"u"jf\‘-;!iiﬁ Atria Institute of Technology
M ik Department of Information Science and Engineering
aTRin Bengaluru-560024

ACADEMIC YEAR: 2021-2022
EVEN SEMESTER NOTES

Semester : 6t Semester
Subject Name : Software Testing
Subject Code : 18IS62

Faculty Name : Mrs. Uzma Taj

SOFTWARE TESTING 181S62

MODULE 1

Basics of Software Testing: Basic definitions, Software Quality , Requirements, Behaviour
and Correctness, Correctness versus Reliability, Testing and Debugging, Test cases, Insights
from a Venn diagram, Identifying test cases, Test-generation Strategies, Test Metrics, Error
and fault taxonomies , Levels of testing, Testing and Verification, Static Testing. Problem
Statements: Generalized pseudocode, the triangle problem, the NextDate function, the
commission problem, the SATM (Simple Automatic Teller Machine) problem, the currency
converter, Saturn windshield wiper

Basic definitions

What is Software Testing?

Software testing is defined as an activity to check whether the actual results match the
expected results and to ensure that the software system is Defect free. It involves execution of
a software component or system component to evaluate one or more properties of interest.
Software testing also helps to identify errors, gaps or missing requirements in contrary to the
actual requirements. It can be either done manually or using automated tools. Some prefer

saying Software testing as a \White Box and Black Box Testing.

In simple terms, Software Testing means Verification of Application under Test (AUT).

Why is Software Testing Important?

Testing is important because software bugs could be expensive or even dangerous. Software
bugs can potentially cause monetary and human loss, and history is full of such examples.

In April 2015, Bloomberg terminal in London crashed due to software glitch affected more
than 300,000 traders on financial markets. It forced the government to postpone a 3bn pound
debt sale.

Nissan cars have to recall over 1 million cars from the market due to software failure in the
airbag sensory detectors. There has been reported two accident due to this software failure.

Starbucks was forced to close about 60 percent of stores in the U.S and Canada due to
software failure in its POS system. At one point store served coffee for free as they unable to
process the transaction.

Some of the Amazon‘s third party retailers saw their product price is reduced to 1p due to a
software glitch. They were left with heavy losses.

Vulnerability in Window 10. This bug enables users to escape from security sandboxes
through a flaw in the win32k system.

DEPT OF ISE

https://www.guru99.com/defect-management-process.html
https://www.guru99.com/white-box-testing.html
https://www.guru99.com/black-box-testing.html

SOFTWARE TESTING 181S62

In 2015 fighter plane F-35 fell victim to a software bug, making it unable to detect targets
correctly.

China Airlines Airbus A300 crashed due to a software bug on April 26, 1994, killing 264
innocent live

In 1985, Canada's Therac-25 radiation therapy machine malfunctioned due to software bug
and delivered lethal radiation doses to patients, leaving 3 people dead and critically injuring 3
others.

In April of 1999, a software bug caused the failure of a $1.2 billion military satellite launch,
the costliest accident in history

In may of 1996, a software bug caused the bank accounts of 823 customers of a major U.S.
bank to be credited with 920 million US dollars.

Basic Definitions

Error

People make errors. A good synonym is -mistakell. When people make mistakes while
coding, we call these mistakes -bugsl|. Errors tend to propagate; a requirements error may be
magnified during design, and amplified still more during coding.

Fault

A fault is the result of an error. It is more precise to say that a fault is the representation of an
error, where representation is the mode of expression, such as narrative text, dataflow
diagrams, hierarchy charts, source code, and so on. -Defectl is a good synonym for fault; so
is —bugll.

Failure

A failure occurs when a fault executes. Two subtleties arise here: one is that failures only
occur in an executable representation, which is usually taken to be source code, or more
precisely, loaded object code.

Incident

When a failure occurs, it may or may not be readily apparent to the user (or customer or
tester). An incident is the symptom(s) associated with a failure that alerts the user to the
occurrence of failure.

Test

Testing is obviously concerned with errors, faults, failures, and incidents. A test is the act
ofexercising software with test cases. There are two distinct goals of a test: either to find
failures, or to demonstrate correct execution.

Test Case

A test case has an identity, and is associated with a programbehaviour. A test case also has a
set of inputs, a list of expected outputs.

DEPT OF ISE

SOFTWARE TESTING 181S62

Software Quality
SOFTWARE QUALITY is the degree of conformance to explicit or implicit requirements
and expectations.
Explanation
o Explicit: clearly defined and documented
o Implicit: not clearly defined and documented but indirectly suggested
o Requirements: business/product/software requirements
o Expectations: mainly end-user expectations

The modern view of a quality associated with a software product several quality methods
such as the following:

Portability: A software device is said to be portable, if it can be freely made to work in
various operating system environments, in multiple machines, with other software products,
etc.

Usability: A software product has better usability if various categories of users can easily
invoke the functions of the product.

Reusability: A software product has excellent reusability if different modules of the product
can quickly be reused to develop new products.

Correctness: A software product is correct if various requirements as specified in the SRS
document have been correctly implemented.

Maintainability: A software product is maintainable if bugs can be easily corrected as and
when they show up, new tasks can be easily added to the product, and the functionalities of
the product can be easily modified, etc.

Requirements

What is Software Requirement?

It's a primary requirement needed in the development of a software product. These
requirements works as a base and is being used in developing a particular software product to
perform specifically for a targeted group or audience and for the specific environment.

These requirements are of very much importance as any sort of compromise to them may
produce undesirable final product and may fail to meet the needs & expectations of a client or
a user. Therefore, there exists a separate phase in a SDLC to gather, study and analyse the
software requirements so as to avoid such type of circumstances.

Types of Requirements In Software Testing

Business Requirements:

These requirements are specified from the business point of view. It generally involves the
specified objectives and goals of a particular project that needs to be fulfilled. It provides an

DEPT OF ISE

http://www.professionalqa.com/software-development-life-cycle

SOFTWARE TESTING 181S62

abstract of a project. These requirements are not meant for specifying the functionalities or
technicalities of a desired software product rather it outlines a general overview of a product,
such as its primary use, why it is needed, its scope & vision, what business benefits will be
gain, intended audience or users, etc. It generally involves the participation of the client,
stakeholders, business and project managers for gathering and analyzing the business
requirements.

Through business requirements, it is easy to assess the project cost, time required, business
risks involved and many such things associated with a software development project.

System Requirements:

Requirements to be incorporated in a software product under development to make a software
product perform and function in a specific manner to achieve a specific target and goal falls
under the category of system requirements. These system requirements may be broadly
classified in two types* functional requirements and non-functional requirements.

« Functional requirements:

Requirements encompassing the functional attributes and behaviour of a software
product are called functional requirements. These requirements reflect the working
and functionalities of an intended software product.

These requirements defines and describes the functions to be performed, and features
to be possessed by a software product. What and how does a product supposed to
perform on accepting inputs from the user, and what desirable output it should
provide to the users. These requirements should be complete and clearly well-defined
so as to meet all the specified feature and functionalities without misunderstanding or
leaving the requirement so as to achieve a desirable quality product.

e Non-Functional Requirements:

Requirements other than functional requirements which are essential and contribute
towards the performance of a software product under variant type of conditions and
multiple environments are commonly known as Non-functional requirements. These
requirements are used to evaluate and assess the software product behaviour other
than its specific or desired behaviour under unexpected conditions and environment,
contrary to what is favourable for its functioning. It also covers the standards, rules
and regulation that a software product must adhere and conform to it.

User Requirements:

Requirements generated from a user‘s point of view and scenarios of using a software
product in a multiple manner under real environment by a targeted user to execute a
particular task, specifies the user requirements. It defines the user's expectation from a
software product. As user‘s exhaustive needs may not be covered under the domain of system
requirement, it may be covered separately by business analysts through studying and
analysing the user requirements.

These types of requirements are generally gathered and documented using use cases, user
scenarios, and user stories. These requirements are documented in a user requirement
document (URD) format by making use of narrative text and are usually signed off by the
intended users.

DEPT OF ISE

http://www.professionalqa.com/functional-vs-non-functional-requirements

SOFTWARE TESTING 181S62

Behaviour and Correctness
What is Correctness?

Correctness from software engineering perspective can be defined as the adherence to the
specifications that determine how users can interact with the software and how the software
should behave when it is used correctly.

If the software behaves incorrectly, it might take considerable amount of time to achieve the
task or sometimes it is impossible to achieve it.

Important rules:

Below are some of the important rules for effective programming which are consequences of
the program correctness theory.

o Defining the problem completely.

o Develop the algorithm and then the program logic.

« Reuse the proved models as much as possible.

o Prove the correctness of algorithms during the design phase.

« Developers should pay attention to the clarity and simplicity of your program.

« Verifying each part of a program as soon as it is developed.

Correctness versus Reliability

Correctness: The degree to which a system is free from [defects] in its specification, design,
and implementation.

Reliability: The ability of a system to perform its requested functions under stated conditions
whenever required - having a long mean time between failures.

Testing and Debugging

Differences between Testing and Debugging

Testing:
Testing is the process of verifying and validating that a software or application is bug free,

meets the technical requirements as guided by its design and development and meets the user
requirements effectively and efficiently with handling all the exceptional and boundary cases.

Debugging:
Debugging is the process of fixing a bug in the software. It can defined as the identifying,

analysing and removing errors. This activity begins after the software fails to execute
properly and concludes by solving the problem and successfully testing the software. It is

DEPT OF ISE

https://www.geeksforgeeks.org/software-testing-basics/
https://www.geeksforgeeks.org/software-engineering-debugging/

SOFTWARE TESTING

181S62

considered to be an extremely complex and tedious task because errors need to be resolved at
all stages of debugging.

Testing is the process to find bugs and errors.

It is the process to identify the failure of
implemented code.

Testing is the display of errors.

Testing is done by the tester.

There is no need of design knowledge in the
testing process.

Testing can be done by insider as well as
outsider.

Testing can be manual or automated.

It is based on different testing levels i.e. unit
testing, integration testing, system testing
etc.

Test Case

Debugging is the process to correct
the bugs found during testing.

It is the process to give the
absolution to code failure.

Debugging is a deductive process.

Debugging is done by either
programmer or developer.

Debugging can‘t be done without
proper design knowledge.

Debugging is done only by insider.
Outsider can‘t do debugging.

Debugging is always manual.
Debugging can‘t be automated.

Debugging is based on different
types of bugs.

A TEST CASE is a set of conditions or variables under which a tester will determine whether
a system under test satisfies requirements or works correctly.
The process of developing test cases can also help find problems in the requirements or

design of an application.
Test Case Template

A test case can have the following elements. Note, however, that a test management tool is
normally used by companies and the format is determined by the tool used.

Test Suite ID
Test Case ID

The ID of the test suite to which this test case belongs.
The ID of the test case.

Test Case Summary
Related Requirement
Prerequisites

The summary / objective of the test case.

The ID of the requirement this test case relates/traces to.

Any prerequisites or preconditions that must be fulfilled prior
to executing the test.

Step-by-step procedure to execute the test.

The test data, or links to the test data, that are to be used while
conducting the test.

The expected result of the test.

The actual result of the test; to be filled after executing the test.
Pass or Fail. Other statuses can be _Not Executed" if testing is
not performed and _Blocked* if testing is blocked.

Test Procedure
Test Data

Expected Result

Actual Result
Status

DEPT OF ISE

SOFTWARE TESTING 181S62

Remarks Any comments on the test case or test execution.

Created By The name of the author of the test case.

Date of Creation The date of creation of the test case.

Executed By The name of the person who executed the test.

Date of Execution The date of execution of the test.

Test Environment The environment (Hardware/Software/Network) in which the

test was executed.

Test Case Example / Test Case Sample

Test Suite ID TS001

Test Case ID TCO001

Test Case Summary To verify that clicking the Generate Coin button generates
coins.

Related Requirement RS001

Prerequisites User is authorized.
Coin balance is available.

Test Procedure Select the coin denomination in the Denomination field.

Enter the number of coins in the Quantity field.
Click Generate Coin.

Test Data Denominations: 0.05, 0.10, 0.25, 0.50, 1, 2,5
Quantities: 0,1,5,10, 20
Expected Result Coin of the specified denomination should be produced if the

specified Quantity is valid (1, 5)

A message _Please enter a valid quantity between 1 and 10°

should be displayed if the specified quantity is invalid.
Actual Result If the specified quantity is valid, the result is as expected.

If the specified quantity is invalid, nothing happens; the

expected message is not displayed

Status Fail

Remarks This is a sample test case.
Created By John Doe

Date of Creation 01/14/2020

Executed By Jane Roe

Date of Execution 02/16/2020

Test Environment OS: Windows Y

Browser: Chrome N

Insights from a VVenn diagram
Insights from a VVenn Diagram

Testing is fundamentally concerned with behavior, and behavior is orthogonal to the code-
based view common to software (and system) developers

A quick distinction is that: — The code-based view focuses on what it is — The behavioral
view considers what it does

DEPT OF ISE

SOFTWARE TESTING 181S62

Program Behaviors

Specification Program
(expected) (observed)

Extra Functionality

Missing Functionality (i ¢ ission)
ins of commission

(Sins of omission)

"Correct”
Portion

Insights from a Venn Diagram

Specification Program

faults of omission faults of commission
'\\ 4
What if there are what if there are
specified behaviors programmed
that have not been v (implemented)
programmed? A A behaviors that have

not been specified?

Test Cases

* A very good view of testing is that it is the determination of the
extent of program behavior that is both specified and implemented

* What can a tester do to make the region where these sets all
intersect be as large as possible?

* How the test cases in the set T are identified?.

Identifying Test Cases

There are two fundamental approaches to identifying test cases; these are known as
functional and structural testing. Each of these approaches has several distinct test case
identification methods, more commonly called testing methods.

DEPT OF ISE

SOFTWARE TESTING 181S62

What is Structural Testing ?

Structural testing, also known as glass box testing or white box testing is an approach where
the tests are derived from the knowledge of the software's structure or internal
implementation.

The other names of structural testing includes clear box testing, open box testing, logic
driven testing or path driven testing.

Structural Testing Techniques:

o Statement Coverage - This technique is aimed at exercising all programming
statements with minimal tests.

e Branch Coverage - This technique is running a series of tests to ensure that all
branches are tested at least once.

o Path Coverage - This technique corresponds to testing all possible paths which
means that each statement and branch are covered.

Advantages of Structural Testing:
o Forces test developer to reason carefully about implementation
e Reveals errors in "hidden" code

« Spots the Dead Code or other issues with respect to best programming practices.
Disadvantages of Structural Box Testing:

« EXxpensive as one has to spend both time and money to perform white box testing.
« Every possibility that few lines of code is missed accidentally.

« Indepth knowledge about the programming language is necessary to perform white
box testing.

What is Functional Testing?

Functional testing is a quality assurance (QA) processtt! and a type of black-box testing that
bases its test cases on the specifications of the software component under test. Functions are
tested by feeding them input and examining the output, and internal program structure is
rarely considered (unlike white-box testing).

Functional Testing is a testing technique that is used to test the features/functionality of the
system or Software, should cover all the scenarios including failure paths and boundary
cases.

It is basically defined as a type of testing which verifies that each function of the software
application works in conformance with the requirement and specification. This testing is not
concerned about the source code of the application. Each functionality of the software
application is tested by providing appropriate test input, expecting the output and comparing
the actual output with the expected output. This testing focuses on checking of user
interface, APIs, database, security, client or server application and functionality of the
Application Under Test.

DEPT OF ISE

https://en.wikipedia.org/wiki/Quality_assurance
https://en.wikipedia.org/wiki/Functional_testing#cite_note-Prasad-1
https://en.wikipedia.org/wiki/Black-box_testing
https://en.wikipedia.org/wiki/White-box_testing

SOFTWARE TESTING

The other major Functional Testing techniques include:
o Unit Testing
« Integration Testing
o Smoke Testing
o User Acceptance Testing
o Localization Testing
o Interface Testing
o Usability Testing
o System Testing
o Regression Testing

e Globalization Testing

Test-generation Strategies

Test generation Any form of test generation uses a source document. In the most
informal of test methods, the source document resides in the mind of the tester who
generates tests based on a knowledge of the requirements. In several commercial
environments, the process is a bit more formal. The tests are generated using a mix of
formal and informal methods either directly from the requirements document serving as
the source. In more advanced test processes, requirements serve as a source for the
development of formal models.

Test generation strategies Model based: require that a subset of the requirements be
modeled using a formal notation (usually graphical). Models: Finite State Machines,
Timed automata, Petri net, etc. Specification based: require that a subset of the
requirements be modeled using a formal mathematical notation. Examples: B, Z, and
Larch. Code based: generate tests directly from the code.

DEPT OF ISE

181S62

10

https://image1.slideserve.com/1643478/test-generation-l.jpg
https://image1.slideserve.com/1643478/test-generation-strategies-l.jpg

SOFTWARE TESTING 181562

Test generation strategies (Summary)

LRequirements | Test generation
— algorithm

N ~
——[Finite state machines }—~ a'egs;z::;ratuon

[T
S

—>| Timed /0 Automata }—* Test ganaration

algorithm
Algebraic and logic Test generation
specifications algorithm
Code Test generation

- e algorithm

A 'Finite State Machine (FSM)' is a system that will be in different discrete states (like
-readyll, —not readyl, -openl, -closedl,...) depending on the inputs or stimuli. The
discrete states that the system ends up with, depends on the rules of the transition of the
system.

For example, VM states from user perspective are like:

Virtual Machine state transition diagram

Destroyed

Statechart diagram is one of the five UML diagrams used to model the dynamic nature of a
system. They define different states of an object during its lifetime and these states are
changed by events. Statechart diagrams are useful to model the reactive systems.

DEPT OF ISE

11

SOFTWARE TESTING 181S62

[Stack Content|value) == Irue]

[Stack Length < Max-1] |
Push

P !

[Bse] / Pop

[Stack Contert{value) == frue

AN
N
/ // Pop
/ / Fush
.—New Stau:lc—bl Empty Stack |
—_

Figure 2: Statechart diagram with an around advice on method Push.

Petri nets were designed for and are used mainly for modeling. Many systems, especially
those with independent components, can be modeled by a Petri net. The systems may be of
many different kinds: computer hardware, computer software, physical systems, social
systems, and so on. Petri nets are used to model the occurrence of various events and
activities in a system. In particular, Petri nets may model the flow of information or other
resources within a system.

The Petri net of Figure 3.1 is a Petri net model of the machine shop example given above. We
have labeled each transition and place with the corresponding event or condition.

Anorder Anorder Processing Processing The order
arrives is waiting starts is complete is complete
—O——0—0—

The order
is sent for delivery

The order
is being processed

The machine shop
is idle, waiting for work

DEPT OF ISE

12

SOFTWARE TESTING 181S62

Timed I/O automata

In theoretical computer science, automata theory is the study of abstract machines (or more
appropriately, abstract ‘'mathematical' machines or systems) and the computational problems
that can be solved using these machines. These abstract machines are called automata. This
automaton consists of

« states (represented in the figure by circles),

« and transitions (represented by arrows). As the automaton sees a symbol of input, it makes a
transition (or jump) to another state, according to its transition function (which takes the
current state and the recent symbol as its inputs). Uses of Automata: compiler design and
parsing.

Figure 1.2: A finite automaton modeling recognition of then

Test Metrics
Software test metrics is to monitor and control process and product. It helps to drive the
project towards our planned goals without deviation.

Metrics answer different questions. It‘s important to decide what questions you want answers
to.

Software test metrics are classified into two types

1. Process metrics
2. Product metrics

The ideal example to understand metrics would be a weekly mileage of a car compared
to its ideal mileage

Why Test Metrics are Important?

"We cannot improve what we cannot measure” and Test Metrics helps us to do exactly the
same.

o Take decision for next phase of activities

« Evidence of the claim or prediction

e Understand the type of improvement required
« Take decision or process or technology change

DEPT OF ISE 13

https://www.softwaretestingmaterial.com/test-metrics/#ProcessMetrics
https://www.softwaretestingmaterial.com/test-metrics/#ProductMetrics

SOFTWARE TESTING 181S62

Types of Test Metrics

Process j| Product j| Project

Metrics § Metrics § Metrics

e Process Metrics: It can be used to improve the process efficiency of the SDLC (
Software Development Life Cycle)

e Product Metrics: It deals with the quality of the software product

e Project Metrics: It can be used to measure the efficiency of a project team or any
testing tools being used by the team members

Identification of correct testing metrics is very important. Few things need to be considered
before identifying the test metrics

o Fix the target audience for the metric preparation

o Define the goal for metrics

« Introduce all the relevant metrics based on project needs

e Analyze the cost benefits aspect of each metrics and the project lifestyle phase in
which it results in the maximum output

Manual Test Metrics
In Software Engineering, Manual test metrics are classified into two classes

o Base Metrics
o Calculated Metrics

Manual Test

Metrics

Calculated Metrics

DEPT OF ISE

14

https://www.guru99.com/images/6-2015/052615_0637_SoftwareTes2.png
https://www.guru99.com/images/6-2015/052615_0637_SoftwareTes3.png

SOFTWARE TESTING 181S62

Base metrics is the raw data collected by Test Analyst during the test case development and
execution (# of test cases executed, # of test cases).

While calculated metrics are derived from the data collected in base metrics. Calculated
metrics is usually followed by the test manager for test reporting purpose (% Complete, %
Test Coverage).

Depending on the project or business model some of the important metrics are

Test Metrics Life Cycle

Different stages of | Steps during each stage
Metrics life cycle

e Analysis o Identification of the Metrics
o Define the identified QA Metrics

o Communicate o Explain the need for metric to stakeholder and testing
team
o Educate the testing team about the data points to need to
be captured for processing the metric

o Evaluation o Capture and verify the data
o Calculating the metrics value using the data captured

e Report o Develop the report with an effective conclusion
o Distribute the report to the stakeholder and respective
representative
o Take feedback from stakeholder

Error and fault taxonomies

Error and Fault Taxonomies Process versus Product
process refers to how we do something, and

product is the end result of a process SQA is more concerned with reducing errors endemic in
the development process, while testing is more concerned with discovering faults in a product.

Faults can be classified in several ways:

« the development phase where the corresponding error occurred,
* the consequences of corresponding failures,

DEPT OF ISE

15

SOFTWARE TESTING

« difficulty to resolve,
¢ risk of no resolution, and so on.

Fault Taxonomies
Input / Output Faults

Type Instances

Input Correct input not accepted
Incorrect input accepted
Description wrong or missing
Parameters wrong or missing

Output Wrong format

Wrong result

Correct result at wrong time (too early, too late)

Incomplete or missing result

Spurious result

Spelling/grammar

Cosmetic

Fault Taxonomies

Logic Faults

Missing case(s)

Duplicate case(s)

Extreme condition neglected

Misinterpretation

Missing condition

Extraneous condition(s)

Test of wrong variable

Incorrect loop iteration

Wrong operator (e.g., < instead of<)

DEPT OF ISE

181S62

16

SOFTWARE TESTING

Fault Taxonomies

Computation Faults

Incorrect algorithm

Missing computation

Incorrect operand

Incorrect operation

Parenthesis error

Insufficient precision (round-off, truncation)

Wrong built-in function

Fault Taxonomies

Interface Faults

Incorrect interrupt handling

I/O timing

Call to wrong procedure

Call to nonexistent procedure

Parameter mismatch (type, number)

Incompatible types

Superfluous inclusion

DEPT OF ISE

181S62

17

SOFTWARE TESTING

Fault Taxonomies

Data Faults

Incorrect initialization

Incorrect data dimension

Incorrect storage/access

Incorrect subscript

Wrong flag/index value

Incorrect type

Incorrect packing/unpacking

Incorrect data scope

Wrong variable used

Sensor data out of limits

Wrong data reference

Off by one

Scaling or units error

Inconsistent data

Levels of testing

What are the levels of testing?

181S62

A level of software testing is a process where every unit or component of a software/system
is tested. The main goal of system testing is to evaluate the system's compliance with the

specified needs.

There are many different testing levels which help to check behavior and performance for
software testing. These testing levels are designed to recognize missing areas and
reconciliation between the development lifecycle states. In SDLC models there are
characterized phases such as requirement gathering, analysis, design, coding or execution,

testing, and deployment.

All these phases go through the process of software testing levels. There are mainly four

testing levels are:

Unit Testing
Integration Testing
System Testing
Acceptance Testing

orwdPE

to the software development lifecycle.

1) Unit testing:

Each of these testing levels has a specific purpose. These testing level provide value

A Unit is a smallest testable portion of system or application which can be compiled,
liked, loaded, and executed. This kind of testing helps to test each module separately.

DEPT OF ISE

18

https://www.guru99.com/unit-testing-guide.html

SOFTWARE TESTING 181S62

The aim is to test each part of the software by separating it. It checks that component
are fulfilling functionalities or not. This kind of testing is performed by developers.

2) Integration testing:

Integration means combining. For Example, In this testing phase, different software modules
are combined and tested as a group to make sure that integrated system is ready for system
testing.

Integrating testing checks the data flow from one module to other modules. This kind of
testing is performed by testers.

3) System testing:

System testing is performed on a complete, integrated system. It allows checking system's
compliance as per the requirements. It tests the overall interaction of components. It involves
load, performance, reliability and security testing.

System testing most often the final test to verify that the system meets the specification. It
evaluates both functional and non-functional need for the testing.

4) Acceptance testing:

Acceptance testing is a test conducted to find if the requirements of a specification or contract
are met as per its delivery. Acceptance testing is basically done by the user or customer.
However, other stockholders can be involved in this process.

Conclusion:

o A level of software testing is a process where every unit or component of a
software/system is tested.

e The primary goal of system testing is to evaluate the system's compliance with the
specified needs.

e In Software Engineering, four main levels of testing are Unit Testing, Integration
Testing, System Testing and Acceptance Testing.

A diagrammatic variation of the waterfall model, known as the VV-Model in ISTQB parlance,
is given in Figure 1.8; this variation emphasizes the correspondence between testing and
design levels.

A practical relationship exists between levels of testing versus specification-based and code
based testing. Most practitioners agree that code-based testing is most appropriate at the unit
level, whereas specification-based testing is most appropriate at the system level.

This is generally true; however, it is also a likely consequence of the base information

produced during the requirements specification, preliminary design, and detailed design
phases.

DEPT OF ISE

19

https://www.guru99.com/integration-testing.html
https://www.guru99.com/system-testing.html
https://www.guru99.com/user-acceptance-testing.html

SOFTWARE TESTING

181S62

The constructs defined for code-based testing make the most sense at the unit level, and
similar constructs are only now becoming available for the integration and system levels of

testing.

