utilization for the directory

Flajolet also provides the following formula for making rough estimates directory size

Alternative Approaches

1. Dynamic Hashing

Shows an initial address space of four and four buckets descending from the four

addresses in the directory.

split the bucket at address 4. We address the two buckets resulting from the split as 40

and 41 . So, change the shape of the directory node at address 4 from a square to a circle

because it has changed from an external node

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

split the bucket addressed by node 2, creating the new external nodes 20 and 21 .So, also

split the bucket addressed by 41 , extending the tries downward to include 410 and 41 1.

Finding a key in a dynamic hashing scheme can involve the use of two hash functions

rather than just one.

2. Linear Hashing

Linear hashing, like extendible hashing, uses more bits of hashed value as the address

space grows.

(a) Note that the address space consists of four buckets rather than four directory nodes that

can point to buckets.

(b) add records, bucket b overflows. The overflow forces a split. However, as it is not bucket

b that splits, but bucket a. The reason for this is that we are extending the address space

linearly, and bucket a is the next bucket that must split to create the next linear extension,

which call bucket A. A 3-bit hash function, h3(k), is applied to buckets a‘and A to divide

the records between them. Since bucket b was not the bucket that split, the overflowing

record is placed into an overflow bucket w.

(c) add more records, and bucket d overflows. Bucket b is the next one to split and extend

the address space, so we use the h3(k) address function to divide the records from bucket

b and its overflow bucket between b and the new bucket B. The record overflowing

bucket d is placed In an overflow bucket x. The resulting arrangement is illustrated in

Fig.

At this point all of the buckets use the h3(k) address function, and have finished the

expansion cycle.

ASKB Charitable Foundation Trust

Atria Institute of Technology, Bangalore – 24
BACHELOR OF ENGINEERING

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

3. Approaches to controlling splitting

Postpone splitting for extensible hashing

1. Use chaining overflow bucket

2. Avoid doubling directory space

3. 1.1 seek, 76% ~ 81% storage utilization

Ranjitha J

Assistant Professor

Dept. of ISE

Atria Institute of Technology Bangalore