Requirements
specification

Detailed

System

_____ testing
Preliminary Integration

design testing

Unit
design T T T testing

Figure 1.8 Levels of abstraction and testing in waterfall model.

Testing and Verification

What is Verification?

The verifying process includes checking documents, design, code, and program.

What is VValidation?

Validation is a dynamic mechanism of Software testing and validates the actual product.

Verification vs Validation: Key Difference
Verification

Validation

e The verifying process includes checking
documents, design, code, and program

e Itis adynamic mechanism of
testing and validating the actual
product

« It does not involve executing the code

« Italways involves executing the
code

o Verification uses methods like reviews,
walkthroughs, inspections, and desk- checking
etc.

e Ituses methods like Black Box
Testing, White Box Testing,
and non-functional testing

DEPT OF ISE

20

https://www.guru99.com/white-box-testing.html

SOFTWARE TESTING

Whether the software conforms to
specification is checked

181S62

o |t checks whether the software

meets the requirements and
expectations of a customer

o It finds bugs early in the development cycle

e It can find bugs that the

verification process can not
catch

o Target is application and software architecture,
specification, complete design, high level, and
database design etc.

e Target is an actual product

e QA team does verification and make sure that
the software is as per the requirement in the
SRS document.

o With the involvement of testing

team validation is executed on
software code.

o |t comes before validation

o |t comes after verification

Static Testing

Static Testing is a type of a Software Testing method which is performed to check the
defects in software without actually executing the code of the software application. Whereas
in Dynamic Testing checks the code is executed to detect the defects.

Static testing is performed in early stage of development to avoid errors as it is easier to find
sources of failures and it can be fixed easily. The errors that can‘t not be found using

Dynamic Testing, can be easily found by Static Testing.

Static Testing Techniques:

There are mainly two type techniques used in Static Testing:

Static Testing

4

Informal

® Walkthrough
mp Peer review

mp Inspection

DEPT OF ISE

Static Analysis

Data flow
Control flow

Cyclomatic complexity

21

https://www.geeksforgeeks.org/software-testing-basics/

SOFTWARE TESTING 181S62

1. Review:

In static testing review is a process or technique that is performed to find the potential defects
in the design of the software.

It is process to detect and remove errors and defects in thedifferent supporting documents like
software requirements specifications.

People examine the documents and sorted out errors, redundancies and ambiguities.

Review is of four types:

o Informal:
In informal review the creator of the documents put the contents in front of audience
and everyone gives their opinion and thus defects are identified in the early stage.

o Walkthrough:
It is basically performed by experienced person or expert to check the defects so that
there might not be problem further in the development or testing phase.

o Peer review:
Peer review means checking documents of one-another to detect and fix the defects. It
is basically done in a team of colleagues.

e Inspection:
Inspection is basically the verification of document the higher authority like the
verification of software requirement specifications (SRS).

2. Static Analysis:

Static Analysis includes the evaluation of the code quality that is written by developers.
Different tools are used to do the analysis of the code and comparison of the same with the
standard.

It also helps in following identification of following defects:
(a) Unused variables

(b) Dead code

(c) Infinite loops

(d) Variable with undefined value

(e) Wrong syntax

Static Analysis is of three types:
o Data Flow:
Data flow is related to the stream processing
o Control Flow:
Control flow is basically how the statements or instructions are executed.
o Cyclomatic Complexity:
Cyclomatic complexity is the measurement of the complexity of the program that is

basically related to the number of independent paths in the control flow graph of the
program.

DEPT OF ISE

22

SOFTWARE TESTING 181S62

Problem Statements:

A PROBLEM STATEMENT is a concise description of an issue to be addressed or a
condition to be improved upon. It identifies the gap between the current (problem) state and
desired (goal) state of a process or product. Focusing on the facts, the problem statement
should be designed to address the Five Ws.

The first condition of solving a problem is to understand the problem, which can be done by
way of a problem statement.

Problem statements are widely used by businesses and organizations to execute
process improvement projects. A simple and well-defined problem statement will be used by
the project team to understand the problem and work toward developing a solution.

It will also provide management with specific insights into the problem so that they can make
appropriate project-approving decisions. As such, it is crucial for the problem statement to be
clear and unambiguous.

The Five Ws are questions whose answers are considered basic in information
gathering or problem solving.

e Who

¢ What
e When
e Where
° Why

Generalized pseudocode,

Pseudocode is an informal high-level description of the operating principle of a computer
program or other algorithm. It uses the structural conventions of a normal programming
language, but is intended for human reading rather than machine reading. Pseudocode
typically omits details that are essential for machine understanding of the algorithm, such
as variable declarations, system-specific code and some subroutines. The programming
language is augmented with natural language description details, where convenient, or with
compact mathematical notation. The purpose of using pseudocode is that it is easier for
people to understand than conventional programming language code, and that it is an efficient
and environment-independent description of the key principles of an algorithm.

e Pseudocode provides a “language neutral” way to express program source code.
e Pseudocode given here is based on visual basic.

DEPT OF ISE

23

https://en.wikipedia.org/wiki/Five_Ws
https://en.wikipedia.org/wiki/Improvement
https://en.wikipedia.org/wiki/Information_gathering
https://en.wikipedia.org/wiki/Information_gathering
https://en.wikipedia.org/wiki/Problem_solving
https://en.wikipedia.org/wiki/High-level_programming
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Variable_declaration
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Augmented_cognition
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Mathematical_notation

SOFTWARE TESTING

Table 2.1 Generalized Pseudocode

181S62

Language Element

Ceneralized Pseudocode Construct

Comment

! <text=

Data structure declaration

Type <type name=>
=list of field descriptions=

End <type name=

Data declaration

Dim =variable= As <type=

Assignment statement

<variable> = <expression=

Input Input (<variable list=}
Output Output (<variable list=)
Condition <expression= <relational operator= <expression=

Compound condition

=Condition= <logical connective=

=Condition=

Sequence

statements in sequential order

Simple selection

If =condition= Then
=then clause=
Endlf

Selection

If =<condition=
Then <then clause=
Else =else clause=

EndlIf

Multiple selection

Case =variable= Of
Case 1: =predicate=

=Case clause=

Case n: =predicate>
=Case clause=
EndCase

Counter-controlled repetition

For =counter= = =start= To <end=
=loop body=
EndFor

Pretest repetition

While <condition=
=loop body=
EndWhile

DEPT OF ISE

24

SOFTWARE TESTING 181S62

Language Element Ceneralized Pseudocode Construct

Posttest repetition Do
<loop body=>

Until =<condition>

Procedure definition (similarly <procedure name=> (Input: <list of variables>;
for functions and o-o methods) Output: <list of variables>)
<body>

End <procedure name>

Interunit communication Call <procedure name=> (<list of variables>;

<list of variables>)

Class/Object definition <name> (<attribute list>; <method list>, <body>)

End <name>

Interunit communication msg <destination object name=.<method name=>

(<list of variables>)

Object creation Instantiate <class name>.<object name> (list of attribute
values)
Object destruction Delete <class name>.<object name>
Program Program <program name>
<unit list>

End<program name>

The triangle problem
The triangle problem is the most widely used example in software testing literature.
2.2.1 Problem Statement

Simple version: The triangle program accepts three integers, a, b, and c, as input. These are
taken to be sides of a triangle. The output of the program is the type of triangle determined by
the three sides: Equilateral, Isosceles, Scalene, or NotATriangle. Sometimes, this problem is
extended to include right triangles as a fifth type; we will use this extension in some of the
exercises.

Improved version: The triangle program accepts three integers, a, b, and c, as input. These
are taken to be sides of a triangle. The integers a, b, and ¢ must satisfy the following
conditions:

cl. 1 <a<200 c4. a<b+c
c2. 1<b<200 c5. b<a+c
c3. 1 <¢<200 Cb. c<a+b

The output of the program is the type of triangle determined by the three sides: Equilateral,

DEPT OF ISE 25

SOFTWARE TESTING 181S62

Isosceles, Scalene, or NotATriangle. If an input value fails any of conditions c1, c2, or c3,
the program notes this with an output message, for example, —VValue of b is not in the range of
permitted values.| If values of a, b, and c satisfy conditions c4, c5, and c6, one of four
mutually exclusive outputs is given:

1. If all three sides are equal, the program output is Equilateral.

2. If exactly one pair of sides is equal, the program output is Isosceles.

3. If no pair of sides is equal, the program output is Scalene.

4. If any of conditions c4, 5, and c6 is not met, the program output is NotATriangle.

2.2.2 Discussion

Perhaps one of the reasons for the longevity of this example is that it contains clear but
complex logic. It also typifies some of the incomplete definitions that impair communication
among customers, developers, and testers. The first specification presumes the developers
know some details about triangles, particularly the triangle inequality: the sum of any pair of
sides must be strictly greater than the third side.

2.2.3 Traditional Implementation

The traditional implementation of this grandfather of all examples has a rather FORTRAN-
like style. The flowchart for this implementation appears in Figure 2.1. Figure 2.2 is a
flowchart for the improved version. The flowchart box numbers correspond to comment
numbers in the (FORTRANIike) pseudocode program given next.

The variable -matchll is used to record equality among pairs of the sides. A classic intricacy
of the FORTRAN style is connected with the variable -matchl: notice that all three tests for
the triangle inequality do not occur. If two sides are equal, say a and c, it is only necessary to
compare a + ¢ with b. (Because b must be greater than zero, a + b must be greater than c
because ¢ equals a.) This observation clearly reduces the number of comparisons that must be
made. The efficiency of this version is obtained at the expense of clarity (and ease of testing).

DEPT OF ISE 26

SOFTWARE TESTING 181S62

| Inputa, b,c |

| Match = 0 I

Y—>| 2. Match = Match + 1

|

y‘>i 4. Match = Match + 2

Y_.| 6. Match = Match + 3\

N

N m Y

wmh%— ¥

N
v
N
v

20. Equilateral [15. Isosceles]

Figure 2.1 Flowchart for traditional triangle program implementation.

f
[]

11. Scalene

12. Not a triangle |

The pseudocode for this is given next. [Simple version]
Program trianglel

Dim a, b, ¢, match As INTEGER

Output(—Enter 3 integers which are sides of a trianglel)
Input(a, b, c)

Output(—Side A isl,a)

Output(—Side B isl,b)

Output(—Side C isl,c)

match =0
Ifa=b ()

DEPT OF ISE 27

SOFTWARE TESTING

Then match = match + 1
EndIf

Ifa=c
Then match = match + 2
EndIf

Ifb=c
Then match = match + 3
EndIf

If match =0

ThenIf (a+b)<c

Then Output(—NotATrianglel)
Else If (b+c)<a

Then Output(—NotATrianglel)
Else If (a+c¢)<b

Then Output(—NotATrianglel)
Else Output (-Scalenell)

EndIf
EndIf
EndIf

Else If match =1

Then If (a+c)<b

Then Output(—NotATrianglel)
Else Output (-Isoscelesl)

EndIf

Else If match=2

Then If (a+c)<b

Then Output(—NotATrianglel)
Else Output (-Isoscelesl)

EndIf

Else If match =3

ThenIf (b +c)<a

Then Output(—NotATrianglel)
Else Output (-Isoscelesl)

EndIf

Else Output (-Equilaterall)
EndIf
EndIf
EndIf
EndIf

End Trianglel

DEPT OF ISE

(2

(3
)

(5
_(6)

(7
(8
_®
—(10)

(1)

—(13)
_(14)

_(16)

(18)
_(19)

—(20)

_(12.1)
_(12.2)

_(12.3)

_(12.4)

_(15.1)

(12.5)
_(15.2)

_(12.6)
_(15.3)

181S62

28

SOFTWARE TESTING

2.2.4 Structured Implementations
The pseudocode for [Improved Version]

Step 1: Get Input

Output(—Enter 3 integers which are sides of a trianglel)
Input(a,b,c)

Output(—Side A isl,a)

Output(—Side B isl,b)

Output(—Side C isl,c)

Step 2: Is A Triangle?*

If@a<b+c)AND (b<a+c)AND (c<a+b)
Then IsATriangle = True

Else IsATriangle = False

EndIf

Step 3: Determine Triangle Type
If IsSATriangle

Then If (a=b) AND (b =c)
Then Output (—Equilaterall)

Else If (a#b) AND (a#c) AND (b #¢)
Then Output (—Scalenell)

Else Output (-Isoscelesl)

EndIf

EndIf

Else Output(—Not a Trianglel)
EndIf

End triangle2

The pseudocode for [Final Version]
Third version
Program triangle3

Dim a, b, ¢ As Integer

Dim c1, c2, c3, IsATriangle As Boolean

Step 1: Get Input

Do

Output(—Enter 3 integers which are sides of a trianglel)
Input(a, b, ¢)

cl=(1<a) AND (a<300)

c2 =(1<b) AND (b <300)

c3=(1<c) AND (c <300)

If NOT(c1)

Then Output(—Value of a is not in the range of permitted valuesl)
EndIf

If NOT(c2)

Then Output(—Value of b is not in the range of permitted valuesl)
EndIf

If NOT(c3)

DEPT OF ISE

181S62

29

SOFTWARE TESTING 181S62

ThenOutput(—Value of ¢ is not in the range of permitted valuesl)
EndIf

Until c1 AND c2 AND c3

Output(—Side A isl,a)

Output(—Side B isl,b)

Output(—Side C isl,c)

_Step 2: Is A Triangle?

If@a<b+c)AND (b<a+c)AND (c<a+b)

Then IsATriangle = True

Else IsATriangle = False

2.3 T he NextDate Function

The complexity in the triangle program is due to the relationships between inputs and correct
outputs. We will use the NextDate function to illustrate a different kind of complexity—
logical relationships among the input variables.

2.3.1 Problem Statement

NextDate is a function of three variables: month, date, and year. It returns the date of the day
after the input date. The month, date, and year variables have integer values subject to these
conditions

(the year range ending in 2012 is arbitrary, and is from the first edition):
cl. 1 <month <12

c2.1<day<31

3. 1812 < year < 2012

As we did with the triangle program, we can make our problem statement more specific. This
entails defining responses for invalid values of the input values for the day, month, and year.

We can also define responses for invalid combinations of inputs, such as June 31 of any year.

If any of conditions c1, c2, or c3 fails, NextDate produces an output indicating the
corresponding variable has an out-of-range value—for example, —\VValue of month not in the
range 1...12.1 Because numerous invalid day—month—year combinations exist, NextDate
collapses these into one message: —Invalid Input Date.|

2.3.2 Discussion

Two sources of complexity exist in the NextDate function: the complexity of the input
domain discussed previously, and the rule that determines when a year is a leap year. A year
is 365.2422 days long; therefore, leap years are used for the —extra dayl problem. If we
declared a leap year every fourth year, a slight error would occur.

The Gregorian calendar (after Pope Gregory) resolves this by adjusting leap years on century
years. Thus, a year is a leap year if it is divisible by 4, unless it is a century year. Century
years are leap years only if they are multiples of 400 (Inglis, 1961); thus, 1992, 1996, and
2000 are leap years, while the year 1900 is not a leap year. The NextDate function also
illustrates a sidelight of software testing.

DEPT OF ISE 30

SOFTWARE TESTING

2.3.3 Implementations
Program NextDatel _Simple version

Dim tomorrowDay,tomorrowMonth,tomorrowYear As Integer
Dim day,month,year As Integer
Output (—Enter today‘s date in the form MM DD YYYYI)

Input (month, day, year)

Case month Of

Case 1: month Is 1,3,5,7,8, Or 10: _31 day months (except Dec.)
If day < 31

Then tomorrowDay = day + 1

Else

tomorrowDay =1

tomorrowMonth = month + 1

EndlIf

Case 2: month 1s 4,6,9, Or 11 _30 day months
If day < 30

Then tomorrowDay = day + 1

Else

tomorrowDay = 1

tomorrowMonth = month + 1

EndIf

Case 3: month Is 12: _December
If day < 31

Then tomorrowDay = day + 1
Else

tomorrowDay =1
tomorrowMonth =1

If year = 2012

Then Output (—2012 is overl)
Else tomorrow.year = year + 1
EndIf

Case 4: month is 2: _February
If day < 28

Then tomorrowDay =day + 1
Else

If day = 28

Then If ((year is a leap year)
Then tomorrowDay =29 _leap year
Else _not a leap year
tomorrowDay =1
tomorrowMonth =3

EndIf

DEPT OF ISE

181S62

31

SOFTWARE TESTING

Else If day = 29

Then If ((year is a leap year)
Then tomorrowDay = 1
tomorrowMonth = 3

Else _not a leap year
Output(—Cannot have Feb.l, day)

EndlIf
EndIf
EndlIf
EndIf
EndCase

Output (—Tomorrow*s date isl, tomorrowMonth, tomorrowDay, tomorrowY ear)

End NextDate

Program NextDate2 Improved version

Dim tomorrowDay,tomorrowMonth,tomorrowYear As Integer
Dim day,month,year As Integer
Dim cl, c2, c3 As Boolean

Do
Output (—Enter today‘s date in the form MM DD YYYYI)

Input (month, day, year)

cl = (1 <day) AND (day < 31)

c2 = (1 <month) AND (month < 12)
c3 = (1812 < year) AND (year <2012)

If NOT(cl)
Then Output(—Value of day not in the range 1..311)
EndIf

If NOT(c2)
Then Output(—Value of month not in the range 1..121)
EndIf

If NOT(c3)
Then Output(—Value of year not in the range 1812..20121)
EndlIf

Until c1 AND c2 AND c2
Case month Of
Case 1: month Is 1,3,5,7,8, Or 10: _31 day months (except Dec.)

If day < 31
Then tomorrowDay = day + 1

DEPT OF ISE

181S62

32

SOFTWARE TESTING

Else

tomorrowDay = 1
tomorrowMonth = month + 1
EndlIf

Case 2: month 1s 4,6,9, Or 11 _30 day months

If day < 30

Then tomorrowDay = day + 1
Else

If day =30

Then tomorrowDay = 1
tomorrowMonth = month + 1
Else Output(—Invalid Input Datel)
EndIf

EndIf

Case 3: month Is 12: _December
If day < 31

Then tomorrowDay = day + 1
Else

tomorrowDay =1
tomorrowMonth =1

If year = 2012

Then Output (—Invalid Input Datel)
Else tomorrow.year = year + 1
EndIf

EndIf

Case 4: month is 2: _February
If day < 28
Then tomorrowDay = day + 1

Else

If day = 28

Then

If (year is a leap year)

Then tomorrowDay = 29 _leap day
Else _not a leap year
tomorrowDay = 1
tomorrowMonth =3

EndIf

Else

If day =29
Then

DEPT OF ISE

181S62

33

SOFTWARE TESTING 181S62

If (year is a leap year)
Then tomorrowDay = 1
tomorrowMonth = 3

Else

If day > 29

Then Output(—Invalid Input Datel)

EndIf

EndIf

EndIf

EndIf

EndIf

EndCase

Output (—Tomorrow*s date isl, tomorrowMonth, tomorrowDay, tomorrowY ear)

End NextDate2

2.4 T he Commission Problem

Our third example is more typical of commercial computing. It contains a mix of
computation and decision making, so it leads to interesting testing questions. Our main use of
this example will be in our discussion of data flow and slice-based testing.

2.4.1 Problem Statement

A rifle salesperson in the former Arizona Territory sold rifle locks, stocks, and barrels made
by a gunsmith in Missouri. Locks cost $45, stocks cost $30, and barrels cost $25. The
salesperson had to sell at least one lock, one stock, and one barrel (but not necessarily one
complete rifle) per month, and production limits were such that the most the salesperson
could sell in a month was 70 locks, 80 stocks, and 90 barrels. After each town visit, the
salesperson sent a telegram to the Missouri gunsmith with the number of locks, stocks, and
barrels sold in that town.

At the end of a month, the salesperson sent a very short telegram showing —1 lock sold. The
gunsmith then knew the sales for the month were complete and computed the salesperson‘s
commission as follows: 10% on sales up to (and including) $1000, 15% on the next $800, and
20% on any sales in excess of $1800.

2.4.2 Discussion

This example is somewhat contrived to make the arithmetic quickly visible to the reader. It
might be more realistic to consider some other additive function of several variables, such as
various calculations found in filling out a US 1040 income tax form. (We will stay with
rifles.)

This problem separates into three distinct pieces: the input data portion, in which we could
deal with input data validation (as we did for the triangle and NextDate programs), the sales
calculation, and the commission calculation portion. This time, we will omit the input data
validation portion. We will replicate the telegram convention with a sentinel-controlled while
loop that is typical of MIS data gathering applications.

DEPT OF ISE

34

SOFTWARE TESTING

2.4.3 Implementation
Program Commission (INPUT,OUTPUT)

Dim locks, stocks, barrels As Integer

Dim lockPrice, stockPrice, barrelPrice As Real
Dim totalLocks,totalStocks,totalBarrels As Integer
Dim lockSales, stockSales, barrelSales As Real
Dim sales,commission : REAL

lockPrice = 45.0
stockPrice = 30.0
barrelPrice = 25.0
totalLocks =0
totalStocks =0
totalBarrels =0

I=nput(locks)

While NOT (locks = -1) _Input device uses -1 to indicate end of data

Input(stocks, barrels)

totalLocks = totalLocks + locks
totalStocks = totalStocks + stocks
totalBarrels = totalBarrels + barrels
Input(locks)

EndWhile

=Output(—Locks sold:|, totalLocks)
Output(—Stocks sold:|, totalStocks)
Output(—Barrels sold:|, totalBarrels)

lockSales = lockPrice * totalLocks
stockSales = stockPrice * totalStocks
barrelSales = barrelPrice * totalBarrels
sales = lockSales + stockSales + barrelSales
Output(—Total sales:|, sales)

If (sales > 1800.0)

Then

commission = 0.10 * 1000.0

commission = commission + 0.15 * 800.0
commission = commission + 0.20 * (sales—1800.0)
Else If (sales > 1000.0)

Then

commission = 0.10 * 1000.0

commission = commission + 0.15*(sales—1000.0)
Else commission = 0.10 * sales

EndlIf

EndIf

Output(—Commission is $I,commission)

End Commission

DEPT OF ISE

181S62

35

SOFTWARE TESTING 181S62

2.5 T he SATM System

To better discuss the issues of integration and system testing, we need an example with larger
scope (Figure 2.3).

The ATM described here is minimal, yet it contains an interesting variety of functionality and
interactions that typify the client side of client—server systems.

_\
A

Welcome to
Rock Solid Federal Credit Union

Please insert your ATM card

.

NN

- /
Tz [5]
plalo
0
| Cash dispenser | [Deposit slot |

Figure 2.3 SATM terminal.

2.5.1 Problem Statement
The SATM system communicates with bank customers via the 15 screens shown in Figure
2.4.

Using a terminal with features as shown in Figure 2.3, SATM customers can select any of
three transaction types: deposits, withdrawals, and balance inquiries. For simplicity, these
transactions can only be done on a checking account.

When a bank customer arrives at an SATM station, screen 1 is displayed. The bank customer
accesses the SATM system with a plastic card encoded with a personal account number
(PAN), which is a key to an internal customer account file, containing, among other things,
the customer‘s name and account information.

If the customer‘s PAN matches the information in the customer account file, the system
presents screen 2 to the customer. If the customer‘s PAN is not found, screen 4 is displayed,
and the card is kept.

At screen 2, the customer is prompted to enter his or her personal identification number
(PIN). If the PIN is correct (i.e., matches the information in the customer account file), the
system displays screen 5; otherwise, screen 3 is displayed.

The customer has three chances to get the PIN correct; after three failures, screen 4 is
displayed, and the card is kept.

DEPT OF ISE

36

SOFTWARE TESTING 181S62

On entry to screen 5, the customer selects the desired transaction from the options shown on
screen. If balance is requested, screen 14 is then displayed. If a deposit is requested, the status
of the deposit envelope slot is determined from a field in the terminal control file. If no
problem is known, the system displays screen 7 to get the transaction amount. If a problem
occurs with the deposit envelope slot,

' Screen 1 Screen 2 Screen 3)
Welcome
please insert your Please enter your PIN Your PIN is incorrect.

'y ATM card . Please try again. /

e Screen 4 Screen 5 . Screen &
Select transaction:
balance = o
Invalid ATM card. It will deposit > g;ﬁ;‘é‘ﬁ
. be retained. . withdrawal > o]

'd Screen 7 Screen &

Insufficient Funds!

Please enter a new
amount

Enter amount,
Withdrawals must
% be multiples of $10

e Screen 10 Screen 11
Temporarily unable to Your balance is being
} h

Screen 9 ™y
Machine can only

dispense 510 notes /

process withdrawals. updated. Please take
\._ Another transaction? cash from dispenser.

-

Screen 14 Screen 15 ™

Screen 13
Your new balance is
being printed. Another
transaction? .

Please take your
receipt and ATM card.
Thank you y

Please insert deposit

Screen 12 ™
Temporarily unable to
process deposits.
Another transaction? J/
into deposit slot. [
\ P

Figure 2.4 SATM screens.

The system displays screen 12. Once the deposit amount has been entered, the system
displays screen 13, accepts the deposit envelope, and processes the deposit. The system then
displays screen 14.

If a withdrawal is requested, the system checks the status (jammed or free) of the withdrawal
chute in the terminal control file. If jammed, screen 10 is displayed; otherwise, screen 7 is
displayed so the customer can enter the withdrawal amount. Once the withdrawal amount is
entered, the system checks the terminal status file to see if it has enough currency to dispense.

If it does not, screen 9 is displayed; otherwise, the withdrawal is processed. The system
checks the customer balance (as described in the balance request transaction); if the funds in
the account are insufficient, screen 8 is displayed. If the account balance is sufficient, screen
11 is displayed and the money is dispensed. The balance is printed on the transaction receipt
as it is for a balance request transaction.

DEPT OF ISE

37

SOFTWARE TESTING

After the cash has been removed, the system displays screen 14.

When the —Nol button is pressed in screens 10, 12, or 14, the system presents screen 15 and
returns the customer‘s ATM card. Once the card is removed from the card slot, screen 1 is
displayed.

When the -Yesll button is pressed in screens 10, 12, or 14, the system presents screen 5 so the
customer can select additional transactions.

2.6 T he Currency Converter
The currency conversion program is another event-driven program that emphasizes code
associated with a GUI. A sample GUI is shown in Figure 2.5.

s Currency converter N
S dollar amount _ |
Equivalent in ... |
(") Brazil
- ' Compute)
{:_} Canada p ~
Clear
|C: European community lk'—/
. Ouit
{_} lapan <—:l
N J

Figure 2.5 Currency converter graphical user interface.

Problem Statement

The currency converter application converts U.S. dollars to any of four currencies: Brazilian
reals, Canadian dollars, European Community euros, and Japanese yen. The user can revise
inputs and perform repeated currency conversion.

System Functions

In the first step, sometimes called project inception, the customer/user describes the
application in very general terms. This might take the form of —user stories,| which are
precursors to use cases.

From these, three types of system functions are identified: evident, hidden, and frill. Evident
functions are the obvious ones. Hidden functions might not be discovered immediately, and
frills are the —bells and whistlesl that so often occur. Table 15.3 lists the system functions for
the currency converter application.

DEPT OF ISE

181S62

38

SOFTWARE TESTING 181S62

Table 15.3 System Functions for Currency Converter Application

Reference No. Function Category
R1 Start application Evident
R2 End application Evident
R3 Input US dollar amount Evident
R4 Select country Evident
R5 Perform conversion calculation Evident
Rb Clear user inputs and program outputs Evident
R7 Maintain exclusive—or relationship among countries Hidden
Ra Display country flag images Frill

Presentation Layer

Pictures are still worth a thousand words. The third step in Larman‘s approach is to sketch the
user interface; our version is in Figure 2.5. This much information can support a customer
walkthrough to demonstrate that the system functions identified can be supported by the
interface.

High-Level Use Cases

The use case development begins with a very high-level view. Notice, as the succeeding
levels of use cases are elaborated, much of the early information is retained.

It is convenient to have a short, structured naming convention for the various levels of use
cases. Here, for example, HLUC refers to high-level use case (where would we be without
acronyms?).

Very few details are provided in a high-level use case; they are insufficient for test case
identification.

The main point of high-level use cases is that they capture a narrative description of
something that happens in the system to be built.

DEPT OF ISE

39

SOFTWARE TESTING

181S62

HLUC1 Start application.

Description | The user starts the currency conversion application in Windows®,

HLUC 2 End application.

Description | The user ends the currency conversion application in Windows.

HLUC 3 Convert dollars.

Description | The user inputs a U5 dollar amount and selects a country; the application
computes and displays the equivalent in the currency of the selected country.

HLUC4 Revise inputs.

Description | The user resets inputs to begin a new transaction.

HLUC5 Repeated conversions, same dollar amount.

Description | The user inputs a U5 dollar amount and selects a country; the application
computes and displays the equivalent in the currency of the selected country.

HLUC & Revise inputs.

Description | A U5 dollar amount has been entered OR a country has been selected.

HLUC7? Abnormal case: no country selected.

Description | User enters a dollar amount and clicks on the Compute button without
selecting a country.

HLUCS Abnormal case: no dollar amount entered.

Description | User selects a country and clicks on the Compute button without entering a
dollar amount.

HLUC9 Abnormal case: no dollar amount entered and no country selected.

Description | User clicks on the Compute button without entering a dollar amount and
without selecting a country.

Essential Use Cases

Essential use cases add -actorl and -systeml events to a high-level use case. Actors in UML
are sources of system-level inputs (i.e., port input events). Actors can be people, devices,
adjacent systems, or abstractions such as time. Since the only actor is the User, that part of an
essential use case is omitted. The numbering of actor actions (port input events) and system
responses (port output events) shows their approximate sequences in time.

DEPT OF ISE

40

SOFTWARE TESTING

EUC-1

Start application

Description

The user starts the currency conversion
application in Windows.

Event Sequence

Input Events

Output Events

1. The user starts the application, either
with a Run ... command or by double
clicking the application icon.

2. The currency conversion application GUI
appears on the monitor and is ready for
user input.

EUC-3

Convert dollars

Description

The user inputs a US dollar amount and selects
a country; the application computes and
displays the equivalent in the currency of the
selected country.

Event Sequence

Input Events

Output Events

1. The user enters a dollar amount.

2. The dollar amount is displayed on the GUL.

3. The user selects a country.

4. The name of the country’s currency is
displayed.

5. The flag of the country is displayed.

6. The user requests a conversion
calculation.

7. The equivalent currency amount is
displayed.

DEPT OF ISE

181S62

41

SOFTWARE TESTING

181S62

EUC-7

Abnormal case: no country selected

Description

The user enters a dollar amount and clicks on
the cmdCompute button without selecting a
country.

Event Sequence

Input Events

Output Events

1. The user enters a dollar amount.

2. The dollar amount is displayed on the GUI.

3. User clicks the Compute button.

4. A message box appears with the caption
“must select a country”

5. The user closes the message box.

6. The message box is no longer visible.

7. The flag of the country is no longer visible.

C PROGRAM FOR CONVERTING US DOLLARS TO FRANC, POUNDS, YEN, EUROS

AND CANADIAN DOLLAR

#include<stdio.h>

#include<stdlib.h>
#define Swiss_Franc_rate 0.6072;
#define British_Pounds_rate 1.4320;
#define Japanese_Yen_rate 0.0081;
#define Canadian_Dollar_rate 0.6556;
#define Euros_rate 0.8923,;

int main(void){
[*Declare floaters*/
float Swiss_Franc;
float British_Pounds;

float Japanese_Yen;
float Canadian_Dollar;

/*Swiss Franc rate*/
[*British Pound rate*/
[*Japanese Yen rate*/
[*Canadian Dollar rate*/

[*Swiss Franc*/
[*British pounds*/
[*Japanese Yen*/
[*Canadian Dollar*/

float Euros; [*European Union Euro*/
float USD; [*US Dollar*/
int choice;
[*Title*/
printf(" Currency Conversion Program\n");
printf("----ccccemm e eeeeeeao \n\n");
[*Menu*/
printf("1) Swiss Franc \n");

DEPT OF ISE

42

SOFTWARE TESTING

printf("2) British Pound \n");
printf("3) Japanese Yen \n");
printf("4) Canadian Dollar \n");
printf("5) Euro \n");

printf("6) Exit the Program \n");

printf("\n");
printf("\n");

[*Input from User*/

printf("Please enter your choice (1-6): ");
scanf("%d",&choice);

while((choice<1) || (choice>6)){
printf("Invalid entry, please Enter 1-6: *);
scanf("'%i",&choice);

ks

if(choice==1){
printf("Please the amount: ");
scanf("%f",&Swiss_Franc);

[*Conversion Calculation 1*/
Swiss_Franc = USD / Swiss_Franc_rate;

by

if(choice==2){
printf("Please enter the amount: *);
scanf("'%f",&British_Pounds);

[*Conversion Calculation 2*/
British_Pounds = USD / British_Pounds_rate;

by

if(choice==3){
printf("Please enter the amount: *);
scanf("%f",&Japanese_Yen);

[*Conversion Calculation 3*/
Japanese_Yen =USD / Japanese_Yen_rate

¥

if(choice==4){
printf("Please enter the amount: *);
scanf("%f",&Canadian_Dollar);

DEPT OF ISE

181S62

43

SOFTWARE TESTING 181S62

[*Conversion Calculation 4*/
Canadian_Dollar = USD / Canadian_Dollar_rate;

ks

if(choice==5){
printf("Please enter the amount: *);
scanf("%f",&Euros);

[*Conversion Calculation 5*/
Euros = USD / Euros_rate;

ks

if(choice==6){
printf("EXit the program: ");

while (getchar() '="\n")
continue;
goto top;

k
printf("Goodbye\n");
return O;

¥

Saturn Windshield Wiper Controller

The windshield wiper on some Saturn automobiles is controlled by a lever with a dial. The
lever has four positions: OFF, INT (for intermittent occurring at irregular intervals; not
continuous or steady), LOW, and HIGH,;

The dial has three positions, numbered simply 1, 2, and 3.

The dial positions indicate three intermittent speeds.

The dial position is relevant only when the lever is at the INT position.

The decision table below shows the windshield wiper speeds (in wipes per minute) for the
lever and dial positions.

cl. Lever OFF INT INT INT LOW HIGH
c2. Diial n/a 1 2 3 n/a n/a
al. Wiper 0 4 b 12 30 (0

DEPT OF ISE

44

SOFTWARE TESTING 181S62

Garage Door Controller

A system to open a garage door is composed of several components: a drive motor, a drive
chain, the garage door wheel tracks, a lamp, and an electronic controller. This much of the
system is powered by commercial 110 V electricity. Several devices communicate with the
garage door controller—a wireless keypad (usually in an automobile), a digit keypad on the
outside of the garage door, and a wall-mounted button.

In addition, there are two safety features, a laser beam near the floor and an obstacle sensor.
These latter two devices operate only when the garage door is closing. If the light beam is
interrupted (possibly by a pet), the door immediately stops, and then reverses direction until
the door is fully open. If the door encounters an obstacle while it is closing (say a child‘s
tricycle left in the path of the door), the door stops and reverses direction until it is fully open.

There is a third way to stop a door in motion, either when it is closing or opening. A signal
from any of the three devices (wireless keypad, digit keypad, or wall-mounted control
button).

The response to any of these signals is different—the door stops in place. A subsequent signal
from any of the devices starts the door in the same direction as when it was stopped. Finally,
there are sensors that detect when the door has moved to one of the extreme positions, either
fully open or fully closed. When the door is in motion, the lamp is lit, and remains lit for
approximately 30 seconds after the door reaches one of the extreme positions.

The three signaling devices and the safety features are optional additions to the basic garage
door opener. This example will be used in Chapter 17 in the discussion of systems of
systems. For now, a SysML context diagram of the garage door opener is given in Figure 2.6.

Digit
Keypad
Wireless
Recei
Portable eceiver
Opener
Wall-mount Drive
button
48V DC Gg:;?e Motor 110V AC
Power T Controller Power
ight Lam
Beam i
Extreme Obstacle
Limit (Resistance)
Sensor Sensor

Figure 2.6 SysML diagram of garage door controller.

DEPT OF ISE

45

SOFTWARE TESTING 181562

MODULE 2

Functional Testing: Boundary value analysis, Robustness testing, Worst-case testing, Robust
Worst testing for triangle problem, Nextdate problem and commission problem, Equivalence
classes, Equivalence test cases for the triangle problem, NextDate function, and the commission
problem, Guidelines and observations, Decision tables, Test cases for the triangle problem,
NextDate function, and the commission problem, Guidelines and observations. Fault Based
Testing: Overview, Assumptions in fault based testing, Mutation analysis, Fault-based adequacy
criteria, Variations on mutation analysis.

Boundary value analysis

Boundary testing is the process of testing between extreme ends or boundaries between partitions
of the input values.

o So these extreme ends like Start- End, Lower- Upper, Maximum-Minimum, Just Inside-
Just Outside values are called boundary values and the testing is called "boundary
testing".

The basic idea in boundary value testing is to select input variable values at their:

1. Minimum
2. Just above the minimum
3. A nominal value
4. Just below the maximum
5. Maximum
a b
o > X
X(min) XxX(min+) X(nom) X(max -) Xx(max)

The first step of Boundary value analysis is to create Equivalence Partitioning, which would look
like below.

DEPT OF ISE

SOFTWARE TESTING 181562

' Equivalence Partitioning
' Invalid Partition (IP) " Valid Partition (VP) ‘ ' Invalid Partition (IP)
- 1

15 |16 60 | 6

Equivalence Partitioning

Now Concentrate on the Valid Partition, which ranges from 16-60. We have a 3 step approach to
identify boundaries:

15 15 17 55 6b 6l
(Boundary -1) (Boundary +1) (Boundary -1) (Boundary +1)
Boundary Boundary

 ldentify Exact Boundary Value of this partition Class — which is 16 and 60.
o Get the Boundary value which is one less than the exact Boundary — which is 15 and 59.
o Get the Boundary Value which is one more than the precise Boundary — which is 17 and 61.

If we combine them all, we will get below combinations for Boundary Value for the Age
Criteria.

Valid Boundary Conditions : Age =16, 17, 59, 60
Invalid Boundary Conditions : Age = 15, 61

It"s straightforward to see that valid boundary conditions fall under Valid partition class, and
invalid boundary conditions fall under Invalid partition class.

The Focus of BVA Boundary Value Analysis focuses on the input variables of the function. For
the purposes of this report | will define two variables (| will only define two so that further
examples can be kept concise) X1 and X2. Where X1 lies between A and B and X2 lies between
CandD.

A<X1<B
C<X2<D

The values of A, B, C and D are the extremities of the input domain. These are best
demonstrated by figure 4.1.

DEPT OF ISE

SOFTWARE TESTING 181562

Xy Input Space (domain)

e

The Yellow shaded area of the graph shows the acceptable/legitimate input domain of the given
function. As the name suggests Boundary Value Analysis focuses on the boundary of the input
space to recognize test cases. The idea and motivation behind BVA is that errors tend to occur
near the extremities of the input variables. The defects found on the boundaries of these input
variables can obviously be the result of countless possibilities. Figure 4.1 4 But there are many
common faults that result in errors more collated towards the boundaries of input variables. For
example if the programmer forgot to count from zero or they just miscalculated. Errors in the
code concerning loop counters being off by one or the use of a < operator instead of <. These are
all very common mistakes and accompanied with other common errors we find an increasing
need to perform Boundary Value Analysis.

5.0 Applying Boundary Value Analysis In the general application of Boundary Value Analysis
can be done in a uniform manner. The basic form of implementation is to maintain all but one of
the variables at their nominal (normal or average) values and allowing the remaining variable to
take on its extreme values. The values used to test the extremities are:

eMin.__ Minimal

e Min+ Just above Minimal
eNOMm, Average

eMax- Just below Maximum
» Max Maximum

In continuing our example this results in the following test cases shown in figures 5.1 and 5.2:

DEPT OF ISE

SOFTWARE TESTING 181562

X Test Cases (function
IS of two variables)
| i
dF==d—ao—o @ -——--———== dmmmme
| ® |
I I
I I
I I
I I
o ° o
| . |
Cr==t=====- @ -—-——---- $-----
I I
I I > X
a b e

{<x1nom, x2min>, <x1nom, x2min+ >,<x1nom, Xx2nom>,<x1nom, x2max- >,
<x1lnom, x2max>, <x1min, x2nom >, <x1min+, x2nom >, <x1nom, x2nom >,
<x1max-, x2nom >, <x1max, x2nom > }

You maybe wondering why it is we are only concerned with one of the values taking on their
extreme values at any one particular time. The reason for this is that generally Boundary Value
Analysis uses the Critical Fault Assumption. There are advantages and shortcomings of this
method.

5.1 Some Important examples To be able to demonstrate or explain the need for certain methods
and their relative merits | will introduce two testing examples proposed by P.C. Jorgensen [1].
These examples will provide more extensive ranges to show where certain testing techniques are
required and provide a better overview of the methods usability.

* The NextDate problem

The NextDate problem is a function of three variables: day, month and year. Upon the input of a
certain date it returns the date of the day after that of the input. The input variables have the
obvious conditions:

1 <Day<3l
1 <month < 12.
1812 < Year < 2012.

(Here the year has been restricted so that test cases are not too large). There are more
complicated issues to consider due to the dependencies between variables. For example there is
never a 31st of April no matter what year we are in. The nature of these dependencies is the
reason this example is so useful to us. All errors in the NextDate problem are denoted by
“Invalid Input Date.”

» The Triangle problem In fact the first introduction of the Triangle problem is in 1973,
Gruenburger. There have been many more references to this problem since making this one of
the most popular example to be used in conjunction with testing literature.

DEPT OF ISE

SOFTWARE TESTING 181562

The triangle problem accepts three integers (a, b and c) as its input, each of which are taken to be
sides of a triangle. The values of these inputs are used to determine the type of the triangle
(Equilateral, Isosceles, Scalene or not a triangle).

For the inputs to be declared as being a triangle they must satisfy the six conditions:

Cl. 1 <a<200.
C2.1<b<200.
C3.1<c<200.

C4.a<b+c.
C5.b<a+c.
C6.c<a+h.

Otherwise this is declared not to be a triangle. The type of the triangle, provided the conditions
are met, is determined as follows:

1. If all three sides are equal, the output is Equilateral.
2. If exactly one pair of sides is equal, the output is Isosceles.
3. If no pair of sides is equal, the output is Scalene.

5.2 Critical Fault Assumption

The Critical Fault Assumption also known as the single fault assumption in reliability theory.
The assumption relies on the statistic that failures are only rarely the product of two or more
simultaneous faults. Upon using this assumption we can reduce the required calculations
dramatically.

The amount of test cases for our example as you can recall was 9. Upon inspection we find that
the function f that computes the number of test cases for a given number of variables n can be
shown as:

f=4n+1

As there are four extreme values this accounts for the 4n. The addition of the constant one
constitutes for the instance where all variables assume their nominal value.

5.3 Generalizing BVA
There are two approaches to generalizing Boundary Value Analysis. We can do this by the
number of variables or by the ranges these variables use. To generalize by the number of

variables is relatively simple. This is the approach taken as shown by the general Boundary
Value Analysis technique using the critical fault assumption.

DEPT OF ISE

SOFTWARE TESTING 181562

Generalizing by ranges depends on the type of the variables. For example in the NextDate
example proposed by P.C. Jorgensen [1], we have variable for the year, month and day.
Languages similar to the likes of FORTRAN would normally encode the month“s variable so
that January corresponded to 1 and February corresponded to 2 etc. Also it would be possible in
some languages to declare an enumerated type {Jan, Feb, Mar,...... , Dec}. Either way this type
of declaration is relatively simple because the ranges have set values.

When we do not have explicit bounds on these variable ranges then we have to create our own.
These are known as artificial bounds and can be illustrated via the use of the Triangle problem.
The point raised by P.C. Jorgensen was that we can easily impose a lower bound on the length of
an edge for the tri-angle as an edge with a negative length would be “silly”. The problem occurs
when trying to decide upon an upper bound for the length of each length. We could use a certain
set integer, we could allow the program to use the highest possible integer (normally denoted as
something to the effect of MaxInt). The arbitrary nature of this problem can lead to messy results
or non concise test cases.

5.4 Limitations of BVA

Boundary Value Analysis works well when the Program Under Test (PUT) is a “function of
several independent variables that represent bounded physical quantities” [1]. When these
conditions are met BVA works well but when they are not we can find deficiencies in the results.

For example the NextDate problem, where Boundary Value Analysis would place an even
testing regime equally over the range, tester”s intuition and common sense shows that we require
more emphasis towards the end of February or on leap years.

The reason for this poor performance is that BVA cannot compensate or take into consideration
the nature of a function or the dependencies between its variables. This lack of intuition or
understanding for the variable nature means that BVA can be seen as quite rudimentary.
Robustness testing

6.0 Robustness Testing

Robustness testing can be seen as and extension of Boundary Value Analysis. The idea behind
Robustness testing is to test for clean and dirty test cases. By clean | mean input variables that lie
in the legitimate input range. By dirty | mean using input variables that fall just outside this input
domain.

In addition to the aforementioned 5 testing values (min, min+, nom, max-, max) we use two
more values for each variable (min-, max+), which are designed to fall just outside of the input
range.

If we adapt our function f to apply to Robustness testing we find the following equation:

DEPT OF ISE

SOFTWARE TESTING 181562

f=6n+1

DEPT OF ISE

SOFTWARE TESTING 181562

I have equated this solution by the same reasoning that lead to the standard BV A equation. Each
variable now has to assume 6 different values each whilst the other values are assuming their
nominal value (hence the 6n), and there is again one instance whereby all variables assume their
nominal value (hence the addition of the constant 1). These result can be seen in figures 6.1 and
6.2.

Robustness testing ensues a sway in interest, where the previous interest lied in the input to the
program, the main focus of attention associated with Robustness testing comes in the expected
outputs when and input variable has exceeded the given input domain. For example the NextDate
problem when we an entry like the 31st June we would expect an error message to the effect of
“that date does not exist; please try again”. Robustness testing has the desirable property that it
forces attention on exception handling. Although Robustness testing can be somewhat awkward
in strongly typed languages it can show up altercations. In Pascal if a value is defined to reside in
a certain range then and values that falls outside that range result in the run time errors that
would terminate any normal execution. For this reason exception handling mandates Robustness
testing.

% Robgstness Test Qases Xiynome Xomin™
A (function of two variables) 2K o K £
: : <x1nom' X2n0m>
(» | EE— JI. ______ :_ _________ JI_ _____ Xynom' Xamax-
: . : <X1nom‘ X?max>
: : <x1mm' X?nom>
: : z);“lllll‘ . ::7num:

1nom' “2nom
.? . . . ? . <X1max ! X?nom>
: . : <X1max')(Zr\om>
C ___+ ______ .__‘___—____: _____ Xqmin-» X2nom>
: ¢ : <X1nom‘ X2m3x+>
é 6 » x1 <X1max¢‘ x7n0m>
<x1nom’ x2min->

Worst-case testing

Boundary Value analysis uses the critical fault assumption and therefore only tests for a single
variable at a time assuming its extreme values. By disregarding this assumption we are able to
test the outcome if more than one variable were to assume its extreme value. In an electronic
circuit this is called Worst Case Analysis. In Worst-Case testing we use this idea to create test
cases.

To generate test cases we take the original 5-tuple set (min, min+, nom, max-, max) and perform

the Cartesian product of these values. The end product is a much larger set of results than we
have seen before.

DEPT OF ISE

SOFTWARE TESTING 181562

We can see from the results in figures 7.1 and 7.2 that worst case testing is a more
comprehensive testing technique. This can be shown by the fact that standard Boundary Value

Analysis test cases are a proper subset of Worst-Case test cases.

X, . Worst Case Test B s B K
A ases (fU-nC“On Of tWO <X1mm' x2m|n+> <X1max-’ X2mln+>
: varlables) : <x1m|n' X2nom> <)<1max-‘ 2nom>
| | <X1m|n' XZmax-> <X1max-' X2max->
d T —::_ T :_ ——————— _:: ————— <<X1m|n' x?max> <x1max—' XZmax>
| | X1mmo' Xme> <x1max‘ x2m|n>
: : <X1m|m' X?mmo> <X1max' x?mlm>
I | <x1m|m' x?nom> <x1max' X'}nmn>
‘ . . ‘ ‘ <x1m|no' X2ma)<»> <x1max' x’zmax.>
: : <x1m|m‘ x2ma><> <X1max' xzmax>
. . .: <xmom‘ mem>
G e ._____._ _______ _. _____ <Xmom' x2m1m>
: : <X1nom' X2nom>
é t‘) <X1nom’ X?max 2
<X1nom’ X2max>

These test cases although more comprehensive in their coverage, constitute much more
endeavour. To compare we can see that Boundary Value Analysis results in 4n + 1 test case
where Worst-Case testing results in 5" test cases. As each variable has to assume each of its
variables for each permutation (the Cartesian product) we have 5 to the n test cases.

For this reason Worst-Case testing is generally used for situations that require a higher degree of
testing (where failure of the program would be very costly)with less regard for the time and
effort required as for many situations this can be too expensive to justify.

Robust Worst testing for triangle problem,

If the function under test were to be of the greatest importance we could use a method named
Robust Worst-Case testing which as the name suggests draws it attributes from Robust and
Worst-Case testing.

Test cases are constructed by taking the Cartesian product of the 7-tuple set defined in the
Robustness testing chapter. Obviously this results in the largest set of test results we have seen so
far and requires the most effort to produce.

We can see that the function f (to calculate the number of test cases required) can be adapted to
calculate the amount of Robust Worst-Case test cases. As there are now 7 values each variable
can assume we find the function f to be:

DEPT OF ISE

SOFTWARE TESTING

f=7

DEPT OF ISE

181562

10

SOFTWARE TESTING 181562

This function has also been reached in the paper A Testing and analysis tool for Certain 3-
Variable functions [2].

The results for the continuing example can be seen in figures 7.3 and 7.4.

Robust Worst Case Test
‘):7 Cases (function of two
: variables) l
d 000 o _g (1]
0% e H
i |
| :
800 ® o0
i |
e
® ®
! ! s
a b =N

2

1miee * x2m‘n~> <X1m‘n‘ x2m.<> cx‘lmm' X2nom> <X‘M ¢ xz’l'“in)
amin Xomin” Xamin' Lomacr” Xtrom: Xomae” F1mae' *2mion ”
1mire * x2ml|'-+> <>(<||mn-\~' X2rm> <X1nom‘ sz,f <x1mo<-' ><2m>m>
Imin-* >(2nom:) <X1m' X2rmn> <X1mm' X2ma>c+> Q<1M“ X?"W'>
1min- * x2ma<-><x1min+' x?rrm-t) «‘m\a-&' xzrn'n> <X1m®<~' X2M>
tmin X2mad Xt Sanom” X qmact Xomin Fimae Comae”
Amine * x2m.u4><x1mim' Xomee Famases Xomin~ <)<1M, X?ﬂ'ﬁ'r)
1min* X2miw> <x1miM' ><2|'n.'<> Q<1m,(4-' xzmm> <X1"W<' X2ﬂ'l'h)
X gmine x2m><xtmm‘ >(Zm.w‘> Kimaet: Xomae” <X'M' Xomiew 2
<>(1mh' XZmlnv> <x1nom‘ >(thr) Q<1m.a(~t-' ><21na<> Q<1ma>(' x2n0m>
Kgmin® Bnom” Ltnoms "2min” X amat omact” Ximax: Xomac ™
“Kimins X2mar.” <><1mm‘ X:.’mirw> (x1max-' Xomin 3 cxﬂTW' XM:"
<)<1ﬂ'u>r' x2mw>

BRRR

s R

DEPT OF ISE

SOFTWARE TESTING

4) Robust Worst-Case Test: RWT

Robust Worst Case Test

Kﬂ Cases (function of two
I variables) 1
[1]) ° ede
+-9000-———-@-————-—— - e
00 [] [1 1]
i i
| |
o+o . o+o
1]
9 [
E © . s SEEC 283
[1 1] [] (117
I |
> X%

a b
he number of test

case is 7"
,where n is the

x1 X2

min-—————min-
min \\ min

min+ min+
nom . nom
max- * max-
max ' max
max+ ' max+

number of variable

Robust worst case testing for triangle problem

Standard Boundary Value Analysis test cases:

[}

min =1
min+ =2
nom = 100
max- =
199
max = 200

Boundary Value Analysis Test Cases

Case| a b C Expected Output
1 100 | 100 1 Isosceles
2 100 | 100 2 Isosceles
3 100 | 100 | 100 Equilateral
L) 100 100 199 Isosceles
5 100 | 100 | 200 Mot a Triangle
[i] 100 1 100 Isosceles
7 100 2 100 Isosceles
i 100 189 100 Isosceles
9 100 | 200 | 100 Mot a Triangle
10 1 100 100 Isosceles
11 2 100 | 100 Isosceles
12 189 100 100 Isosceles
13 200 | 100 | 100 Mot a Triangle

Worst-Case Analysis test cases:

DEPT OF ISE

181562

For each example | will show test cases for the standard Boundary Value Analysis and the
Worst-case testing techniques. These will show how the test cases are performed and how
comprehensive the results are. There will not be test cases for Robustness testing or robust
Worst-case testing as the cases covered should explain how the process works. Too many test
cases would prove to be monotonous when trying to explain a concept, however when presenting
a real project when the figures are more “necessary” all test cases should be detailed and
explained to their full extent.

12

SOFTWARE TESTING 181562

Worst Case Test Cases (60 of 125)

Caze| a b = Expected Output || Case| a b = Expected Output
1 1 1 1 |Equilateral a1 2 2 1 |lsosceles
2 1 1 2 |Mota Triangle EE 2 2 2 |Equilateral
3 1 1 100 |MNota Triangle 33 2 2 100 |Mot a Triangle
4 1 1 199 [Nola Triangle 34 2 2 199 |Mot a Triangle
5 1 1 200 [Mota Triangle 35 2 2 200 [Mot a Triangle
& 1 2 1 [Mota Trangle 36 2 100 1 [Mota Trianghe
7 1 2 2 |lsosceles KT 2 100 | 2 |Nota Trianghe
B 1 2 100 |MNola Trangle 38 2 100 | 100 |lsesceles
8 1 2 198 |Mala Trianghe 389 2 100 1 198 [Nol a Triandgha
10 1 2 200 [Mola Triangle 40 2 100 | 200 [Mota Triangle
11 1 100 1 [Mota Triamghe 41 2 199 1 [Mota Trianghe
12 1 100 | 2 [Mota Trangle 42 2 192 | 2 [Mota Triangle
13 1 100 | 100 |Iscsceles 43 2 198 | 100 |Nota Trianghe
14 1 100 1 198 Mol a Trianghe 44 2 185 | 198 [lsosceles
15 1 100 | 200 |Mola Trianghe 45 2 1898 | 200 |[Scalens
16 1 189 1 [MNota Trangle 45 2 200 1 |[Nota Triangle
17 1 192 | 2 [MNola Trangle 47 2 2001 2 [Mota Triangle
18 1 192 | 100 |Nota Trianghe 48 2 200 | 100 |[Mota Trianghe
19 1 192 | 199 |Isceceles 49 2 200 | 199 [Scalena
20 1 185 | 200 |Mola Trianghe 50 2 200 | 200 |lsosceles
21 1 200 1 [MNota Triangle 51 | 100 1 1 [Nota Triangle
22 1 200 | 2 [Mela Tranghe 52 | 100 1 2 [Mota Triangls
23 1 200 | 100 [Mota Triangle 53 [100 1 100 |Isesceles
24 1 200 | 199 [Mota Trianghe 54 [100 1 199 |MNot a Triangle
25 1 200 | 200 |iscsceles 55 | 100 1 200 Mot a Triangle
26 2 1 1 [Mota Tranghe 56 | 100 2 1 [Nota Trianghe
7 2 1 2 |lsosceles 57 | 100 2 2 [Mota Trangle
28 2 1 100 |MNola Triangle 58 | 100 2 100 |Isesceles
Fl] 2 1 199 |MNola Trangle 52 | 100 2 199 |Mot a Triangle
30 2 1 200 [MNola Triangle 60 | 100 2 200 Mot a Trianghe

Again this 1s only up to 60 of 125 test cases.
Robust worst case testing Nextdate problem

Boundary Value Analysis Test Cases
Case |month] day | year Exp-ected Clutput
1 6 15 | 1812 | June 16, 1812
2] 15 | 1813 | June 16, 1813
3 6 15 | 1912 | June 16, 1912
month =y e a2 4 | 6 | 15 [2011] June 16. 2011
min+ = 2 min+ = 2 min+ = 1813 5 5 15 | 2012 | June 16, 2012
nem = 6 nom = 15 nom = 1812 [B 1 1912 | June 2, 1912
s o A B B 1 TR
8 6 30]| 1912] duly 1, 1912
[6 31 [1912] error
10 1 15] 1912 | January 16, 1912
11 2 15 | 1912 | February 16, 1912
12 11 15 | 1912 | November 16, 1912
13 12 15 | 1912 | December 16, 1912

DEPT OF ISE

SOFTWARE TESTING

Worst case analysis test case

181562

Worst Case Test Cases (60 of 125)

Case maonth day year Expected Dutput Case maondth day year Expecied Dutput
i 1 i 1812 | January 2. 1812 31 2 2 1812 | February 3. 1812
2 1 1 1813 | January 2, 1813 32 2 2 1813 | February 3. 1813
3 1 1 1912 | January 2, 1912 33 2 2 1912 | February 3, 1912
E] 1 1 2011 January 2, 2011 34 2 2 2011 | February 3, 2011
5 1 1 2012 | January 2, 2012 35 2 2 2012 | February 3. 2012
3] 1 2 1812 | January 3, 1812 36 2 15 1812 | February 16, 1812
7 1 2 1813 | January 3, 1813 7 2 15 1813 | February 16, 1813
8 1 2 1912 | January 3, 1912 38 2 15 1912 | February 16, 1912
] 1 2 2011 January 3, 2011 39 2 15 2011 | February 16, 2011
0 i 2 2012 || January 3, 2012 40 2 15 2012 | February 16, 2012
11 1 15 1812 | January 16. 1812 41 2 30 1812 |error
12 1 15 1813 | January 16, 1813 42 2 30 1813 |error
13 1 15 1912 | January 16, 1912 43 2 30 1912 |ermor
14 1 15 2011 January 16 2011 44 2 30 2011 |error
15 1 15 2012 | January 16, 2012 45 2 30 2012 |error
16 1 30 1812 | January 31, 1812 46 2 3 1812 |error
17 1 30 1813 | January 31, 1813 47 2 31 1813 |error
18 1 30 1912 | January 31, 1912 48 2 3 1912 |ermor
18 1 30 2011 January 31, 2011 48 2 3 2011 |error
20 1 30 2012 | January 312012 50 2 31 2012 |ermor
21 1 3 1812 | February 1, 1812 51 [1 1812 | June 2, 1812
22 1 31 1812 | February 1, 1813 52 [1 1813 | June 2, 1813
23 1 £l 1012 | February 1, 1812 53 [1 1912 [June 2, 1812
24 1 L] 2011 February 1, 2011 54] 1 2011 | June 2, 2011
25 1 & 2012 | February 1. 2012 55] 1 2012 | June 2, 2012
26 2 1 1812 | February 2, 1812 56 & 2 1812 | June 3, 1812
27 2 1 1813 | February 2, 1813 57 [2 1813 | June 3, 1813
28 2 1 1012 | February 2, 1912 58 [2 1912 | June 3, 1912
20 2 1 2011 February 2, 2011 50 [2 2011 [June 3, 2011
30 2 1 2012 | February 2, 2012 &l] 2 2012 | June 3, 2012

As we can see there are only 60 of 125 test cases in this example, this

amount of test cases produced.

Robust worst case testing commission problem

Rifle salespersons in the Arizona Territory sold rifle locks,
stocks, and barrels made by a gunsmith in Missouri

Lock = $45.00, stock = $30.00, barrel = $25.00

Each salesperson had to sell at least one complete rifle per
month ($100)

The most one salesperson could sell in a month was 70 locks,
80 stocks, and 90 barrels

Each salesperson sent a telegram to the Missouri company
with the total order for each town (s)he visits

1<towns visited<10, per month

Commission: 10% on sales up to $1000, 15% on the next
$800, and 20% on any sales in excess of $1800

DEPT OF ISE

shows the vast

14

SOFTWARE TESTING 181562

Barrels

72

40
Locks

22.2 70,
60

60
Stocks
80!

Output Boundary Value Test Cases

Case # Locks Stocks Barrels Sales Comm. Comments

1 1 I 1 100 10 min

2 10 10 9 975 97.5 border-
3 10 9 10 970 97 border-
4 9 10 10 955 95.5 border-
5 10 10 10 1000 100 border
6 10 10 11 1025 103.75 border+
7 10 11 10 1030 104.5 border+
8 11 10 10 1045 106.75 border+

Equivalence classes

Equivalence Class Testing, which is also known as Equivalence Class Partitioning
(ECP) and Equivalence Partitioning, is an important software testing technique used by the team
of testers for grouping and partitioning of the test input data, which is then used for the purpose
of testing the software product into a number of different classes.

These different classes resemble the specified requirements and common behavior or attribute(s)
of the aggregated inputs. Thereafter, the test cases are designed and created based on each class
attribute(s) and one element or input is used from each class for the test execution to validate the
software functioning, and simultaneously validates the similar working of the software product
for all the other inputs present in their respective classes.

DEPT OF ISE

15

SOFTWARE TESTING 181562

For an int variable in some program, it might be possible to test the project when every program
value is input for the variable. This is true because, on any specific machine, only a finite number
of values can be assigned to an int variable. However, the number of values is large, and the
testing would be very time consuming and not likely worthwhile.

The number of possible values is much larger for variables of type float or String.

Thus, for almost every program, it is impossible to test all possible input values.

To get around the impossibility of testing for every possible input value, the possible input
values for a variable are normally divided into categories, usually called blocks or equivalence

classes.

The objective is to put values into the same equivalence class if the project should have similar
(equivalent) behavior for each value of the equivalence class.

Now, rather than testing the project for all possible input values, the project is tested for an input
value from each equivalent class.

The rationale for defining an equivalence class is as follows: If one test case for a particular
equivalence class exposes an error, all other test cases in that equivalence class will likely expose
the same error.

Using standard notation from discrete mathematics, the objective is to partition the input values
for each variable, where a partition is defined as follows:

Definition 16.1: A partition of a set A is the division of the set into subsets
Ai,i=12,... m,

called blocks or equivalence classes, such that each element of A is in exactly one of the
equivalence classes.

Often the behavior of a program is a function of the relative values of several variables.

In this case, it is necessary for the partition to reflect the values of all the variables involved. As
an example, consider the following informal specification of a program:

Given the three sides of a triangle as integers x, y, and z, it is desired to have a program to
determine the type of the triangle: equilateral, isosceles, or scalene.

The behavior (i.e., output) of the program depends on the values of the three integers. However,
as previously remarked, it is infeasible to try all possible combinations of the possible integer
values.

Traditional equivalence class testing simply partitions the input values into valid and nonvalid

DEPT OF ISE

16

SOFTWARE TESTING 181562

values, with one equivalence class for valid values and another for each type of invalid values.

DEPT OF ISE

17

SOFTWARE TESTING 181562

Note that this implies an individual test case to cover each invalid equivalence class. The
rationale for doing this is that if invalid inputs can contain multiple errors, the detection of one
error may result in other error checks not being made.

For the triangle example, there are several types of invalid values. The constraints can be divided
into the following categories:

C 1. The values of x, y, and z are greater than zero.
C 2. The length of the longest side is less than the sum of the lengths of the other two sides.

To guarantee that each invalid situation is checked independently, an invalid equivalence class
should be set up for each of the variables having a nonpositive value:

1.{(x,y,2)|x<0,y, z>0}
2.{(X,y,2)|y<0,x,z>0}
3{(x,y,2)|z=0,x,y>0}

However, each of the variables can be the one that has the largest value (i.e., corresponds to the
longest side). Thus, three more invalid equivalence classes are needed:

4.{(x,y,2) | x>y, x>z,x>y+2z}

5.{x,y,2)|y=x,y>z, y>x + 2}
6.{(X,V,2)|z=>X,z>Yy,z>X +V}

In the current example, possible test cases for each equivalence class are the following:
1. (-1, 2, 3),(0, 2, 3)

2,-1,3),(2,0,3)

2,3,-1),(2,3,0)

52,3),(5,1,2)

2,5,3),(1,5,2)

2,3,5),(1,2,5)

t
(
2. (
3.(
4. (
5. (
6. (

The above are not handled by BVA technique as we can see massive redundancy in the tables of
test cases. In this technique, the input and the output domain is divided into a finite number of
equivalence classes.

18
DEPT OF ISE

SOFTWARE TESTING 181562

Equivalence Class Partitioning

Invalid & |
Valid Inputs =

Then, we select one representative of each class and test our program against it. It is assumed by
the tester that if one representative from a class is able to detect error then why should he
consider other cases. Furthermore, if this single representative test case did not detect any error
then we assume that no other test case of this class can detect error. In this method we consider
both valid and invalid input domains. The system is still treated as a black-box meaning that we
are not bothered about its internal logic.

The idea of equivalence class testing is to identify test cases by using one element from each
equivalence class. If the equivalence classes are chosen wisely, the potential redundancy among
test cases can be reduced.

Types of equivalence class testing:
Following four types of equivalence class testing are presented here

1) Weak Normal Equivalence Class Testing.
2) Strong Normal Equivalence Class Testing.
3) Weak Robust Equivalence Class Testing.
4) Strong Robust Equivalence Class Testing.

1) Weak Normal Equivalence Class Testing:

The word ,,weak® means ,,single fault assumption®. This type of testing is accomplished by using
one variable from each equivalence class in a test case. We would, thus, end up with the weak
equivalence class test cases as shown in the following figure.

DEPT OF ISE

19

SOFTWARE TESTING 181562

Weak Normal
Equivalence Class Test Cases

XZA Valid Values
(One from Each Class)

| [
i |7 ==pe= =T
| |
| |
s el =
| | |
| | [!
¢ | [|
eF--F-=-4+--d4--q--
| ! ! |

| | | |

| |] ! X
a b c d L

Each dot in above graph indicates a test data. From each class we have one dot meaning that
there is one representative element of each test case. In fact, we will have, always, the same
number of weak equivalence class test cases as the classes in the partition.

2) Strong Normal Equivalence Class Testing:

This type of testing is based on the multiple fault assumption theory. So, now we need test cases
from each element of the Cartesian product of the equivalence classes, as shown in the following
figure.

DEPT OF ISE

20

SOFTWARE TESTING 181562

Strong Normal
Equivalence Class Test Cases

Xz‘l Valid Values - But with
All Possibilities

I | i
Q'__T;'T T ok T
I [[i
I I [I

A SR | R | (RN e
| | A

I l [1
| @ | ¢!]
i [wemtis sl S e
I l []
I | | |
I | | | .M
a b C d

Just like we have truth tables in digital logic, we have similarities between these truth tables and
our pattern of test cases. The Cartesian product guarantees that we have a notion of
“completeness” in following two ways

a) We cover all equivalence classes.
b) We have one of each possible combination of inputs.

3) Weak Robust Equivalence Class Testing:
The name for this form of testing is counter intuitive and oxymoronic. The word” weak™ means

single fault assumption theory and the word ,,Robust” refers to invalid values. The test cases
resulting from this strategy are shown in the following figure.

DEPT OF ISE

21

SOFTWARE TESTING 181562

Weak Robust
Equivalence Class Test Cases
X
%4 Valid Values
] | L N
] i 1 et 7 1 7 |iin
i | | [
] | | |
P B =t = o]]
] [| ®|
¢ I | [
l¢ | | [
e F=-=F=-=4==d4=-=o=-=
[!] | ®
] | | |
] | | | X1
I a b c d

Following two problems occur with robust equivalence testing.

a) Very often the specification does not define what the expected output for an invalid test case
should be. Thus, testers spend a lot of time defining expected outputs for these cases.

b) Strongly typed languages like Pascal, Ada, eliminate the need for the consideration of invalid
inputs. Traditional equivalence testing is a product of the time when languages such as
FORTRAN, C and COBOL were dominant. Thus this type of error was quite common.

4) Strong Robust Equivalence Class Testing:
This form of equivalence class testing is neither counter intuitive nor oxymoronic, but is just
redundant. As explained earlier also, ,,robust™ means consideration of invalid values and the

,,strong® means multiple fault assumption. We obtain the test cases from each element of the
Cartesian product of all the equivalence classes as shown in the following figure.

DEPT OF ISE

22

SOFTWARE TESTING 181562

Strong Robust
Equivalence Class Test Cases

XZA Valid Inputs Invalid Inputs

We find here that we have 8 robust (invalid) test cases and 12 strong or valid inputs. Each one is
represented with a dot. So, totally we have 20 test cases (represented as 20 dots) using this
technique.

Guidelines for Equivalence Class Testing:
The following guidelines are helpful for equivalence class testing

1) The weak forms of equivalence class testing (normal or robust) are not as comprehensive as
the corresponding strong forms.

2) If the implementation language is strongly typed and invalid values cause run-time errors then
there is no point in using the robust form.

3) If error conditions are a high priority, the robust forms are appropriate.

4) Equivalence class testing is approximate when input data is defined in terms of intervals and
sets of discrete values. This is certainly the case when system malfunctions can occur for out-of-
limit variable values.

5) Equivalence class testing is strengthened by a hybrid approach with boundary value testing
(BVA).

DEPT OF ISE

23

SOFTWARE TESTING

6) Equivalence class testing is used when the program function is complex. In such cases, the
complexity of the function can help identify useful equivalence classes.

7) Strong equivalence class testing makes a presumption that the variables are independent and
the corresponding multiplication of test cases raises issues of redundancy. If any dependencies

occur, they will often generate “error” test cases.

8) Several tries may be needed before the “right” equivalence relation is established.
9) The difference between the strong and weak forms of equivalence class testing is helpful in

the distinction between progression and regression testing.

Equivalence test cases for the triangle Problem

Four possible outputs —

NotA-Triangle, Scalene, Isosceles and Equilateral.

R1 ={: the triangle with sides a.b and c is equilateral}
R2 = { : the triangle with sides a,b and c is isosceles}
R3 = { : the triangle with sides a,b and c is isosceles}
R4 = { : sides a,b and ¢ do not form a triangle}

Test Case a b (o] Expected Output
W N1 5 5 5 Equilateral
W N2 2 2 3 Isosceles
W N3 3 4 5 Scalene
W N4 4 1 2 Not a Triangle

Consider: Weak Normal Equivalence Test

Cases for Triangle Problem

“valid” inputs:
1<=a <= 200
1<=b <= 200 inputs
1<=c <= 200
and output a b c
for triangle:
a<b+c
b<a+c Not triangle 35 10 4
c<b+a
Equilateral 35 35 35
Valid Inputs to get
Isosceles 24 24 7
Scalene 35 18 24

1
/'Scalene s

DEPT OF ISE

24

SOFTWARE TESTING 181562

Strong Normal Equivalence Test Cases for Triangle Problem < Since there is no further sub-
intervals inside the valid inputs for the 3 sides a, b, and c, are Strong Normal Equivalence is the
same as the Weak Normal Equivalence

Weak Robust Equivalence Test Cases for
Triangle Problem

<200,200,200>
IRNN— o

Now, on top of the
earlier 4 normal test
cases, include the

1
1
1
1
1
1
i
1
“invalid” inputs !
1

Valid Inputs

1 Equilateral
1 ’
1

" Isosceles Include 6 invalid test case in addition to Weak Normal

above: below:
<201, 45, 50 > <-5, 76,89 >
S(;a[ene'\ <45, 204, 78 > < 56, -20, 89 >
Z <50, 78, 208 > <56,89,0 >

Strong Robust Equivalence Test Cases for
Triangle Problem

« Similar to Weak robust, but all combinations of “invalid” inputs
must be included to the Strong Normal.

* Look at the “cube” figure and consider the corners (two
diagonal ones)

a) Consider one of the corners <200,200,200> : there should be (23 -1) =7
cases of “invalids”

< 201, 201, 201 > <50,201, 50 >
<201, 201, 50 > <50, 201, 201 >
<201,50, 201> <50, 50, 201>

<201,50, 50 >

b) There will be 7 more “invalids” when we consider the other corner, <1,1,1 >:

<0,0,0> <7,0,9>
<0,0,5> <8,0,0 >
<0,10,0 > <8,9,0>
<0,8,10>

DEPT OF ISE

25

https://image3.slideserve.com/6729928/strong-normal-equivalence-test-cases-for-triangle-problem-l.jpg

SOFTWARE TESTING 181562

NextDate function

Next Date Function Problem ,,
Valid Equivalence Classes

M1 ={month:1<month<12}
D1 = { day: 1 <day <31}
Y1={ year: 1812 < year <2012 } ,,

Invalid Equivalence Classes
M2 ={ month : month< 1}
M3 = { month : month > 12 }
D2 ={day:day<1}

D3 ={day:day>31}

Y2 ={year: year<1812 }
Y3 ={ year: year >2012 }

m Valid classes = Independent variables
m One weak and strong normal ECT.

Day Month Year Expected Output
15 6 1912 16/6/1912

m \Weak Robust Test Cases

Day Month Year Expected Output

15 6 1912 16/6/1912

-1 6 1912 day not in range

32 6 1912 day not in range

15 -1 1912 month not in range
15 13 1912 month not in range
15 6 1811 year not in range

15 6 2013 year not in range

DEPT OF ISE

SOFTWARE TESTING 181562

m Strong robust ECT

Test Case Month Day Year Expected Output
SR1 -1 15 1912 Value of month not in the range 1..12
SR2 6 -1 1912 Value of day not in the range 1..31
SR3 6 15 1811 Value of year not in the range 1812..2012
SR4 1 -1 1912 Value of month not in the range 1..12

Value of day not in the range 1..31
SR5 6 -1 1811 Value of day not in the range 1..31
Value of year not in the range 1812..2012
SR6 -1 15 1811 Value of month not in the range 1..12
Value of year not in the range 1812..2012
SR7 -1 -1 1811 Value of month not in the range 1..12
Value of day not in the range 1..31

Value of year not in the range 1812..2012

Previous test cases were poor. ,,

Focus on Equivalence Relation. ,,
What must be done to an input date? ,,
We produce a new set of Equivalence Classes.

M1 = { month: month has 30 days } .,
M2 = { month: month has 31 days } .,
M3 = { month: month is February } ,,
Dl ={day:1<day<28},,

D2 ={day:day=29},,

D3 ={day:day=30},,

D4 = {day:day=31},,

Y1={year: year =2000 } ,,

Y2 = { year: year is a leap year } ,,
Y3 ={ year: year isa common year }

So, now let wus again identify the wvarious equivalence class test cases:

1) Weak Normal Equivalence Class: As done earlier as well, the inputs are mechanically selected

from the approximate middle of the corresponding class.

Test Case ID Month (mm) Day (dd) Year (yyyy) Expected Output

WN1 6 14 2000 6/15/2000

WN2 7 29 1996 7/30/1996

WN3 2 30 2002 2/31/2002 (Impossible)
WN4 6 31 2000 7/1/2000 (Impossible)

27
DEPT OF ISE

SOFTWARE TESTING 181562

The random / mechanical selection of input values makes no consideration of our domain
knowledge and thus we have two impossible dates. This will always be a problem with
»automatic™ test case generation because all of our domain knowledge is not captured in the
choice of equivalence classes.

2) Strong Normal Equivalence Class: The strong normal equivalence class test cases for the
revised classes are:

Test Case ID Month (mm) Day (dd) Year (yyyy) Expected Output

SN1 6 14 2000 6/15/2000

SN2 6 14 1996 6/15/1996

SN3 6 14 2002 6/15/2002

SN4 6 29 2000 6/30/2000

SN5 6 29 1996 6/30/1996

SN6 6 29 2002 6/30/2002

SN7 6 30 2000 6/31/2000 (Impossible)
SN8 6 30 1996 6/31/1996 (Impossible)
SN9 6 30 2002 6/31/2002 (Impossible)
SN10 6 31 2000 7/1/2000 (Invalid Input)
SN11 6 31 1996 7/1/1996 (Invalid Input)
SN12 6 31 2002 7/1/2002 (Invalid Input)
SN13 7 14 2000 7/15/2000

SN14 7 14 1996 7/15/1996

SN15 7 14 2002 7/15/2002

SN16 7 29 2000 7/30/2000

SN17 7 29 1990 7/30/1996

SN18 7 29 2002 7/30/2002

SN19 7 30 2000 7/31/2000

SN20 7 30 1996 7/31/1996

SN21 7 30 2002 7/31/2002

SN22 7 31 2000 8/1/1996

SN23 7 31 1996 8/1/2000

SN24 7 31 2002 8/1/2002

SN25 2 14 2000 7/15/2000

SN26 2 14 1996 2/15/1996

SN27 2 14 2002 2/15/2002

SN28 2 29 2000 3/1/2000 (Invalid Input)
SN29 2 29 1996 3/1/1996

SN30 2 29 2002 3/1/2002 (Impossible Date)
SN31 2 30 2000 3/1/2000 (Impossible Date)
SN32 2 30 1996 3/1/1996 (Impossible Date)
SN33 2 30 2002 3/1/2002 (Impossible Date)
SN34 6 31 2000 7/1/2000 (Impossible Date)
SN35 6 31 1996 7/1/1996 (Impossible Date)
SN36 6 31 2002 3/1/2002 (Impossible Date)

DEPT OF ISE

28

SOFTWARE TESTING 181562

So, three month classes, four day classes and three year classes results in 3 * 4 * 3 = 36 strong
normal equivalence class test cases. Furthermore, adding two invalid classes for each variable
will result in 150 strong robust equivalence class test cases.

It is quite difficult to describe all such 150 classes here.
There are 150 strong-robust test cases (5 X 6 x 5)

commission problem

Class for Commission Problem

Test data : price Rs for lock - 45.0, stock - 30.0 and barrel - 25.0

sales = total lock * lock price + total stock * stock price + total barrel * barrel price

commission : 10% up to sales Rs 1000, 15 % of the next Rs 800 and 20 % on any sales in excess
of 1800

Pre-condition : lock = -1 to exit and 1< =lock < =70, 1<=stock <=80 and 1<=barrel<=90
Brief Description : The salesperson had to sell at least one complete rifle per month.
Checking boundary value for locks, stocks and barrels and commission

Valid Classes

L1 ={LOCKS :1 <=LOCKS<=70}

L2 ={Locks=-1}(occurs if locks=-1 is used to control input iteration)
L3 ={stocks : 1<=stocks<=80}

L4= {barrels :1<=barrels<=90}

Invalid Classes

L3 ={locks: locks=0 OR locks<-1}
L4 ={locks: locks> 70}

S2 ={stocks : stocks<1}

S3 ={stocks : stocks >80}

B2 ={barrels : barrels <1}

B3 =barrels : barrels >90}

Commission Problem Output Equivalence Class Testing
(Weak & Strong Normal Equivalence Class)

DEPT OF ISE

29

SOFTWARE TESTING 181562
Commission Problem Output Equivalence Class Testing
(Weak & Strong Normal Equivalence Class)
e Input Data Expected Output Actual output Stat
Description Total | Total | Total Commiss Comment
Id Sales Commission Sales us
Locks | Stocks | Barrels ion
1 Enter the value within the range for 35 20 5 3900 640
lock, stocks and barrels
Weak Robustness Equivalence Class
Case Description npuDae Expected Output Actual output | Status | Comment
Id Locks | Stocks | Barrels
Terminates the input loop and proceed
WR1 | Enter the value locks =-1 -1 40 45 to calculate sales and commission (if
Sales > 0)
WR2 | Enter Fsaleiioes Faocl ore qual to 0 40 45 Value of Locks not in the range 1..70
zero for locks and other valid inputs
WR3 | Enter the value gre'atc'ar than2040e 71 40 45 Value of Locks not in the range 1..70
locks and other valid inputs
Enter the value less than or equal than R :
WR4 Ot stouks snd Gther valld frpiuts 35 0 45 Value of stocks not in the range 1..80
WR3 | Entecthe valuegreaterthan 80 foe 35 | sl 45 | Value of stocks not in the range 1..80
stocks and other valid inputs
WG [e ke hamoroal0®e | B8 | B 0 | Value of Barrels not in the range 1..90
arrels and other valid inputs
fi 3
WR7 Enter enplie great'er.than g 35 40 91 Value of Barrels not in the range 1..90
arrels and other valid inputs
Strong Robustness Equivalence Class
care Description Iput Dta Expected Out Actual output | Status | Comment
Id P Locks | Stocks | Barrels i utput .2 omme
QRy; | Eterthe lve less than 1 foclocks 2 | 40 | 45 | ValueofLocks not in the range 1..70
and other valid inputs
Enter the value less than or equal than %
SR2 0 for stocks and other valid inputs 35 -1 45 Value of stocks not in the range 1..80
K3 | Entecthe valis lessthanorequal Ofor. | 5 40 2 | Value of Barrels not in the range 1..90
barrels and other valid inputs
SR4 | Enter the locks and stocks less than or -2 -1 45 Value of Locks not in the range 1..70
equal to 0 and other valid inputs Value of stocks not in the range 1..80
SRS | Enter the locks and barrel less than or 2 40 21 Value of Locks not in the range 1..70
) equal to 0 and other valid inputs Value of Barrels not in the range 1..90
SR6 Enter the stocks and barrel less than or 35 I | Value of stocks not in the range 1..80
equal to 0.and other valid inputs Value of Barrels not in the range 1..90
Value of Locks not in the range 1..70
Enter the stocks and barrel less than or Value of stocks not in the range 1..80
SR7 e -2 -2 -2
equal to 0 and other valid inputs
Value of Barrels not in the range 1..90
Some addition equivalence Boundary checking
- Input Data Expected Output Actual output
ol Description Total | Total | Total 5 Commiss
Id) Sales Commission Sales : Status | Comment
Locks | Stocks | Barrels ion
Enter the value for lock, stocks and
> 5
OBl barrels where 0 < Sales < 1000 - 3 A 30 0
Enter the value for lock, stocks and
OR2 barrels where 1000 < Sales < 1800 15 15 15 1500 175
Enter the value for lock, stocks and
OR3 barrels where Sales < 1800 25 % 2 2500 360

DEPT OF ISE

30

SOFTWARE TESTING 181562

Guidelines and observations

Guidelines and Observations

Now that we have gone through three examples, we conclude with some observations about, and
guidelines for equivalence class testing.

1. The traditional form of equivalence class testing is generally not as thorough as weak
equivalence class testing, which in turn, is not as thorough as the strong form of equivalence
class testing.

2. The only time it makes sense to use the traditional approach is when the implementation
language is not strongly typed.

3. If error conditions are a high priority, we could extend strong equivalence class testing to
include invalid classes.

4. Equivalence class testing is appropriate when input data is defined in terms of ranges and sets
of discrete values. This is certainly the case when system malfunctions can occur for out-of-limit
variable values.

5. Equivalence class testing is strengthened by a hybrid approach with boundary value testing.
(Wecan “reuse” the effort made in defining the equivalence classes.)

6. Equivalence class testing is indicated when the program function is complex. In such cases,
the complexity of the function can help identify useful equivalence classes, as in the NextDate
function.

7. Strong equivalence class testing makes a presumption that the variables are independent when
the Cartesian Product is taken. If there are any dependencies, these will often generate “error”
test cases, as they did in the NextDate function. (The decision table technique in Chapter 7
resolves this problem.)

8. Several tries may be needed before “the right” equivalence relation is discovered, as we saw in
the NextDate example. In other cases, there is an “obvious” or “natural” equivalence relation.
When in doubt, the best bet is to try to second guess aspects of any reasonable implementation.

Decision tables
Decision Table Test case design technique is one of the testing technigues. You could find other
testing techniques such as Equivalence Partitioning, Boundary Value Analysis

In Decision table technique, we deal with combinations of inputs. To identify the test cases with
decision table, we consider conditions and actions. We take conditions as inputs and actions as
outputs.

DEPT OF ISE

31

https://www.softwaretestingmaterial.com/black-box-test-design-techniques/
https://www.softwaretestingmaterial.com/equivalence-partitioning-testing-technique/
https://www.softwaretestingmaterial.com/boundary-value-analysis-testing-technique/

SOFTWARE TESTING

Stub | Rule1 | Rule 2 R;‘fgs Rule 5 | Rule 6 R;‘"gs
cl T T T F F F
c2 T T F T T F
c3 T F - T F -
al X X X
a2 X X
a3 X X
a4 X X

condition stubs condition entries

action stubs

action entries

Examples on Decision Table Test Case Design Technique:

; Printer Troubleshooting DT

Printer does not print YvlYIYIYIN
Conditions A red light is flashing YlYININY
Printer is unrecognized YINIYI N|Y
Check the power cable X
Check the printer-computer
X (X
cable
Actions - .
Ensure printer software is
. X (X |X
installed
Check/replace ink x| x X
Check for paper jam X X

181562

Take an example of transferring money online to an account which is already added and

approved.

Here the conditions to transfer money are ACCOUNT ALREADY APPROVED, OTP (One
Time Password) MATCHED, SUFFICIENT MONEY IN THE ACCOUNT.

And the actions performed are TRANSFER MONEY, SHOW A MESSAGE AS
INSUFFICIENT AMOUNT, BLOCK THE TRANSACTION INCASE OF SUSPICIOUS

TRANSACTION.

Here we decide under what condition the action be performed Now let™s see the tabular column

below.

DEPT OF ISE

32

SOFTWARE TESTING 181562

DECISION TABLE

Condition 1 |Account Already Approved T T T T F
Condition 2 |OTP (One Time Password) Matched T T F F X
Condition 3 |Sufficient Money in the Account T F T F X
Action 1 Transfer Money Execute

Action 2 Show a Message as 'Insufficient Amount’ Execute

Action 3 Block The Transaction Incase of Suspicious Transaction Execute |Execute | X

In the first column | took all the conditions and actions related to the requirement. All the other
columns represent Test Cases.

T =True, F = False, X = Not possible

From the case 3 and case 4, we could identify that if condition 2 failed then system will execute
Action 3. So we could take either of case 3 or case 4

So finally concluding with the below tabular column.

Condition 1 |Account Already Approved i 8 T T F
Condition 2 |OTP (One Time Password) Matched T T F X
Condition 3 |Sufficient Money in the Account T F T X
Action 1 Transfer Money Execute

Action 2 Show a Message as 'Insufficent Amount' Execute

Action 3 Block The Transaction Incase of Suspicious Transaction Execute | X

Decision Table Interpretation
Conditions are interpreted as
Input

Equivalence classes of inputs

Actions are interpreted as

Output

Major functional processing portions
With a complete decision table

We have a complete set of test cases

The ability to recognize complete decision table puts us into a challenge of identifying redundant
and inconsistent rules

DEPT OF ISE

SOFTWARE TESTING

A redundant decision table

Rule 4 and 9

C

C

€3

a

a2

Conditions 14 5
1 T E

2 = T

3 — T

1 X X

- X

3 X -

a

X X X m - m

| = =m =

=

X m m -

= |

®* Here rules 4 and rule 9 are identical; redundant

A inconsistent decision table rule 4 and rule 9

Redundancy OK; but Inconsistency?

= Now consider rules 4 and 9

Table 7.10 An Inconsistent Decision Table

Conditions -4 5

6

Lo |
c2
c3
al
a2
a3

> |
X X = = m

= |
|

XX X M = m

- m =

>

Test cases for the triangle problem

* Triangle Decision Table

C1:

<a, b,c > forms a triangle?

C3:

a=>b?

C4:

a=c?

C5:

b=c?

[Hd|d|d]|~
Ml H|w
|| A H| s
miTm A H]|w;
| H|T H|
M| || AN
S| |m|]|

M| M| M| H|w

Al:

Not a Triangle

A2:

Scalene

A3:

Isosceles

A4:

Equilateral

A5:

Impossible

X

X

X

Action added by a tester showing impossible rules

DEPT OF ISE

181562

34

SOFTWARE TESTING 181562

* Triangle Decision Table — refined

1 2 34567 8 91011
C1-1: a < b+c? FIT|IT|T|T|T|T|T|T|T|T
C1-2: b <a+c? -|F|T|T|T|T|T|T|T|T|T
C1-3: c < a+b? —-|—|F|T|T|T|T|T|T|T|T
C2: a=b? - |=|=|T|T|T|T|F|F|F|F
C3: a=c? -|=|=|T|T|F|F|T|T|F|F
C4: b=¢? - |=|=|T|F|T|F|T|F|T|F
Al: Not a Triangle XXX
A2: Scalene X
A3: Isosceles X X|X
A4: Equilateral X
A5: Impossible X | X X

Similar to equivalence classes we can refine the conditions

* Triangle Test Cases

Case ID a b c Expected Output
1 4 1 2 Not a Triangle
2 1 4 2 Not a Triangle
3 1 2 4 Not a Triangle
4 5 5 5 Equilateral
5 77 777 777 Impossible
6 77 7?? 7?? Impossible
7 2 2 3 Isosceles
8 ?7?? ?7?? ?7?? Impossible
9 2 3 2 Isosceles
10 3 2 Isosceles
11 3 5 Scalene

Don't Care Entries and Rule Counts
Limited entry tables with N conditions have 2N rules.

Don't care entries reduce the number of explicit rules by implying the existence of non-explicitly
stated rules.
How many rules does a table contain including all the implied rules due to don't care entries?

Don't Care Entries and Rule Counts — 2

Each don't care entry in a rule doubles the count for the rule
For each rule determine the corresponding rule count

Total the rule counts

DEPT OF ISE

SOFTWARE TESTING 181562

1 |Cl-1: a < b+c? F T|T|T|T|T|T|T|T|T
2 |C1-2: b < a+c? - |F | T|T|T|T |T|T|T|T|T
3 |C1-3: c<a+b? - |- |F|T|T|T |T|T|T|T|T
4 |C2: a=b? - |- |- |T|T|T|T|F|F|F|F
51C3: a=c? - |- |- |T|T|F |F|T|T|F |F
6|C4 b=c? - |- |- |T|F|T |F|T|F|T|F
Rule count 32|16 |8 |1 1|1 [1]1|1]1|1]|+ =64
=26
Test Cases for the Triangle Problem
Table 7.11 Test Cases from Table 7.3
B Expected
11 test cases Gase ID a b c Output
"3 ImPOSSIbIe DT1 Rl 1 2 Not a Triangle
= 3 not triangle D12 1 Rl 2 Nota Triangle
D13 1 2 4 Not a Triangle
= 1 equilateral DT4 5 5 5 Equilatera
DT5 ? ? ? Impossible
]
1 scalene DT6 ? ? ? Impossible
= 3 jsosceles D17 2 2 3 lsosceles
p 1 DT8 ? ? ? Impossible
= ? means invalid D19 2 3 2 Isosceles
D110 3 2 2 Isosceles
D111 3 4 5 Scalene

NextDate function

The NextDate problem illustrates the problem of dependencies in the input domain Decision
tables can highlight such dependencies

Impossible dates can be clearly marked as a separate action

C1: month in M1? T |=-1=
C2: month in M2? N -
C3: month in M3? - =T
Al: Impossible
A2: Next Date

Because a month is in an equivalence class
we cannot have T for more than one entry.
The do not care entries are really F.

DEPT OF ISE

SOFTWARE TESTING

NextDate Equivalence Classes — for 1st try

M1 = {month : 1 .. 12 | days(month) = 30 }

M2 ={month : 1 .. 12 | days(month) =31 }

M3 = {month : {2} }

D1={day:1..28}

D2 ={day: {29} }

D3 ={day : {30} }

D4 = {day: {31} }

Y1 ={year: 1812 .. 2012 | leap_year (year) }

Y2 ={year: 1812 .. 2012 | common_year (year) }

First try decision table yields 256 rules

C1: month in M1? TI|T|T|T|T|T|T|T

C2: month in M2? TITlT

C3: month in M3?

C4: day in D1? TIT TIT

C5: day in D2? TI|T T

C6: day in D3? T|IT

C7: day in D4? T[T

C8: year in Y17? T T T T T T

C9: year in Y2? T T T T T

Al: Impossible XX

A2: Next Date X | XX |X[X[X X|X|X

NextDate Equivalence Classes — for 2nd try

M1 ={month : 1 .. 12 | days(month) =30 }

M2 ={month : 1 .. 12 | days(month) =31 }

M3 = {month : {2} }

D1={day:1..28}

D2 ={day: {29} }

D3 = {day: {30} }

D4 = {day: {31} }

Y1 ={year: {2000} }

Y2 ={year: 1812 .. 2012 | leap_year (year) A year #2000 }
Y3 ={year: 1812 .. 2012 | common_year (year) }

Second try decision table yields 36 rules
3 months * 4 days * 3 year = 36 rules

DEPT OF ISE

181562

37

SOFTWARE TESTING 181562

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C1: month in M1|M1|M1|M1|M2[M2|{M2|M2|M3|M3|M3|M3|M3|M3|M3| M3
C2: day in D1|D2|D3|D4|D1|D2|D3|D4|{D1|D1|D1|{D2|D2|D2|D3|D3
C3: year in - === 1=-=-|=-|-|YL[Y2|Y3|YL|Y2|Y3|~-|~-
Al: Impossible X X XX | X
A2: Increment day X | X X| X | X X

A3: Reset day X X | X X X

A4: Increment month X 7?7 X X X

A5: reset month ?7?

Ab6: Increment year 77?7

December problem in rule 8
And February 28 problem in rule 9,11 and 12

So we go for Try3
M1 = {month : 1 .. 12 | days(month) = 30 }
M2 = {month : 1 .. 12 | days(month) = 31 A month # 12 }
M3 = {month : {12} }
M4 = {month : {2} }
D1 = {day:1.. 27} Handle end of month and
D2 = {day : {28} } year better
D3 = {day : {29} }
D4 = {day : {30} }
D5 = {day : {31} }
Y1 = {year : 1812 .. 2012 | leap_year (year) }
Y2 = {year : 1812 .. 2012 | common_year (year) }

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22

C1: month in M1|{M1|M1|M1|{M1|M2[M2|M2|M2[M2| M3 M3|M3|M3|M3|M4| M4|M4|M4|M4|M4| M4
C2: day in D1|D2|(D3|D4|D5(D1|D2|D3|D4|D5(D1|D2|D3|D4|D5|D1|D2|D2|D3|D3|D4|D5
C3: year in - === (=== === -1 --|Y1|Y2|YL|Y2| -] -
Al: Impossible X X|X|X
A2: Increment day XX | X XX | XX X1 X|X|X X | X

A3: Reset day X X X X

A4: Increment month X X XX

A5: reset month X

A6: Increment year X

DEPT OF ISE

SOFTWARE TESTING 181562

Table 7.16 Decision Table Test Cases for NextDate

Case 1D Month Day Year Expected Output
1-3 April 15 2001 April 16,2001
A April 30 2001 May 1, 2001
5 April 31 2001 Invalid Input Date
69 January 15 2001 January 16, 2001
10 January 3 2001 February 1, 2001
11-14 December 15 2001 December 16, 2001
15 December 3 2001 January 1, 2002
16 February 15 2001 February 16, 2001
17 February 28 2004 February 29, 2004
18 February 28 2001 March 1, 2001
19 February 29 2004 March 1, 2004
20 February 29 200 Invalid Input Date
21,22 February 30 2001 Invalid Input Date

Commission problem

Test Case Name : Boundary Value for Commission Problem

Experiment Number : 5

Test data : price Rs for lock - 45.0 , stock - 30.0 and barrel - 25.0
sales = total lock * lock price + total stock * stock price + total barrel * barrel price
commission : 10% up to sales Rs 1000, 15 % of the next Rs 800 and 20 % on any sales
in excess of 1800

Pre-condition : lock = -1 to exit and 1< =lock < =70, 1<=stock <=80 and 1<=barrel<=90

Brief Description : The salesperson had to sell at least one complete rifle per month.

CHECKING BOUNDARY VALUE FOR LOCKS, STOCKS AND BARRELS AND COMMISSION
Cc ission Problem Output Boundary Value Analysis Cases

Input Data Expected Output | Actual output
Case 2 Status
d Description Total | Total Total sales Comm- sales Comm Coitient
Locks | Stocks | Barrels ission -ission

1 Enter the min value for locks, stocks and barrels 1 1 E 100 10 output minimum

2 1 1 2 125 12.5 output minimum +

3 Enter the min value for 2 items and min +1 for 1 2 i 130 i3 P

any one item output minimum +

4 2 1 p 145 14.5 output minimum +

Enter the value sales approximately mid value
5 between 100 to 1000 5 5 5 500 50 Midpoint
6 e 10 10 9 975 97.5 Border point -
Enter the values to calculate the commission for 3

7 sales nearly less than 1000 10 9 10 970 97 Border point -

8 9 10 10 955 95.5 Border point -

9 Enter the values sales exactly equal to 1000 10 10 10 1000 100 Border point
10 E th I ICulate th T 10 10 11 1025 103.75 Border point +
11| Enter :’I::::at:’l et 'thz P [m 10 [1030] 1045 Border point +
12 v 8 11 10 10 1045 106.75 Border point +

DEPT OF ISE

39

SOFTWARE TESTING 181562

Enter the value sales approximately mid value

13 between 1000 to 1800 14 14 14 1400 160 Midpoint
14 Enter the values to calculate the commission for 18 18 17 1775 216.25 Border point -
15 sales nearly less than 1800 18 17 18 [1770| 2155 Border point -
16 17 18 18 1755 213.25 Border point -
17 Enter the values sales exactly equal to 1800 18 18 18 1800 220 Border point
18 18 18 19 1825 225 Border point +
19 Enter the values to calculate the commission for 18 19 18 1830 26 Bord N

sales nearly greater than 1800 order point +
20 19 18 18 1845 229 Border point +

Enter the values normal value for lock, stock and
21 barrel 48 48 48 4800 320 Midpoint
22 X 70 20 89 7775 1415 Output maximum -
Enter the max value for 2 items and max - 1 for
23 any one item 70 79 90 7770 1414 Output maximum -
24 69 20 90 7755 1411 Qutput maximum -
25 Enter the max value for locks, stocks and barrels 70 80 90 7800 1420 Qutput maximum
Output Special Value Test Cases
¢ Input Data Expected Output | Actual output
ase
Description Total | Total Total Commissi Commi
Id Sales Sales Status Comment
Locks | Stocks | Barrels on ssion

1 Enter th:e r_andom values such that to calculate 1 10 g 995 995 Border point -
commission for sales nearly less than 1000

Enter the random values such that to calculate
2 Hes su “ 10 1 9 1005 | 100.75 Border point +
commission for sales nearly greater than 1000

Enter the random values such that to calculate
3 e yes su Y 18 17 15 |1795| 21925 Border point -
commission for sales nearly less than 1800

4 Enter th random values such that to calculate 18 19 17 1805 271 Border point +
commission for sales nearly greater than 1800

Test Case Name :Equivalence Class for Commission Problem

Experiment Number : 6

Test data : price Rs for lock - 45.0 , stock - 30.0 and barrel - 25.0
sales = total lock * lock price + total stock * stock price + total barrel * barrel price
commission : 10% up to sales Rs 1000 , 15 % of the next Rs 800 and 20 % on any sales

in excess of 1800

Pre-condition : lock = -1 to exit and 1< =lock < =70, 1<=stock <=80 and 1<=barrel<=90

Brief Description : The salesperson had to sell at least one complete rifle per month.

Checking boundary value for locks, stocks and barrels and commission
Valid Classes

L1 ={LOCKS :1 <=LOCKS<=70}

L2 ={Locks=-1}(occurs if locks=-1 is used to control input iteration)
L3 ={stocks : 1<=stocks<=80}

L4={barrels :1<=barrels<=90}

Invalid Classes

L3 ={locks: locks=0 OR locks<-1}

L4 ={locks: locks> 70}

S2 ={stocks : stocks<1}

S3 ={stocks : stocks >80}

B2 ={barrels : barrels <1}

DEPT OF ISE

40

SOFTWARE TESTING

B3 =barrels : barrels >90}

DEPT OF ISE

181562

41

SOFTWARE TESTING 181562
Commission Problem Output Equivalence Class Testing
(Weak & Strong Normal Equivalence Class)
e Input Data Expected Output Actual output stat
Description Total | Total Total Commiss Comment
Id Sales Commission Sales us
Locks | Stocks | Barrels ion
1 Enter the value within the range for 35 40 5 3900 640
lock, stocks and barrels
Weak Robustness Equivalence Class
Input Data
Case Description oy Expected Output Actual output | Status | Comment
Id Locks | Stocks | Barrels
Terminates the input loop and proceed
WR1 | Enter the value locks = -1 -1 40 45 to calculate sales and commission (if
Sales > 0)
Wi [Etecie s lestian-Joceuel e | 4 40 45 | Value of Locks not in the range 1..70
zero for locks and other valid inputs
WR3 | Enter the value gregier i 71 40 45 Value of Locks not in the range 1..70
locks and other valid inputs
Enter the value less than or equal than >
q e
WR4 8iforstods and othervaidInputs 35 0 45 Value of stocks not in the range 1..80
WRs | Enter the value greaier i 35 81 45 Value of stocks not in the range 1..80
stocks and other valid inputs
g (S ki panoreatOne | gy | g 0 | Value of Barrels not in the range 1..90
barrels and other valid inputs
Enter the val ter than 90 f 2
WG, | £ e HE BTCaRL Ul 2008 35 40 91 Value of Barrels not in the range 1..90
barrels and other valid inputs
Strong Robustness Equivalence Class
Case Input Data
d Description ot | Stotks | Bartek Expected Output Actual output | Status | Comment
sgi [-Eterthemiue less thn =L for locks 2 | 40 45 | Value of Locks not in the range 1..70
and other valid inputs
Enter the value less than or equal than = :
SR2 | o sor stocks and other valid inputs 35 -1 45 Value of stocks not in the range 1..80
sgg; | Eprtheslue ke thanoreaml OB | 95 | g9 2 | Value of Barrels not in the range 1..90
barrels and other valid inputs
SR4 | Enter the locks and stocks less than or -2 -1 45 Value of Locks not in the range 1..70
equal to 0 and other valid inputs Value of stocks not in the range 1..80
Enter the locks and barrel less than or Value of Locks not in the range 1..70
SRS = -2 40 -1 -
equal to 0 and other valid inputs Value of Barrels not in the range 1..90
Enter the stocks and barrel less than or Value of stocks not in the range 1..80
SR6 %60 dnd ot lidi 35 -1 -1 S
equalzoQ.and pthervalidioputs Value of Barrels not in the range 1..90
Value of Locks not in the range 1..70
Enter the stocks and barrel less than or Value of stocks not in the range 1..80
SR7 G -2 -2 -2
equal to 0 and other valid inputs
Value of Barrels not in the range 1..90
Some addition equivalence Boundary checking
C Input Data Expected Output Actual output
“ase S
Des t
Id SCEIpLoi Toeal | “Towl | Hetnl . Sales Commission Sales Cm.nmm Status | Comment
Locks | Stocks | Barrels ion
Enter the value for lock, stocks and
ORL barrels where 0 < Sales < 1000 5 5 3 500 30
Enter the value for lock, stocks and
OR2 barrels where 1000 < Sales < 1800 15 15 15 1500 175
Enter the value for lock, stocks and
OR3 barrels where Sales < 1800 25 25 25 2500 360

Test Case Name :Decision Table for Commission Problem
Experiment Number : 7
Test data : price Rs for lock - 45.0, stock - 30.0 and barrel - 25.0
sales = total lock * lock price + total stock * stock price + total barrel * barrel price

commission : 10% up to sales Rs 1000, 15 % of the next Rs 800 and 20 % on any sales

DEPT OF ISE

42

SOFTWARE TESTING

in excess of 1800

DEPT OF ISE

181562

43

SOFTWARE TESTING 181562

Pre-condition : lock = -1 to exit and 1< =lock < =70, 1<=stock <=80 and 1<=barrel<=90
Brief Description : The salesperson had to sell at least one complete rifle per month.

Input data decision Table

RULES R1 R2 |[R R4 | RS |R |R7 R8 R10
3 6
Conditions C1: Locks =-1 T F F |F F F F F F
C2: 1<Llocks = 70 T T F T F F F T
C3:1 < Stocks < 80 T F T F T F F T
C4:1 < Barrels £ 90 F T |T F F |T F T
Actions al : Terminate the input loop X
a2 : Invalid locks input X X | X X
a3 : Invalid stocks input X X X X
a4 : Invalid barrels input X X X X
a5 : Calculate total locks, stocks and barrels X X | X X X | X X
a5 : Calculate Sales X
ab: proceed to commission decision table X
Commission calculation Decision Table (Precondition : lock =-1)
RULES R1 Rl [R3 | R4
C1 : tlocks>0 && tstocks>0 && tharrels=0 T T T F
. C1 :Sales > 0 AND Sales < 1000 T F F
Condition C2: Sales > 1001 AND sales < 1800 T F
C3 :sales 21801 T
Al : Cannot calculate the commission X
Actions A2 : comm= 10%*sales X i
A3 : comm = 10%*1000 + (sales-1000)*15% X
A4 : comm = 10%*1000 + 15% * 800 + (sales-1800)*20% X

Guidelines and observations.

As with the other testing techniques, decision table based testing works well for some
applications (like NextDate) and is not worth the trouble for others (like Commission Problem).
Not surprisingly, the situations in which it works well are those where there is a lot of decision
making (like the Triangle Problem), and those in which there are important logical relationships
among input variables (like the NextDate function).

1. The decision table technique is indicated for applications characterized by any of the
following:

prominent If-Then-Else logic logical relationships among input variables calculations involving
subsets of the input variables cause and effect relationships between inputs and outputs high
cyclomatic (McCabe) complexity

2. Decision tables don“t scale up very well (a limited entry table with n conditions has 2n rules).
There are several ways to deal with this: use extended entry decision tables, algebraically
simplify tables, “factor” large tables into smaller ones, and look for repeating patterns of
condition entries. For more on these techniques

3. As with other techniques, iteration helps. The first set of conditions and actions you identify
may

be unsatisfactory. Use it as a stepping stone, and gradually improve on it until you are satisfied
with a decision table.

DEPT OF ISE

44

SOFTWARE TESTING 181562

Fault Based Testing:

A model of potential program faults is a valuable source of information for evaluating and
designing test suites. Some fault knowledge is commonly used in functional and structural
testing, for example when identifying singleton and error values for parameter characteristics in
category partition testing, or when populating catalogs with erroneous values, but a fault model
can also be used more directly. Fault-based testing uses a fault model directly to hypothesize
potential faults in a program under test, and to create or evaluate test suites based on its efficacy
in detecting those hypothetical faults.

Overview,

Engineers study failures to understand how to prevent similar failures in the future. For example,
failure of the Tacoma Narrows Bridge led to new understanding of oscillation in high wind, and
the introduction of analyses to predict and prevent such destructive oscillation in subsequent
bridge design. The causes of an airline crash are likewise extensively studied, and when traced to
a structural failure they frequently result in a directive to apply diagnostic tests to all aircraft
considered potentially vulnerable to similar failures.

Experience with common software faults sometimes leads to improvements in design methods
and programming languages. For example, the main purpose of automatic memory management
in Java is not to spare the programmer the trouble of releasing unused memory, but to prevent the
programmer from making the kind of memory management errors (dangling pointers, redundant
deallocations, and memory leaks) that frequently occur in C and C++ programs. Automatic array
bounds checking cannot prevent a programmer from using an index expression outside array
bounds, but can make it much less likely that the fault escapes detection in testing, as well as
limiting the damage incurred if it does lead to operational failure (eliminating, in particular, the
buffer overflow attack as a means of subverting privileged programs). Type checking reliably
detects many other faults during program translation. Of course, not all programmer errors fall
into classes that can be prevented or statically detected using better programming languages.
Some faults must be detected through testing, and there too we can use knowledge about
common faults to be more effective. The basic concept of fault-based testing is to select test
cases that would distinguish the program under test from alternative programs that contain
hypothetical faults. This is usually approached by modifying the program under test to actually
produce the hypothetical faulty programs. Fault seeding can be used to evaluate the thoroughness
of a test suite (that is, as an element of a test adequacy criterion), or for selecting test cases to
augment a test suite, or to estimate the number of faults in a program.

Assumptions in fault based testing,

16.2 Assumptions in Fault-Based Testing The effectiveness of fault-based testing depends on the
quality of the fault model, and on some basic assumptions about the relation of the seeded faults

DEPT OF ISE

45

SOFTWARE TESTING 181562

to faults that might actually be present. In practice the seeded faults are small syntactic changes,

DEPT OF ISE

46

SOFTWARE TESTING 181562

like replacing one variable reference by another in an expression, or changing a comparison from
< to <=. We may hypothesize that these are representative of faults actually present in the
program.

COMPETENT PROGRAMMER HYPOTHESIS

Put another way, if the program under test has an actual fault, we may hypothesize that it differs
from another, corrected program by only a small textual change. If so, then we need merely
distinguish the program from all such small variants (by selecting test cases for which either the
original or the variant program fails) to ensure detection of all such faults. This is known as the
competent programmer hypothesis, an assumption that the program under test is “close to” (in
the sense of textual difference) a correct program.

COUPLING EFFECT HYPOTHESIS

Some program faults are indeed simple typographical errors, and others that involve deeper
errors of logic may nonetheless be manifest in simple textual differences. Sometimes, though, an
error of logic will result in much more complex differences in program text. This may not
invalidate fault-based testing with a simpler fault model, provided test cases sufficient for
detecting the simpler faults are sufficient also for detecting the more complex fault. This is
known as the coupling effect.

The coupling effect hypothesis may seem odd, but can be justified by appeal to a more plausible
hypothesis about interaction of faults. A complex change is equivalent

DEPT OF ISE

47

SOFTWARE TESTING 181562

Fault Based Testing: Terminology

Original program: The program unit (e.g., C function or Java class) to be tested.

Program location: A region in the source code. The precise definition is defined rel-
ative to the syntax of a particular programming language. Typical locations are
statements, arithmetic and boolean expressions, and procedure calls.

Alternate expression: Source code text that can be legally substituted for the text at a
program location. A substitution is legal if the resulting program is syntactically
correct (i.e., it compiles without errors).

Alternate program: A program obtained from the original program by substituting
an alternate expression for the text at some program location.

Distinct behavior of an alternate program R for a test r: The behavior of an alter-
nate program R is distinct from the behavior of the original program P for a test
t, if R and P produce a different result for ¢, or if the output of R is not defined
for 1.

Distinguished set of alternate programs for a test suite 7': A set of alternate pro-
grams are distinct if each alternate program in the set can be distinguished from
the original program by at least one test in T'.

to several smaller changes in program text. If the effect of one of these small changes is not
masked by the effect of others, then a test case that differentiates a variant based on a single
change may also serve to detect the more complex error. Fault-based testing can guarantee fault
detection only if the competent programmer hypothesis and the coupling effect hypothesis hold.
But guarantees are more than we expect from other approaches to designing or evaluating test
suites, including the structural and functional test adequacy criteria discussed in earlier chapters.
Fault-based testing techniques can be useful even if we decline to take the leap of faith required
to fully accept their underlying assumptions. What is essential is to recognize the dependence of
these techniques, and any inferences about software quality based on fault-based testing, on the
quality of the fault model. This also implies that developing better fault models, based on hard
data about real faults rather than guesses, is a good investment of effort.

Mutation analysis,

Mutation analysis is the most common form of software fault-based testing. A fault model is
used to produce hypothetical faulty programs by creating variants of the program under test.
Variants are created by “seeding” faults, that is, by making a small change to the program under

test following a pattern in the fault model. The patterns operator for changing program text are

DEPT OF ISE

48

SOFTWARE TESTING

called mutation operators, and each variant program is called a mutant.

DEPT OF ISE

181562

49

SOFTWARE TESTING 181562

Mutation Analysis: Terminology

Original program under test: The program or procedure (function) to be tested.

Mutant: A program that differs from the original program for one syntactic element,
e.g., a statement, a condition, a variable, a label, etc.

Distinguished mutant: A mutant that can be distinguished for the original program
by executing at least one test case.

Equivalent mutant: A mutant that cannot be distinguished from the original program.

Mutation operator: A rule for producing a mutant program by syntactically modify-
ing the orginal program.

Mutants should be plausible as faulty programs. Mutant programs that are rejected by a compiler,
or which fail almost all tests, are not good models of the faults we seek to uncover with
systematic testing. We say a mutant is valid if it is syntactically correct. We say a mutant is
useful if, in addition to being valid, its behavior differs from the behavior of the original program
for no more than a small subset of program test cases.

A mutant obtained from the program of Figure 16.1 by substituting while for switch in the
statement at line 13 would not be valid, since it would result in a compile-time error. A mutant
obtained by substituting 1000 for 0 in the statement at line 4 would be valid, but not useful, since
the mutant would be distinguished from the program under

test by all inputs and thus would not give any useful information on the effectiveness of a test
suite. Defining mutation operators that produce valid and useful mutations is a non-trivial task.

Since mutants must be valid, mutation operators are syntactic patterns defined relative to
particular programming languages. Figure 16.2 shows some mutation operators for the C
language. Constraints are associated with mutation operators to guide selection of test cases
likely to distinguish mutants from the original program. For example, the mutation operator svr
(scalar variable replacement) can be applied only to variables of compatible type (to be valid),
and a test case that distinguishes the mutant from the original program must execute the modified
statement in a state in which the original variable and its substitute have different values.

Many of the mutants of Figure 16.2 can be applied equally well to other procedural languages,
but in general a mutation operator that produces valid and useful mutants for a given language
may not apply to a different language or may produce invalid or useless mutants for another
language. For example, a mutation operator that removes the “friend” keyword from the
declaration of a C++ class would not be applicable to Java, which does not include friend
classes.

DEPT OF ISE

50

SOFTWARE TESTING 181562

1

2 [** Convert each line from standard input */

3 void transduce() {

4 #define BUFLEN 1000

5 char buf[BUFLEN]; /* Accumulate line into this buffer */
6 int pos = 0; /* Index for next character in buffer */

y
8 char inChar; /* Next character from input */

9

10 int atCR = 0; /* 0="within line”, 1="optional DOS LF” */
11

12 while ((inChar = getchar()) '= EOF) {
13 switch (inChar) {

14 case LF:

15 if (atCR) { /* Optional DOS LF */

16 atCR = 0;

17 } else { /* Encountered CR within line */
18 emit(buf, pos);

19 pos = 0;

20 }

21 break;

22 case CR:

23 emit(buf, pos);

24 pos = 0;

25 atCR =1,

26 break;

27 default:

28 if (pos >= BUFLEN-2) fail(""Buffer overflow");
29 buf[pos++] = inChar;

30 } /* switch */

31}

32 if (pos>0) {

33 emit(buf, pos);

34}

35}

Figure 16.1: Program transduce converts line endings among Unix, DOS, and Macintosh

conventions. The main procedure, which selects the output line end convention, and the output
procedure emit are not shown.

DEPT OF ISE

SOFTWARE TESTING 181562
id operator description constraint
Operand Modifications
crp constant for constant replacement replace constant C'1 with constant C2 Cl#02
scr scalar for constant replacement replace constant C with scalar variable X C#X
acr array for constant replacement replace constant C with array reference € # Al{]

All
scr struct for constant replacement replace constant C with struct field 8 C#£S
svr scalar variable replacement replace scalar variable X with a scalar X #Y¥
variable ¥
csr constant for scalar variable replacement replace scalar variable X with a constant X #C
(&
asr array for scalar variable replacement replace scalar variable X with an array X # A[l]
reference A[l]
ssr struct for scalar replacement replace scalar variable X with struct field X # 8
5
vie scalar variable initialization elimination remove initialization of a scalar variable
car constant for array replacement replace array reference A[l] with constant A[f] #C
[
sar scalar for array replacement replace array reference A[l] with scalar A[l] # X
variable X
cnr comparable array replacement replace array reference with a compara-
ble array reference
sar struct for array reference replacement replace array reference A[l] with a struct A[l] # 8
field §
Expression Modifications
abs absolute value insertion replace ¢ by abs(e) e<0
aor arithmetic operator replacement replace arithmetic operator y with arith- ¢, We, # ¢,0e,
metic operator ¢
ler logical connector replacement replace logical connector ¥ with logical e, ye, # ¢,0e,
connector ¢
ror relational operator replacement replace relational operator Y with rela- ¢ ye; # ¢)0e2
tional operator ¢
uol unary operator insertion insert unary operator
cpr constant for predicate replacement replace predicate with a constant value
Statement Modifications
sdl statement deletion delete a statement
sca switch case replacement replace the label of one case with another
ses end block shift move | one statement earlier and later

Figure 16.2: A sample set of mutation operators for the C language, with associated constraints to select
test cases that distinguish generated mutants from the original program.

Fault-based adequacy criteria,

Given a program and a test suite T, mutation analysis consists of the following steps:

DEPT OF ISE

52

SOFTWARE TESTING 181562

Select mutation operators: If we are interested in specific classes of faults, we may select a set of
mutation operators relevant to those faults.

Generate mutants: Mutants are generated mechanically by applying mutation operators to the
original program.

Distinguish mutants: Execute the original program and each generated mutant with the test cases
in T. A mutant is killed when it can be distinguished from the original program.

Figure 16.3 shows a sample of mutants for program Transduce, obtained by applying the mutant
operators in Figure 16.2. Test suite T S

TS ={1U,1D,2U,2D,2M,End,Long}

kills Mj , which can be distinguished from the original program by test cases 1D, 2U, 2D, and
2M.

Mutants Mi, Mk, and MI are not distinguished from the original program by any test in T S. We
say that mutants not killed by a test suite are live.

A mutant can remain live for two reasons:
» The mutant can be distinguished from the original program, but the test suite T does not contain
a test case that distinguishes them, i.e., the test suite is not adequate with respect to the mutant.

» The mutant cannot be distinguished from the original program by any test case,
i.e., the mutant is equivalent to the original program.

Given a set of mutants SM and a test suite T, the fraction of non-equivalent mutants killed by T
measures the adequacy of T with respect to SM. Unfortunately, the problem of identifying
equivalent mutants is undecidable in general, and we could err either by claiming that a mutant is
equivalent to the program under test when it is not, or by counting some equivalent mutants
among the remaining live mutants.

The adequacy of the test suite T S evaluated with respect to the four mutants of

Figure 16.3 is 25%. However, we can easily observe that mutant Mi is equivalent to the original
program, i.e., no input would distinguish it. Conversely, mutants Mk and Ml seems to be non-
equivalent to the original program, i.e., there should be at least one test case that distinguishes
each of them from the original program.

Thus the adequacy of T S, measured after eliminating the equivalent mutant Mi , is 33%.

Mutant Ml is killed by test case Mixed, which represents the unusual case of an input file

containing both DOS- and Unix-terminated lines. We would expect that Mixed would kill also
Mk , but this does not actually happen: both Mk and the original program produce the same

DEPT OF ISE

53

SOFTWARE TESTING 181562

result for Mixed. This happens because both the mutant and the original program fail in the same
way.1 The use of a simple oracle for checking

Original/
ID Operator line Mutant IU ID 2U0 2D 2M End Long Mixed
M; ror 28 (pos >= BUFLEN-2) - - - - - - - -
(pos BUFLEN-2)
M; ror 32 (pos > 0) - X X X X
(pos ° 0
Mg sdl 16 atCR 0 - - -
nothing
M; SSr 16 atCR 0 - - - - - - - X
pPos 0
Testcase Description Test case Description
1U One line, Unix line-end 2M Two lines, Mac line-end
1D One line, DOS line-end End Last line not terminated with line-end sequence
2U Two lines, Unix line-end Long Very long line (greater than buffer length)
2D Two lines, DOS line-end Mixed Mix of DOS and Unix line ends in the same file

Figure 16.3: A sample set of mutants for program Transduce generated with mutation operators from
Figure 16.2.

Variations on mutation analysis.

The mutation analysis process described above, which kills mutants based on the outputs
produced by execution of test cases, is known as strong mutation. It can generate a number of
mutants quadratic in the size of the program. Each mutant must be compiled and executed with
each test case until it is killed. The time and space required for compiling all mutants and for
executing all test cases for each mutant may be impractical.

The computational effort required for mutation analysis can be reduced by reducing the number
of mutants generated and the number of test cases to be executed. Weak mutation analysis
reduces the number of tests to be executed by killing mutants when they produce a different
intermediate state, rather than waiting for a difference in the final result or observable program
behavior.

With weak mutation, a single program can be seeded with many faults. A “metamutant” program
is divided into segments containing original and mutated source code, with a mechanism to
select which segments to execute. Two copies of the meta-mutant are executed in tandem, one
with only original program code selected, and the other with a set of live mutants selected.
Execution is paused after each segment to compare the program state of the two versions. If the
state is equivalent, execution resumes with the next segment of original and mutated code. If the
state differs, the mutant is marked as dead, and execution of original and mutated code is
restarted with a new selection

DEPT OF ISE

54

SOFTWARE TESTING 181562

Mutation Analysis vs Structural Testing

For typical sets of syntactic mutants, a mutation-adequate test suite will also be
adequate with respect to simple structural criteria such as statement or branch coverage.
Mutation adequacy can simulate and subsume a structural coverage criterion if the set
of mutants can be killed only by satisfying the corresponding test coverage obligations.

Statement coverage can be simulated by applying the mutation operator sdl (state-
ment deletion) to each statement of a program. To kill a mutant whose only difference
from the program under test 1s the absence of statement § requires executing the mu-
tant and the program under test with a test case that executes § in the original program.
Thus to kill all mutants generated by applying the operator sdl to statements of the
program under test, we need a test suite that causes the execution of each statement in
the original program.

Branch coverage can be simulated by applying the operator cpr (constant for pred-
icate replacement) to all predicates of the program under test with constants True and
False. To kill a mutant that differs from the program under test for a predicate P set
to the constant value False, we need to execute the mutant and the program under test
with a test case that causes the execution of the True branch of P. To kill a mutant that
differs from the program under test for a predicate P set to the constant value True, we
need to execute the mutant and the program under test with a test case that causes the
execution of the False branch of P.

A test suite that satisfies a structural test adequacy criterion may or may not kill
all the corresponding mutants. For example, a test suite that satisfies the statement
coverage adequacy criterion might not kill an sdl mutant if the value computed at the
statement does not effect the behavior of the program on some possible executions.

of live mutants.

Weak mutation testing does not decrease the number of program mutants that must be
considered, but it decreases the number of test executions and compilations. This performance
benefit has a cost in accuracy: weak mutation analysis may “kill” a mutant even if the changed
intermediate state would not have an effect on the final output or observable behavior of the
program.

Like structural test adequacy criteria, mutation analysis can be used either to judge the
thoroughness of a test suite or to guide selection of additional test cases. If one is designing test
cases to Kill particular mutants, then it may be important to have a complete set of mutants
generated by a set of mutation operators. If, on the other hand, the goal is a statistical estimate of
the extent to which a test suite distinguishes programs with seeded faults from the original
program, then only a much smaller statistical sample of mutants is required. Aside from its

DEPT OF ISE

55

SOFTWARE TESTING 181562

limitation to assessment rather than creation of test suites, the main limitation of statistical

DEPT OF ISE

56

SOFTWARE TESTING 181562

mutation analysis is that partial coverage is meaningful only to the extent that the generated
mutants are a valid statistical model of occurrence frequencies of actual faults. To avoid reliance
on this implausible assumption, the target coverage should be 100% of the sample; statistical
sampling may keep the sample small enough to permit careful examination of equivalent
mutants.

Fault seeding can be used statistically in another way: To estimate the number of faults
remaining in a program. Usually we know only the number of faults that have been detected, and
not the number that remains. However, again to the extent that the fault model is a valid
statistical model of actual fault occurrence, we can estimate that the ratio of actual faults found to
those still remaining should be similar to the ratio of seeded faults found to those still remaining.

Once again, the necessary assumptions are troubling, and one would be unwise to place too
much confidence in an estimate of remaining faults. None the less, a prediction with known
weaknesses is better than a seat-of-the-pants guess, and a set of estimates derived in different
ways is probably the best that one can hope for.

DEPT OF ISE

57

SOFTWARE TESTING 181S62

MODULE 3
Structural Testing: Overview, Statement testing, Branch testing, Conditiontesting , Path
testing: DD paths, Test coverage metrics, Basis path testing,guidelines and observations, Data
—Flow testing: Definition-Use testing, Slicebasedtesting, Guidelines and observations. Test
Execution: Overview of testexecution, from test case specification to test cases, Scaffolding,
Generic versusspecific scaffolding, Test oracles, Self-checks as oracles, Capture and replay
Structural Testing: Overview

Structural testing is a type of software testing which uses the internal design of the software
for testing or in other words the software testing which is performed by the team which
knows the development phase of the software, is known as structural testing.

Structural testing is basically related to the internal design and implementation of the software
i.e. it involves the development team members in the testing team. It basically tests different
aspects of the software according to its types. Structural testing is just the opposite of
behavioral testing.

Types of Structural Testing:

There are 4 types of Structural Testing:

Structural Testing

Data Slice Based Mutation
Flow Testing Testing Testing

DEPT OF ISE

https://www.geeksforgeeks.org/software-testing-basics/

SOFTWARE TESTING 181S62

Control Flow Testing:

Control flow testing is a type of structural testing that uses the programs’s control flow as amodel.
The entire code, design and structure of the software have to be known for this type of testing.
Often this type of testing is used by the developers to test their own code and implementation. This
method is used to test the logic of the code so that required result can be obtained.

Data Flow Testing:

It uses the control flow graph to explore the unreasonable things that can happen to data. The
detection of data flow anomalies are based on the associations between values and variables.
Without being initialized usage of variables. Initialized variables are not used once.

Slice Based Testing:

It was originally proposed by Weiser and Gallagher for the software maintenance. It is useful for
software debugging, software maintenance, program understanding and quantification of
functional cohesion. It divides the program into different slices and tests that slice which can
majorly affect the entire software.

Mutation Testing:

Mutation Testing is a type of Software Testing that is performed to design new software tests and
also evaluate the quality of already existing software tests. Mutation testing is related to
modification a program in small ways. It focuses to help the tester develop effective tests or locate
weaknesses in the test data used for the program.

Advantages of Structural Testing:

« It provides thorough testing of the software.

o It helps in finding out defects at an early stage.

o Ithelps in elimination of dead code.

o Itis not time consuming as it is mostly automated.
Disadvantages of Structural Testing:

o It requires knowledge of the code to perform test.

o It requires training in the tool used for testing.
o Sometimes it is expensive.

DEPT OF ISE

SOFTWARE TESTING 181S62

What is Code coverage?

Code coverage is a measure which describes the degree of which the source code of the program
has been tested. It is one form of white box testing which finds the areas of the program not
exercised by a set of test cases. It also creates some test cases to increase coverage and determining
a quantitative measure of code coverage.

In most cases, code coverage system gathers information about the running program. It also
combines that with source code information to generate a report about the test suite's code
coverage.

o Statement Coverage

o Decision Coverage

« Branch Coverage
o Condition Coverage

Statement testing,

Statement Coverage

What is Statement Coverage?

Statement coverage is a white box test design technique which involves execution of all the
executable statements in the source code at least once. It is used to calculate and measure the

number of statements in the source code which can be executed given the requirements.

Statement coverage is used to derive scenario based upon the structure of the code under test.

Statement Coverage = x 100

Scenario to calculate Statement Coverage for given source code. Here we are taking two different
scenarios to check the percentage of statement coverage for each scenario.

Source Code:

Prints (inta, intbh){ - Printsum is a function
int result = a+ b;
If (result> 0)

DEPT OF ISE

https://www.guru99.com/code-coverage.html#4
https://www.guru99.com/code-coverage.html#5
https://www.guru99.com/code-coverage.html#6
https://www.guru99.com/code-coverage.html#7

SOFTWARE TESTING 181S62

Print ("Positive™, result)

Else
Print ("Negative", result)
b End of the source code
Scenario 1:
IfA=3,B=9
1~ Prints (int a, int b) {
2 int result = a+ b;
3 If (result> 8)
4 Print ("Positive"”, result)
5 Else
6 Print ("Negative"”, result)
7}
o

The statements marked in yellow color are those which are executed as per the scenario
Number of executed statements = 5, Total number of statements = 7

Statement Coverage: 5/7 = 71%

Likewise we will see scenario 2,

Scenario 2:
IfA=-3,B=-9
1+ Prints (int a, int b) {
2 int result = a+ b;
3 If (result> @)
4 Print ("Positive”, result)
5 Else
6 Print ("Negative"”, result)
7
o

The statements marked in yellow color are those which are executed as per the scenario.

Number of executed statements = 6

DEPT OF ISE

SOFTWARE TESTING 181562
Total number of statements = 7

Number of executed statments

Statement Coverage =
Total number of statments

Statement Coverage: 6/7 = 85%
What is covered by Statement Coverage?

Unused Statements
Dead Code

Unused Branches
Missing Statements

N

Branch testing,

Branch Coverage

In the branch coverage, every outcome from a code module is tested. For example, if the
outcomes are binary, you need to test both True and False outcomes.

It helps you to ensure that every possible branch from each decision condition is executed at least
a single time.

By using Branch coverage method, you can also measure the fraction of independent code
segments. It also helps you to find out which is sections of code don't have any branches.

The formula to calculate Branch Coverage:

Number of Executed Branches
Total Number of Branches

Branch Coverage =

Example of Branch Coverage
To learn branch coverage, let's consider the same example used earlier
Consider the following code

Demo(int a) {

DEPT OF ISE

SOFTWARE TESTING 181S62

If (a>5)
a=a*3
Print (a)
}

. conditional Branch
Demo(int a) bl BT
If (a>5) _— ;_ .

w.,i"”
‘i
Y

Print{a) = > J
|—I rrereans unconditional Branch

Branch Coverage will consider unconditional branch as well

Test Case Value of A Output Decision Coverage Branch Coverage
1 2 2 50% 33%
2 6 18 50% 67%

Branch coverage Testing offers the following advantages:

o Allows you to validate-all the branches in the code

o Helps you to ensure that no branched lead to any abnormality of the program's operation

o Branch coverage method removes issues which happen because of statement coverage
testing

« Allows you to find those areas which are not tested by other testing methods

o Itallows you to find a quantitative measure of code coverage

« Branch coverage ignores branches inside the Boolean expressions

DEPT OF ISE

SOFTWARE TESTING 181S62

Condition testing ,

Condition Coverage

Conditional coverage or expression coverage will reveal how the variables or sub expressions in
the conditional statement are evaluated. In this coverage expressions with logical operands are
only considered.

For example, if an expression has Boolean operations like AND, OR, XOR, which indicated total
possibilities.

Conditional coverage offers better sensitivity to the control flow than decision coverage. Condition
coverage does not give a guarantee about full decision coverage

The formula to calculate Condition Coverage:

Number of Executed Operands
Total Number of Operands

Condition Coverage =

Example:

1 IF (x < y) AND (a>b) THEN

For the above expression, we have 4 possible combinations

T
FF
TF
FT

Consider the following input

X=3 (x<y) TRUE Condition Coverage is ¥ = 25%
Y=4

A=3 (a>b) FALSE

B=4

DEPT OF ISE

SOFTWARE TESTING 181S62

Path testing: DD paths,

What is Path Testing?

Path testing is a structural testing method that involves using the source code of a program in order
to find every possible executable path. It helps to determine all faults lying within a pieceof code.
This method is designed to execute all or selected path through a computer program.

What is Basis Path Testing?

The basis path testing is same, but it is based on a White Box Testing method, that defines test
cases based on the flows or logical path that can be taken through the program. In software
engineering, Basis path testing involves execution of all possible blocks in a program and
achieves maximum path coverage with the least number of test cases. It is a hybrid of branch
testing and path testing methods.

The objective behind basis path in software testing is that it defines the number of independent
paths, thus the number of test cases needed can be defined explicitly (maximizes the coverage of
each test case).

. 1. IfA=50

2. THEM IF B=C

. . 3. THENA=B

4. ELSE A=C
. 5. ENDIF
6. EMDIF

. 7. Print A

In the above example, we can see there are few conditional statements that is executed depending
on what condition it suffice. Here there are 3 paths or condition that need to be tested to get the
output,

e Path1:1,2,356,7

DEPT OF ISE

https://www.guru99.com/white-box-testing.html

SOFTWARE TESTING 181S62

o Path2:1,2456,7
o Path3:1,6,7

Steps for Basis Path testing
The basic steps involved in basis path testing include

o Draw a control graph (to determine different program paths)

o Calculate Cyclomatic complexity (metrics to determine the number of independent paths)
o Find a basis set of paths

o Generate test cases to exercise each path

Advantages of Basic Path Testing

o It helps to reduce the redundant tests

It focuses attention on program logic

o It helps facilitates analytical versus arbitrary case design

o Test cases which exercise basis set will execute every statement in a program at least
once

Conclusion:
Basis path testing helps to determine all faults lying within a piece of code.
Program Graphs

Program graphs are a graphical representation of a program’s source code. Thenodes of the
program graph represent the statement fragments of the code, andthe edges represent the program’s
flow of control.

Figure 1.1 shows pseudocode for a simple program that simply subtractstwo integers and outputs
the result to the terminal. The number subtracteddepends on which is the larger of the two; this
stops a negative number frombeing output.

1. Program ‘Simple Subtraction’
2. Input (x, y)

3. Output (x)

4. Output (y)

5. If x >y then DO
6. Xx-y=12
7.Elsey—x=12

8. EndlIf

9. Output (2)

10. Output “End Program”

Figure 1.1 Pseudocode for the simple subtraction program.

DEPT OF ISE

https://www.guru99.com/cyclomatic-complexity.html

SOFTWARE TESTING 181S62

The construction of a program graph for this simple code is a basic task. Eachline number is used
to enumerate the relevant nodes of the graph. It is notnecessary to include basic declarations and
module titles in the program graph,and so line 1 of the pseudocode in Figure 1.1 will be ignored.

For a path to beexecutable it must start at line 2 of the pseudocode, and end at line 10. In

thecorresponding program graph of this code in Figure 1.2, this is demonstrated bythe fact that
every legal path must begin at the source node and end at the sinknode.

&)
®
(o)

Due to the simplicity of our code example, it is a trivial task to find all of thepossible executable
paths within the program graph shown in Figure 1.2. Startingat the source node and ending at the
sink node, there exist two possible paths.

The first path would be the result of the If-Then clause being taken, and thesecond would be the
result of the Else clause being taken.

A program graph provides us with some interesting details about thestructure of a piece of code.
In the example graph of Figure 1.2, we can see thatnodes 2 through to 4 and nodes 9 to 10 are
sequences.

This means that thesenodes represent simple statements such as variable declarations, expressions
orbasic input/output commands. Nodes 5 through to 8 are a representation of an ifthen-else
construct, while nodes 2 and 10 are the source and sink nodes of theprogram respectively.

By examining a program graph, a tester can garner an important piece ofinformation; is the

program structured or unstructured? It is at this point that animportant distinction must be made
between structure and simplicity.

DEPT OF ISE

SOFTWARE TESTING 181S62

Aprogram may contain thousands of lines of code and remain structured, whereasa piece of code
only ten lines long may contain a loop that results in a loss ofstructure, and thus spores a potentially
large number of execution paths. This isshown by the simple program graph in Figurel.3

Although containing fewer nodes than the program graph in Figure 1.2,this program graph would
be much more complex to test, solely because it lacksstructure. This reason behind this lack of
structure is due to the program graphcontaining a loop construct in which there exists internal
branching. As a result,if the loop from node G to node A had 18 repetitions, it would see the
number ofdistinct possible execution paths rise to 4.77 trillion [Jorgensen, 2002].

Thisdemonstrates how an unstructured program can lead to difficulties in evenfinding every
possible path, while testing each path would be an infeasible task.From this we can conclude that
when writing a program, a software engineershould attempt to keep it structured in order to make
the testing process assimple as possible.

When studying the work of Thomas McCabe later in thispaper, we will be looking at how he has
analysed program graphs and devised amethodology to retain a program’s structure, thus keeping
test cases to aminimum.

DD-Paths

The reason that program graphs play such an important role in structural testingis due to the fact
that they form the basis of a number of testing methods,including one based on a construct

known as decision-to-decision paths (morecommonly referred to as DD-Paths).

The idea is to use DD-Paths to create acondensation graph of a piece of software’s program graph,
in which a numberof constructs are collapsed into single nodes known as DD-Paths.

DEPT OF ISE

SOFTWARE TESTING 181S62

DD-Paths are chains of nodes in a directed graph that adhere to certaindefinitions. Each chain can
be broken down into a different type of DD-Path, theresult of which ends up as being a graphof
DD-Paths. The length of a chaincorresponds to the number of edges that the chain contains.

The definitions ofeach different type of DD-Path that a chain can be reduced to are given asfollows:

Type 1: A single node with an in-degree = 0.

Type 2: A single node with an out-degree = 0.

Type 3: A single node with in-degree >= 2 or out-degree >= 2.
Type 4: A single node with in-degree = 1 and out-degree = 1.
Type 5: The chain is of a maximal length >= 1.

All programs must have an entry and an exit and so every program graphmust have a source and
sink node.

Type 1 and Type 2 are needed to provide uswith the capability of defining these key nodes as
initial and final DD-Paths.

Type 3 deals with slightly more complex structured constructs that often appearin a program graph
such as If-Then-Else statements and Case statements. Thisdefinition is particularly important, as
it allows for branching to be dealt with inthe testing process, a concept that will be examined more
closely when we cometo analyse test coverage metrics.

Type 4 allows for basic nodes such asexpressions and declarations to be defined as DD-Paths. As
it is these types ofnodes that make up the main part of a program.

Type 5 is used to take chains ofthese nodes and condense them into a single node. It is important
that we findthe final node within a chain in order to have the smallest number of nodes aspossible
to test; it is for this reason that the definition of a Type 5 DD-Path mustexamine the maximal length
of the chain.

In order to successfully demonstrate how the above definitions can beused to create a DD-Path

graph, we will apply them to the program graph inFigure 1.2. The result of this application is a
DD-Path graph of the simplesubtraction problem, as shown in Figure 1.4.

DEPT OF ISE

SOFTWARE TESTING 181S62

Figure 1.4 A DD-Path graph of the simple subtraction program

We can immediately identify some differences between the programgraph in Figure 1.1 and its
DD-Path graph. The source and sink nodes of thegraph have been replaced by the words “first” and
‘last’ in order to identify thenodes that conform to Type 1 and Type 2 DD-Paths. Perhaps more
interestingly,there exists one less node.

This is due to the fact that nodes 3 and 4 in the originalprogram graph were a chain of maximal
length >=1, and so they have beencondensed into a single node in the DD-Path graph

There also exist similarities between the two graphs. Node 7 remainsunchanged while the If- Then-
Else construct is still visible. Nodes 3 and 6 obeythe Type 3 definition, while nodes 4 and 6are
simply chains of length 1 and soare defined as Type 4 DD-Paths.

Having defined the concept of DD-Paths we can now see that theconstruction of a DD-Path
graph presents testers with all possible linear codesequences. Test cases can be set up to execute
each of these sequences, meaningall paths within the DD-Path graph of the program can be tested.
As a result,DD-Paths can be used as a test coverage metric; software engineers know that ifthey
can test every DD-Path then all faults within the DD-Path graph of aprogram are likely to be
located.

TRIANGLE PROBLEM

Triangle Program Specification

« Inputs: a, b, and ¢ are non-negative integers, taken to be sides of a
triangle

« Output: type of triangle formed by a, b, and ¢

— Not a triangle

— Scalene (no equal sides)

— Isosceles (exactly 2 sides equal)

— Equilateral (3 sides equal)

» To be atriangle, a, b, and ¢ must satisfy the triangle inequalities:

DEPT OF ISE

SOFTWARE TESTING 181562
—a<b+c,
—b<a+c,and
—c<a+b
Program Graph for Triangle Problem
1. Program triangle O—=>OO—0O—0O—=
2. Dim a,b,c As Integer
3. Dim IsATriangle As Boolean
'Step 1: Get Input p
4. Output("Enter 3 integers which are sides of a triangle")
5. Input(a,b.c) %
6. Output("Side A is ",a)
7. Output("Side B is ",b))
8. Output("Side C is ",c)
'Step 2: Is A Triangle? @
9. f(a<b+c)AND(b<a+c)AND(c<a+bh)
10 Then IsATriangle = True Q
11 Else IsATriangle = False 2
12 Endif
'Step 3: Determine Triangle Type @
13. If IsATriangle ¥
14. Then If (a=b)AND (b=c) @
15. Then Output ("Equilateral™)
16. Else If (a#b)AND (a# c) AND (b# c) (15)
17. Then Output ("Scalene™)
18. Else Output ("Isosceles")
19. Endif
20. Endif
21. Else Output("Not a Triangle")
22. Endif
23:'End triang'ez Dept. of CSE, BLDEACET, Vijayapur
Tracefora=5b=5c¢c=5
Tracefora=2 b=5c¢=5
Tracefora=3,b=4,¢c=5
Tracefora=2,b=3,¢c=7
DEPT OF ISE

14

SOFTWARE TESTING 181S62

OO0 =0C

©. » Nodes 4 through 8 are sequences
(19) » Nodes 9 through 12 are if-then-else
@ construct
(13) » Nodes 13 through 22 are nested if-then-else
= S construct

. / » Node 4 — source node
» Node 23 — sink node

» No loops exist, so this 1s a directed acyclic

graph

Importance of Program graph

» Program execution corresponds to paths from the source to the sink nodes.

» There 1s explicit description of the relationship between a test case and the part of the
program it exercises.

» Can deal with the potentially large number of execution paths in a program.

DD-Paths

The best known form of structural testing is based on a construct known as a decision-to-
decision path.

Concentrate only on decision nodes. Nodes which are in sequence are combined in single
node.

A DD-Path is a chains obtained from a program graph, where a chain is a path in which the
initial and terminal nodes are distinct, and every interior node has indegree = 1, and
outdegree = 1.

DD-Paths are used to create DD-Path Graphs.

Note that the initial node is 2-connected to every other node in the chain, and there are no
instances of 1- or 3- connected nodes.

An example of a chain is shown below:

o %&WD Aatve

8-03-2018 Initial node ot. of (Internal nodes Final node = |

Dept. of CSE, BLDEACET, Vijaya

DEPT OF ISE

15

SOFTWARE TESTING

DD-Paths
A DD-Path (decision-to-decision) is a chain in a program graph such that
Case 1: it consists of a single node with indegree = 0, (source)

Case 2: it consists of a single node with outdegree = 0, (sink)

Case 3: it consists of a single node with indegree >= 2 or outdegree >= 2,

Case 4: 1t consists of a single node with indegree = 1 and outdegree = 1,

Case 5: it 1s a maximal chain of length >= 1.

» Cases | and 2 establish the unique source and sink nodes of the program graph structured

program as initial and final DD-Paths.

» Case 3 deals with complex nodes; it ensures that no node 1s contained in more than one

DD-Paths.

» Case 4 1s needed for short branches.

» Case 5 1s the normal case, in which a DD-Paths is a single-entry, single-exit sequence of

nodes(chain).
O—=0 ® © Table 9.1 Types of DD-Paths in Figure 9.1
/® Program Graph Nodes ~DD-Path Name Case of Definition
P 4 first 1
@\ 5-8 A 5
9 B 3
® 10 c 4
1 D 4
(12 12 E 3
(13) 13 F 3
@ 14 H 3
@ / 15 1 4
16) 3
@ @ 17 i 4
18 L 4
2 19 M 3
() 20 N 3
©, 21 G 4
22 (0] 3
©) 23 last 2

DEPT OF ISE

181S62

16

SOFTWARE TESTING

DEPT OF ISE

®

181S62

17

SOFTWARE TESTING 181S62

Test coverage metrics,

Code-Based Test Coverage Metrics

* Used to evaluate a given set of test cases
« Often required by

— contract

— U.S. Department of Defense

— company-specific standards

» Elegant way to deal with the gaps and
redundancies that are unavoidable with
specification-based test cases.

« BUT

— coverage at some defined level may be misleading
— coverage tools are needed

Code-Based Test Coverage Metrics

(E. F. Miller, 1977 dissertation)

* CO: Every statement

 C1: Every DD-Path

 Clp: Every predicate outcome

» C2: C1 coverage + loop coverage

» Cd: C1 coverage +every pair of dependent
DD-Paths

« CMCC: Multiple condition coverage

» Cik: Every program path that contains up
to k repetitions of a loop (usually k = 2)

» Cstat: "Statistically significant” fraction of
paths

* Coo: All possible execution paths

1. Statement and Predicate Testing

> The statement and predicate levels (CO

and C1

) collapse into one consideration.

> Statement coverage based testing aims to devise test cases that collectively exercise all
statements in a program.

> This coverage metrics require that we find a set of test cases such that, when executed,
every node of the program graph is traversed at least once.

DEPT OF ISE

SOFTWARE TESTING 181S62

2. DD-Path Testing (C1P)

>When every DD-Path is traversed (C1 metric), each predicate outcome has beenexecuted; this
amounts to traversing every edge in the DD-path graph. As opposed toonly every node.

>For if-then and if-then-else statements, both the true and false branches
arecovered(C1Pcoverage)

> For CASE statement each clause is covered.

3. Dependent Pairs of DD-Paths (Cd

)

* In simple Clcoverage criterion we are interested simply to traverse all edges in the DDPath
graph.

« If we enhance this coverage criterion by ensuring that we also traverse dependent pairsof DD-
Paths also we may have the chance of revealing more errors that are based ondata flow
dependencies.

« More specifically, two DD-Paths are said to be dependent iff there is a
define/referencerelationship between these DD-Paths, in which a variable is defined (receives a
value)in one DD-Path and is referenced in the other.

« In Cdtesting we are interested on covering all edges of the DD-Path graph and alldependent 08-
03-2018 DD-Path pairs.

For Ex: DD-Path graph of Triangle problem

> C and H are such pairs, as DD-Paths D and H pairs.

>The variable IsATriangle is set to TRUE at node C and FALSE at node D.

> Node H is the branch taken when IsATriangle is TRUE in the condition at node B, so any
path containing nodes D and H is infeasible.

4. Multiple Condition Coverege (CMCC)

» Now if we consider that the predicates P1 is a compound predicate (i.e. (A or B)) thenMultiple
Condition Coverage Testing requires that each possible combination of inputsbe tested for each
decision.

» Example: “if (A or B)” requires 4 test cases:

A = True, B = True

A = True, B = False

A = False, B = True

A = False, B = False

* The problem: For n conditions, 2ntest cases are needed, and this grows exponentiallywith n

For example, take the following statement:
If X ==2 || x == 6 && Boolean == true then Do

DEPT OF ISE

SOFTWARE TESTING 181S62

For example, take the following statement:

Ifx=2 || x==6 && Boolean == true then Do

Boolean Validity
T Invalid

Invalid

I

1 Valid
I Valid
F Valid
I

1

I

Valid
Valid
Valid

I = N R =
I I A I

5. Loop Coverage (C2)

> Loops are highly fault-prone portion of source code.

> The simple view of loop testing coverage is that we must devise test cases thatexercise the
two possible outcomes of the decision of a loop condition that is one totraverse the loop and the
other to exit (or not enter) the loop.

> An extension would be to consider a modified boundary value analysis approachwhere the loop
index is given a minimum, minimum +, a nominal, a maximum -, anda maximum value or even
robustness testing.

Concatenated, Nested, and Knotted Loops

OO0

OROmORCmOnt)
O

Concatenated Loops are simply a sequence of disjoint loops.
> Concatenated loops occur when it is possible to leave one loop and immediately enter

DEPT OF ISE

21

SOFTWARE TESTING 181S62

into another.

> |f the iteration values of one loop affect those of another loop, they must be treated inthe same
way as nested loops.

Nested Loops: one loop is present inside another loop.

> Nested loops can present difficulties to a software engineer.

> Five tests for a single loop would be increased to 25 tests for a pair of nested loops, and125
tests for three nested loops.

> This exponential increase of required tests means that nested loops should be avoided asa
program construct.

> However in some cases this construct may be unavoidable

When it is possible to branch into (or out from) the middle of a loop, and these branchesare internal
to other loops, the result is Beizer’s Knotted Loop (Horrible Loops).

>0nce a loop is tested, then the tester can collapse it into a single node to simplify thegraph for
the next loop tests. In the case of nested loops we start with the inner mostloop and we proceed
outwards.

Basis path testing,

What Is Basis Path Testing?
Through utilizing a white box method, basis path testing can attain maximum path coverage
using the minimum number of test cases.

Every possible block of code in a program is executed through the lowest number of test cases. It
does this by identifying the number of independent paths so that the number of test cases required
can be explicitly defined, thus maximizing the coverage of each test case.

Basis path testing is effective because it ensures full branch coverage without needing to cover
all the possible paths. As already mentioned, this can be time-consuming and costly. Branch
coverage is another testing method that aims to verify that every branch extending from every
decision point is tested at least once. This way, all the branches in the code can be validated to
make sure that none result in the application behaving abnormally. It so happens then that, basis
path testing is considered to be a hybrid of path and branch testing methods.

Example

To illustrate how to implement the steps of basis path testing, we have included an example. Below
is a flow diagram showing nodes for logical paths, statements, and conditionals changing the flow
of execution.

DEPT OF ISE

SOFTWARE TESTING 181S62

|
/\
\/
/

Basis Path Testing

This provides a simple example of what basis path testing looks like. There are a number of
conditional statements that are executed depending on input parameters. In this case, there are 3
paths or conditions to be tested to determine the output:

Path1: 123567
Path2: 124567
Path3: 167

Steps For Carrying Out Testing

As an overview, the steps for carrying out this testing method includes:

o Drafting a control flow graph to identify the possible program paths

o Calculating the number of independent paths through a process known as
cyclomatic complexity which we discuss below

o Define the set of basis paths to be tested

o Generate test cases to evaluate the program flow for each path

Cyclomatic Complexity

Cyclomatic complexity is a software metric and another key process in implementing basis path
testing. A software metric is a quantitative measurement of time, quality, size, and cost of an
attribute of software.

In this case, cyclomatic complexity measures the complexity of a program by identifying all
independent paths through which the processes flow.

The metric is based on a control flow representation of a program and was developed in 1976 by
Thomas McCabe. His model uses a flow graph that consists of nodes and edges to present a
visualization of the control flow of a program. Nodes symbolize the processing tasks and edges
control flow between the nodes. Nodes are the entry and exit points of processes in the program
sequence while independent paths add a new process to the program flow. They have at least one
edge which has not been followed in any other paths.

DEPT OF ISE 23

https://reqtest.com/tutorials/how-to-create-test-cases-in-reqtest/

SOFTWARE TESTING 181S62

A mathematical representation of the cyclomatic complexity of program code can be calculated
as follows:

V(G)=E-N+2

Where

E = number of edges

N = number of nodes

V(G)=P+1

Where

P = number of predicate nodes (nodes that contain conditions)

Once the number of paths or conditions has been calculated, the number of tests to be written is
known. For example, 3 paths will mean that at least one test should be generated to cover each
path.

V(G) = number of regions in graph

The properties of cyclomatic complexity are as follows:

e V(G) is the highest number of independent paths shown in the graph

o V(G) is always greater than or equal to 1

o If V(G) is equal to 1 then G will have one path

o Ideally, minimize the complexity score to 10 —the higher the score, the more
complex the code

. 1. IfA=50

2. THEM IF B=C

. . 3. THENA=B

4. ELSE A=C
. 5. ENDIF
6. ENDIF

. 7. Print A

1.V(G)=e—-n+2p
e=8
n=7

DEPT OF ISE

24

https://en.wikipedia.org/wiki/Cyclomatic_complexity

SOFTWARE TESTING 181S62

p=1
V(G)=8-7+2(1)=3

2. V(G) = predicate node + 1
predicate node = 2 (node 1 and node 2)
V(G)=2+1=3

3. V(G) = number of regions in graph

number of regions = 3
V(G)=3

Path/Edge Traversal

panggetmere 1|2 |34 s o1

Path1:1,2,3,5,6,7

1 1 1 1
Path2:1,2,4,5,6,7
1 1 1 |
Path3:1,6,7
1 1

McCabe's Example

McCabe's
Original Graph
l,;\\

) 4
\

V(G)=10-7 + 2(1)
= B

DEPT OF ISE

25

SOFTWARE TESTING 181S62

DEPT OF ISE

McCabe's Baseline Method

+ Pick a "baseline" path that corresponds to normal execution.
(The baseline should have as many decisions as possible.)

» To get succeeding basis paths, retrace the baseline until
you reach a decision node. "Flip" the decision (take
another alternative) and continue as much of the baseline
as possible.

+ Repeat this until all decisions have been flipped. When you
reach V(G) basis paths, you're done.

« |If there aren't enough decisions in the first baseline path,
find a second baseline and repeat steps 2 and 3.

Following this algorithm, we get basis paths for McCabe's
example.

Resulting basis paths

\

First baseline path

p1:A B, C, G

Flip decision at C /((2

p2:A.B.C.B.C, G |

Flip decision at B

p3:A,B,E,F G c ;(i)

Flip decision at A ’\9 10

p4:A D.E F, G [O;

Flip decision at D

pS>:A, D, F G
Path/Edge Traversal
Path / Edges el |e2|e3|ed4|e5|e6|e7|e8|e9| el0
p1:A,B,C,G /] ojo|(1|0|O0O|O0|O0]|1 0
p2:A,B,C,B,C, G 1 01 2|00l 6@] 1 0
p3:A,B,E,F. G 1 o(O0|O0|1 0|01 0 1
p4:A,D,E,F,G 0 1/{0]J]0|J]0]|1]0]|1]0 1
p5:A,D,F, G 0 1/{0]J]0]J]0]J0|1]|]0]0 1
ex1:A,B,C,B,E,F, G 1 0] 1 1 1] | 6] | 0 1
ex2:A,B,C,B,C,B,C,G | 1 0|23 |0|0|0|O0]1 0

26

SOFTWARE TESTING 181S62

Find cyclomatic complexity of triangle problem
1L.VG)=e-n+2p

e=23

n=20

p=1

V(G)=23-20+2(1)=5

2. V(G) = predicate node +1

=4+1=5

(Predicate nodes are 9, 13, 14, 16)

3. Nos. of regions =5

Find cyclomatic complexity of triangle problem DD-Path graph
1.V(G)=e-n+2p

e=20

n=17

p=1

V(G)=20-17+2(1) =5

2. V(G) = predicate node +1

=4+1=5

(Predicate nodes are B, F, H, J)

3. Nos. of regions =5

Basis Paths

Original ~ |pl: FIRST-A-B-C-E-F-H-J-K-M-N-O-LAST ~|Scalene
Flip pl at B |p2: FIRST-A-B-D-E-F-H-J-K-M-N-O-LAST |Infeasible

Flip pl at F | p3: FIRST-A-B-C-E-F-G-O-LAST Infeasible
Flip pl at H | p4: FIRST-A-B-C-E-F-H-I-N-O-LAST Equilateral
Flip pl atJ |p5: FIRST-A-B-C-E-F-H-J-L-M-N-O-LAST Isosceles

NOTE: there is no basis path for the Not A Triangle case.

Observations on McCabe’s Basis Path Method

Problems with Basis Path

>What is the significance of a path as a linear combination of basis paths?
>\What does 2p2 mean?

> Execute path p2 twice?

>What does —p1 part mean?

> Execute path pl backward?

DEPT OF ISE

SOFTWARE TESTING 181S62

> Undo the most recent execution on p1?

>Don’t do pl next time?

> In the path ex2 = 2p2 - p1 should a tester run path p2 twice, and then not do path p1 thenext
time? This is theory run amok(uncontrollable).

Is there any guarantee that basis paths are feasible?
> |s there any guarantee that basis paths will exercise interesting dependencies?

For Triangle problem, we can identify two rules:

If node C is traversed, then we must traverse node H.

If node D is traversed, then we must traverse node G.

Taken together, these rules, in conjunction with McCabe’s baseline method, will yield
thefollowing feasible basis path set.

pl: FIRST-A-B-C-E-F-H-J-K-M-N-O-LAST Scalene

p6: FIRST-A-B-D-E-F-G-O-LAST Not a Triangle
p4: FIRST-A-B-C-E-F-H-I-N-O-LAST Equilateral
pS: FIRST-A-B-C-E-F-H-J-L-M-N-O-LAST Isosceles

The bottom line for testers is:

> Programs with high cyclomatic complexity require more testing.

> The organizations that use the cyclomatic complexity, most set some guidelines formaximum
acceptable complexity; V(G) = 10 is a common choice.

>What happens if a unit test has a higher complexity?

> Two possibilities: simplify the unit or plan to do more testing.

> If the unit is well structured, its essential complexity is 1, so it can be simplified easily.

> |f the unit has an essential complexity that exceeds the guidelines, often the best choice isto
eliminate the unstructured.

guidelines and observations,

Guidelines and Observations

In our study of functional testing, we observed that gaps and redundancies can both exist, and at
the same time, cannot be recognized. The problem was that functional testing removes us “too far”
from code. The path testing approaches to structural testing represent the case where the pendulum
has swung too far the other way: moving from code to directed graph representations and program
path formulations obscures important information that is present in the code, in particular the
distinction between feasible and infeasible paths. In the next chapter, we look at dataflow based
testing. These techniques move closer to the code, so the pendulum will swing back from the path
analysis extreme.

DEPT OF ISE

SOFTWARE TESTING 181S62

McCabe was partly right when he observed: “It is important to understand that these are purely
criteria that measure the quality of testing, and not a procedure to identify test cases” [McCabe
82]. He was referring to the DD-Path coverage metric (which is equivalent to the predicate
outcome metric) and the cyclomatic complexity metric that requires at least the cyclomatic number
of distinct program paths must be traversed. Basis path testing therefore gives us a lowerbound on
how much testing is necessary.

Path based testing also provides us with a set of metrics that act as cross checks on functional
testing. We can use these metrics to resolve the gaps and redundancies question. When we find
that the same program path is traversed by several functional test cases, we suspect that this
redundancy is not revealing new faults. When we fail to attain DD-Path coverage, we know that
there are gaps in the functional test cases. As an example, suppose we have a program that contains
extensive error handling, and we test it with boundary value test cases (rain, mi n+,nom, max-
, and max). Because these are all permissible values, DD-Paths corresponding to the error handling
code will not be traversed.

If we add test cases derived from robustness testing or traditional equivalence class testing, the
DD-Path coverage will improve. Beyond this rather obvious use of coverage metrics, there is an
opportunity for real testing craftsmanship.

The coverage metrics in Table 2 can operate in two ways: as a blanket mandated standard (e.g., all
units shall be tested to attain full DD-Path coverage) or as a mechanism to selectively test portions
of code more rigorously than others. We might choose multiple condition coverage for modules
with complex logic, while those with extensive iteration might be tested in terms of the loop
coverage techniques.

This is probably the best view of structural testing: use the properties of the source code to identify
appropriate coverage metrics, and then use these as a cross check on functional testcases.
When the desired coverage is not attained, follow interesting paths to identify additional (special
value) test cases.

Data —Flow testing: Definition-Use testing,

Data flow testing is an unfortunate term, because most software developers immediately think
about some connection with dataflow diagrams. Data flow testing refers to forms of structural
testing that focus on the points at which variables receive values and the points at which these
values are used (or referenced).

We will see that data flow testing serves as a “reality check” on path testing; indeed, many of the
data flow testing proponents (and researchers) see this approach as a form of path testing. We
will look at two mainline forms of data flow testing: one provides a set of basic definitions and a
unifying structure of test coverage metrics, while the second is based on a concept called a
“program slice”. Both of these formalize intuitive behaviors (and analyses) of testers, and

DEPT OF ISE

SOFTWARE TESTING 181S62

although they both start with a program graph, both move back in the direction of functional
testing.

Most programs deliver functionality in terms of data. Variables that represent data somehow
receive values, and these values are used to compute values for other variables. Since the early
1960s, programmers have analyzed source code in terms of the points (statements) at which
variables receive values and points at which these values are used.

Many times, their analyses were based on concordances that list statement numbers in which
variable names occur. Concordances were popular features of second generation language
compilers (they are still popular with COBOL programmers). Early “data flow” analyses often
centered on a set of faults that are now known as define/reference anomalies:

« avariable that is defined but never used (referenced)
« a variable that is used but never defined
« a variable that is defined twice before it is used

Define/Use Testing

Much of the formalization of define/use testing was done in the early 1980s [Rapps 85]; the
definitions in this section are compatible with those in [Clarke 89], an article which summarizes
most of define/use testing theory. This body of research is very compatible with the formulation
we developed in chapters 4 and 9. It presumes a program graph in which nodes are statement
fragments (a fragment may be an entire statement), and programs that follow the structured
programming precepts.

The following definitions refer to a program P that has a program graph G(P), and a set of program
variables V. The program graph G(P) is constructed as in Chapter 4, with statement fragments as
nodes, and edges that represent node sequences. G(P) has a single entry node, and asingle exit
node.

Definition

Node n G(P) is a defining node of the variable v V, written as DEF(v,n), iff the value of thevariable
v is defined at the statement fragment corresponding to node n. Input statements, assignment
statements, loop control statements, and procedure calls are all examples of statements that are
defining nodes. When the code corresponding to such statements executes,the contents of the
memory location(s) associated with the variables are changed.

Definition

Node n G(P) is a usage node of the variable v V, written as USE(v, n), iff the value of the variablev
is used at the statement fragment corresponding to node n. Output statements, assignment
statements, conditional statements, loop control statements, and procedure calls areall examples
of statements that are usage nodes. When the code corresponding to such statementsexecutes, the
contents of the memory location(s) associated with the variables remain unchanged.

Definition

DEPT OF ISE

SOFTWARE TESTING 181S62

A usage node USE(v, n) is a predicate use (denoted as P-use) iff the statement n is a predicate
statement; otherwise USE(v, n) is a computation use , (denoted C-use). The nodes corresponding
to predicate uses always have an outdegree > 2, and nodes corresponding to computation uses
always have outdegree < 1.

Definition

A definition-use (sub)pathwith respect to a variable v (denoted du-path) is a (sub)path in
PATHS(P) such that, for some v V, there are define and usage nodes DEF(v, m) and USE(v, n)
such that m and n are the initial and final nodes of the (sub)path.

Definition

A definition-clear (sub)pathwith respect to a variable v (denoted dc-path) is a definition-
use(sub)path in PATHS(P) with initial and final nodes DEF (v, m) and USE (v, n) such that no
other node in the (sub)path is a defining node of v. Testers should notice how these definitions
capture the essence of computing with stored data values. Du-paths and dc-paths describe the flow
of data across source statements from points at which the values are defined to points at which the
values are used. Du-paths that are not definition-clear are potential trouble spots.

Data-Flow Testing

« Data-flow testing uses the controlflowgraph to explore the unreasonablethings that can happen
to data (i.e.,anomalies).

« Consideration of data-flow anomaliesleads to test path selection strategiesthat fill the gaps
between complete pathtesting and branch or statement testing.

Data-Flow Testing (Cont’d)

« Data-flow testing is the name given to a familyof test strategies based on selecting pathsthrough
the program’s control flow in order toexplore sequences of events related to thestatus of data
objects.

* E.g., Pick enough paths to assure that:

— Every data object has been initialized prior to itsuse.

— All defined objects have been used at least once

Data Object Categories

* (d) Defined, Created, Initialized
* (k) Killed, Undefined, Released
* (u) Used:

—(c) Used in a calculation

— (p) Used in a predicate

(d) Defined Objects

 An object (e.g., variable) is defined
when it:

— appears in a data declaration

DEPT OF ISE

SOFTWARE TESTING 181S62

— is assigned a new value
—is a file that has been opened
— is dynamically allocated

(u) Used Objects

» An object is used when it is part of acomputation or a predicate.

« A variable is used for a computation (c) whenit appears on the RHS (sometimes even theLHS
in case of array indices) of anassignment statement.

« A variable is used in a predicate (p) when itappears directly in that predicate.

Example: Definition and Uses
1. read (X, Y);

2.2=X+2;

3.if(z<y)

4dw=x+1;

else

5.y=y+1;

6. print (X, y, w, 2);

Example: Definition and Uses

Def |C-use |P-use
X,
1. read(x,y) Y
2. zZ=x+2; z X
3. if (Z < y) Z/ Y
4 w=x+1; W %
else
5. y=y+1
6. print(x,y,w,z); Y Y
xl yl
w, Z

Example: first part of the Commission Program

1. Program Commission (INPUT,OUTPUT)

2. Dim locks, stocks, barrels As Integer

3. Dim lockPrice, stockPrice, barrelPrice As Real

4. Dim totalLocks, totalStocks, totalBarrels As Integer
5. Dim lockSales, stockSales, barrelSales As Real

6. Dim sales, commission As Real

DEPT OF ISE

32

SOFTWARE TESTING

7. lockPrice =45.0
8. stockPrice = 30.0
9. barrelPrice = 25.0

10. totalLocks =0
11. totalStocks = 0
12. totalBarrels =0
13. Input(locks)
14. While NOT(locks = -1)
15. Input(stocks, barrels)
16. totalLocks = totalLocks + locks
17. totalStocks = totalStocks + stocks
18. totalBarrels = totalBarrels + barrels
19. Input(locks)
20. EndWhile
21. Output(“Locks sold: “, totalLocks)
22. Output(“Stocks sold: «, totalStocks)
23. Output(“Barrels sold: , totalBarrels)
23. Output(“Barrels sold: “, totalBarrels)
24. lockSales = lockPrice * totalLocks
25. stockSales = stockPrice * totalStocks
26. barrelSales = barrelPrice * totalBarrels
27. sales = lockSales + stockSales + barrelSales
28. Output(“Total sales: , sales)
29. If (sales > 1800.0)
30. Then
31. commission = 0.10 * 1000.0
32. commission = commission + 0.15 * 800.0
33. commission = commission + 0.20 *(sales-1800.0)
34. Else If (sales > 1000.0)
35. Then
36. commission = 0.10 * 1000.0
37. commission = commission + 0.15 *(sales-1000.0)
38. Else
39. commission = 0.10 * sales
40. EndIf
41. EndIf
42. Output(“Commission is $”°, commission)
43. End Commission
DEPT OF ISE

181S62

33

SOFTWARE TESTING

Commission Program Graph

Selected Def and Use Nodes

Variable Defined at Node Used at Node
lockPrice 7 24
totalLocks 10, 16 16, 21, 24
locks 13,19 14, 16
lockSales 24 27
sales 27 28, 29, 33, 34, 37, 38
commission 31, 32, 33, 36, 37,38 32, 33, 37, 41

DEPT OF ISE

181S62

34

SOFTWARE TESTING 181S62

Exercise: Identify Def and Use Nodes

Variable Defined at Node Used at Node
stockPrice
totalStocks
locks 13,19 14, 16
stockSales
sales 27 28,29, 33, 34,37, 38
commission 31, 32, 33, 36, 37, 38 32,33, 37, 41

Define/Use Paths (du-paths) for locks

* p1=<13, 14>

* p2=<13, 14,15, 16>

* p3=<19, 20, 14>

* p4 =<19, 20, 14, 15, 16>

 (all are definition clear)

13 Input(locks)
14 While NOT(locks =-1) 'locks = -1 signals end of data
15 Input(stocks, barrels)

16 totalLocks = totalLocks + locks

17 totalStocks = totalStocks + stocks
18 totalBarrels = totalBarrels + barrels
19 Input(locks)

(rest of
program

20 EndWhile

(3 (19

p2 @ @ p4 @

(19 9) (9
(19 (9
(19 9

DEPT OF ISE

SOFTWARE TESTING 181S62

Rapps-Weyuker Metrics

Associated with the concepts discussed in the previous section are a set of testcoverage metrics,
also defined by Sandra Rapps and Elaine Weyuker in theearly 1980s [2]. The metrics — a set of
criteria, essentially —allow the tester toselect sets of paths through the program, where “the number
of paths selectedis always finite, and chosen in a systematic and intelligent manner in order tohelp
us uncover errors”.

Paths through the program are selected, and test data — to be input intothe program — is also selected
to cover these paths (the percentage of coverageaccording to the set of paths selected).

Having the set of paths contain allpossible paths of the program (known as the All-Pathscriterion,
according tothe Rapps/Weyuker nomenclature) is often infeasible, as the number of loopspossible
through the program — and therefore the number of potential pathsto test — can often be infinite.

Nine criteria have been defined in the literature. Three correspond to themetrics used in path
testing, where the paths selected are not chosen accordingto their variables and their attributes, but
rather by an analysis of the structureof the program. These metrics are known as All-Paths (which
has already beenmentioned above), All-Edges and All-Nodes. All-Paths, which corresponds tothe
concept of ‘path coverage’, is satisfied if every path of the program graphis covered in the set.

All-Edges, which corresponds to ‘branch coverage’, issatisfied if every edge (branch) of the
program graph is covered. All-Nodes,which corresponds to ‘statement coverage’, is satisfied if
every node is coveredby the set of paths. In addition to these metrics, six new metrics were defined:

All-DU-Paths, All-Uses, All-C-Uses/Some-P-Uses, All-P-Uses/Some-C-Uses, AllDefs and All-
P-Uses. Definitions (adapted from the definitions in [2, 1]) ofthese metrics are provided below:

 The set of paths satisfies All-Defs for P if and only if, within the set ofpaths chosen, every
defining node for each variable in the program hasa definition-clear path to a usage node for the
same variable, within theset of paths chosen.

* The set of paths satisfies All-P-Uses for P if and only if, within the set ofpaths chosen, every
defining node for each variable in the program hasa definition-clear path to every P-use node for
the same variable.

 The set of paths satisfies All P-Uses/Some C-Uses for P if and only if,within the set of paths
chosen, every defining node for each variable inthe program has a definition-clear path to every
P-use node for the same

variable: however, if there are no reachable P-uses, the definition-clearpath leads to at least one C-
use of the variable.

DEPT OF ISE

SOFTWARE TESTING 181S62

* The set of paths satisfies All C-Uses/Some P-Uses for P if and only if,within the set of paths
chosen, every defining node for each variable inthe program has a definition-clear path to every
C-use node for the samevariable: however, if there are no reachable C-uses, the definition-clear
path leads to at least one P-use of the variable.

» The set of paths satisfies All-Uses for P if and only if, within the set ofpaths chosen, every
defining node for each variable in the program hasa definition-clear path to every usage node for
the same variable.

« The set of paths satisfies All-DU-Paths for P if and only if, the set of pathschosen contains every
feasible DU-path for the program.

Different criteria are supplied so that the tester can make what is describedby Rapps andWeyuker
as a “tradeoff” [2]. Although, in an ideal world, a program would be tested as thoroughly and
‘completely’ as possible — for example, with respect to structural testing, each and every possible
combinations ofnodes, branches, conditions, etc. would be tested thoroughly with every feasible
combination of test data — in reality, a number of factor impede on this.

Forinstance: time constraints; financial constraints; a situation where all ‘major’areas of the system
under test have been deemed to have been tested satisfactorily; or even the level of criticality — is
the program’s stability and reliabilitya critical factor (for instance, would lives be threatened if an
error occurredin the program?

Yes, if the program is controlling an aeroplane; no, if theprogram is controlling the in-flight games
system for passengers!). Rapps andWeyuker have defined their “strongest” criterion to be All-DU-
Paths; Jorgensenstates that “the generally accepted minimum [is] All-Edges” [1].

Rapps and Weyuker noted that there was a relationship between the different metrics: certain
metrics expanded upon other metrics — that is, if a set ofpaths satisfied a certain metric, then it also
satisfied all the other metrics belowit (for example, if All-Paths is satisfied, then so are All- DU-
Paths and All-Uses).

A diagram, created by Rapps and Weuyker, showing the relationship betweenmetrics is shown in
figure 4. This relationship was later described by Clarke etal. [3] as “subsumption”.

In the diagram (figure 4), the arrows show the relationship between metrics. For example, All-
Paths subsumes (or is stronger than) All-DU-Paths. However, Rapps and Weyuker describe that,
during the development of the metrics,they had found that All-Defs is “not necessarily” stronger
than All-Edges and

DEPT OF ISE

SOFTWARE TESTING 181S62

All-DU-Paths

All-Edges

All-Nodes

Slicebased testing,

1 program Example()

2 varstaffDiscount, totalPrice, finalPrice, discount, price
3 staffDiscount = 0.1

4 totalPrice =0

5 input(price)

6 while(price !=-1) do

7 totalPrice = totalPrice + price

8 input(price)

9od

10 print(""Total price: " + totalPrice)

11 if(totalPrice> 15.00) then

12 discount = (staffDiscount * totalPrice) + 0.50
13 else

14 discount = staffDiscount * totalPrice

15 fi

16 print("Discount: " + discount)

17 finalPrice = totalPrice - discount

Program Slices

The concept of program slicing was first proposed by Mark Weiser in the early1980s [6, 7].
According to Weiser, “slicing is a source code transformationof a program” [6], which allows a
subset of a program, corresponding to aparticular behaviour, to be looked at individually.

This gives the benefit that a“programmer maintaining a large, unfamiliar program” does not have
to understand ““an entire system to change only a small piece” [6].

DEPT OF ISE

38

SOFTWARE TESTING 181S62

The conceptof program slicing was extended to cover software maintenance by Keith Gallagher
and James Lyle in 1991 [8], extending slices to become “independentof line numbers”. Amended
definitions of the program slice concept are givenin Paul Jorgensen’s book [1].

A program slice with respect to a variable at a certain point in the program,is the set of program
statements from which the value of the variable at thatpoint of the program is calculated.

This definition can be amended to encompass the program graph concept: by replacing the set of
program statementswith nodes of the program graph.

This allows the tester to find the list ofusage nodes from the graph, and then generate slices with
them.

Program slices use the notation S(V, n), where S indicates that it is a program slice, V is the set
of variables of the slice and n refers to the statementnumber (i.e. the node number with respect to
the program graph) of the slice.

So, for example, with respect to the price variable given in the examplein section 2, the following
are slices for each use of the variable:

* S(price, 5) = {5}

* S(price, 6) = {5, 6, 8, 9}

* S(price, 7) = {5, 6, 8, 9}

* S(price, 8) = {8}

To generate the slice S(price, 7), the following steps were taken:

* Lines 1 to 4 have no bearing on the value of the variable at line 7 (and,for that matter, for no
other variable at any point), so they are not addedto the slice.

« Line 5 contains a defining node of the variable price that can affect thevalue at line 7, so 5 is
added to the slice.

* Line 6 can affect the value of the variable as it can affect the flow ofcontrol of the program.
Therefore, 6 is added to the slice.

« Line 7 is not added to the slice, as it cannot affect the value of the variable at line 7 in any way.

« Line 8 is added to the slice — even though it comes after line 7 in theprogram listing. This is
because of the loop: after the first iteration ofthe loop, line 8 will be executed before the next

execution of line 7. Theprogram graph in figure 1 shows this in a clear way.

« Line 9 signifies the end of the loop structure. This affects the flow ofcontrol (as shown in figure
1, the flow of control goes back to node 6).

DEPT OF ISE

SOFTWARE TESTING 181S62

This indirectly affects the value of price at line 7, as the value stored inthe variable will have almost
certainly been changed at line 8. Therefore,9 is added to the slice.

* No other line of the program can be executed before line 7, and so cannotaffect the value of the
variable at that point. Therefore, no other line isadded to the slice.

The program slice, as already mentioned, allows the programmer to focusspecifically on the code
that is relevant to a particular variable at a certainpoint. However, the program slice concept also
allows the programmer togenerate a lattice of slices: that is, a graph showing the subset
relationshipbetween the different slices. For instance, looking at the previous example for

the variable price, the slices S(price, 5) and S(price, 8) are subsets of S(price,7).

With respect to a program as a whole, certain variables may be related tothe values of other
variables: for instance, a variable that contains a valuethat is to be returned at the end of the
execution may use the values of othervariables in the program. For instance, in the main example
in this document,

thefinalPrice variable uses the totalPrice variable, which itself usesthe price variable. The
finalPrice variable also uses the discount variable, which uses the staffDiscount and totalPrice
variables — and so on.

Therefore, the slices of the totalPrice and discount variables are a subset of theslice of the finalPrice
variable at lines 17 and 18, as they both contribute to thevalue. This subset relationship‘ripples
down’ to the other variables, accordingto the use-relationship described

Lattice of Slices

» Because a slice is a set of statement fragmentnumbers, we can find slices that are subsets
ofother slices.

« This allows us to “work backwards” from points ina program, presumably where a fault is
suspected.

* The statements leading to the value of commissionwhen it is output are an excellent example of
thispattern.

» Some researchers propose that this is the waygood programmers think when they debug code.

This is shown visually in the following example:
« S(staffDiscount, 3) = {3}

* S(totalPrice, 4) = {4}

* S(totalPrice, 7) ={4, 5, 6, 7, 8}

DEPT OF ISE

SOFTWARE TESTING 181S62

S(staffDiscount, 3)

A

S(totalPrice, 17)

S(discount, 12)

S(discount, 14)

S(finalPrice, 17)

Figure 5: The Program Slice Lattice

« S(totalPrice, 11) ={4, 5, 6, 7, 8}

« S(discount, 12) ={3, 4,5, 6, 7, 8, 11, 12}

* S(discount, 14) = {3, 4,5, 6, 7, 8, 13, 14}

« S(finalPrice, 17) = {3, 4,5, 6,7, 8,11, 12, 13, 14, 17}

Therefore, the lattice of slices for the finalPrice variable is as shown infigure 5. This relationship,
as shown in the lattice diagram, can feasibly helpduring testing, particularly if there’s a fault. For
instance, if there is an error inthe slice of finalPrice, then, by testing the different subset slices, you
caneliminate them from the possible sources of the error (for instance, the errormay be generated
from an incorrect calculation of the discount, for instance).

If there is no error in the subset slices, then the error must be found in theremaining lines of code.
As it is a set of statement fragments, this means thatthe remaining lines of code are the relative
complement of the slice.

In otherwords, the error is likely to be in:Fullslice — SubsetSlices
If there is an error, then there could be errors in either the subsets, thecode or both.

The relationship between slices also shows the interactions between variables in the code: if a slice
for a variable x is a subset of a slice for a variabley, then the value of x must be needed by

y. By generating the lattice, thetester can hopefully discover any unnecessary or undesired
interactions between variables.

In the program fragment

13. Input(locks)

14. While NOT(locks = -1)

15. Input(stocks, barrels)

16. totalLocks = totalLocks + locks

17. totalStocks = totalStocks + stocks

18. totalBarrels = totalBarrels + barrels
19. Input(locks)

20.EndWhile

There are these slices on locks (notice that

DEPT OF ISE

SOFTWARE TESTING 181S62

statements 15, 17, and 18 do not appear):
S1: S(locks, 13) = {13}

S2: S(locks, 14) = {13, 14, 19, 20}

S3: S(locks, 16) = {13, 14, 19, 20}

S4: S(locks, 19) = {19}

Guidelines and observations.

Guidelines and Observations

Dataflow testing is clearly indicated for programs that are computationally intensive. As a
corollary, in control intensive programs, if control variables are computed (P-uses), dataflow
testing is also indicated. The definitions we made for define/use paths and slices give us very
precise ways to describe parts of a program that we would like to test. There are academic tools
that support these definitions, but they haven’t migrated to the commercial marketplace. Some
pieces are there; you can find programming language compilers that provide on-screen
highlighting of slices, and most debugging tools let you “watch” certain variables as you step
through a program execution.

Test Execution: Overview of test execution,

Whereas test design, even when supported by tools, requires insight and ingenuity in similar
measure to other facets of software design, test execution must be sufficiently automated for
frequentreexecution without little human involvement. This chapter describes approaches for
creating the run-time support for generating and managing test data, creating scaffolding for test
execution, and automatically distinguishing between correct and incorrect test case executions.

from test case specification to test cases,

Test Case Specification document described detailed summary of what scenarios will be tested,
how they will be tested, how often they will be tested, and so on and so forth, for a given feature.
It specifies the purpose of a specific test, identifies the required inputs and expected results,
provides step-by-step procedures for executing the test, and outlines the pass/fail criteria for
determining acceptance.

Test Case Specification has to be done separately for each unit. Based on the approach specified
in the test plan, the feature to be tested for each unit must be determined. The overall approach
stated in the plan is refined into specific test techniques that should be followed and into the criteria
to be used for evaluation. Based on these the test cases are specified for the testing unit.
However, a Test Plan is a collection of all Test Specifications for a given area. The Test Plan
contains a high-level overview of what is tested for the given feature area.

DEPT OF ISE

SOFTWARE TESTING 181S62

Reason for Test Case Specification:

There are two basic reasons test cases are specified before they are used for testing:

1. Testing has severe limitations and the effectiveness of testing depends heavily on the exact

nature of the test case. Even for a given criterion the exact nature of the test cases affects the
effectiveness of testing.

Constructing a good Test Case that will reveal errors in programs is a very creative activity
and depends on the tester. It is important to ensure that the set of test cases used is of high
quality. This is the primary reason for having the test case specification in the form of a
document.

The Test Case Specification is developed in the Development Phase by the organization
responsible for the formal testing of the application.

What is Test Case Specification Identifiers?

The way to uniquely identify a test case is as follows:

Test Case Objectives: Purpose of the test

Test Items: Items (e.g., requirement specifications, design specifications, code, etc.) required
to run a particular test case. This should be provided in “Notes” or “Attachment” feature. It
describes the features and conditions required for testing.

Input Specifications: Description of what is required (step-by-step) to execute the test case
(e.g., input files, values that must be entered into a field, etc.). This should be provided in
“Action” field.

Output Specifications: Description of what the system should look like after the test case is
run. This should be provided in the “Expected Results” field.

Environmental Needs: Description of any special environmental needs. This includes system
architectures, Hardware & Software tools, records or files, interfaces, etc.

To sum up, Test Case Specification defines the exact set up and inputs for one Test Case.

What is a Test Case?

A TEST CASE is a set of actions executed to verify a particular feature or functionality of your
software application. A Test Case contains test steps, test data, precondition, postcondition
developed for specific test scenario to verify any requirement. The test case includes specific
variables or conditions, using which a testing engineer can compare expected and actual results
to determine whether a software product is functioning as per the requirements of the customer.

DEPT OF ISE

43

http://toolsqa.com/software-testing/test-case/

SOFTWARE TESTING 181S62

Scaffolding,

Test Scaffolding

The test scaffolding denotes the auxilliary programs and classes that allow us to test a given
program unit

Driver

Test Unit =
- Test case

Stub Stub

o The test units depends on a number of other units
o These units are established as stubs possibly in the form of mockups
o The test cases are executed by means of driver program

It appears attractive to test the classes bottom up in order to avoid excessive use of stubs

Stubs and Drivers: Introduction

In software testing life cycle, there are numerous components that play a prominent part in making
the process of testing accurate and hassle free. Every element related to testing strives to improve
its quality and helps deliver accurate and expected results and services that are in compliance with
the defined specifications. Stubs and drivers are two such elements used in software testing
process, which act as a temporary replacement for a module. These are an integral part of software
testing process as well as general software development. Therefore, to help you understand the

significance of stubs and drivers in software testing, here is elaborated discussion on the same.

B—as

DEPT OF ISE

44

https://www.professionalqa.com/test-data-and-its-importance

SOFTWARE TESTING 181S62

What is meant by Stubs and Drivers?

In the field of software testing, the term stubs and drivers refers to the replica of the modules,
which acts as a substitute to the undeveloped or missing module. The stubs and drives are
specifically developed to meet the necessary requirements of the unavailable modules and are
immensely useful in getting expected results.

Stubs and drivers are two types of test harness, which is a collection of software and test that is
configured together in order to test a unit of a program by stimulating variety of conditions while
constantly monitoring its outputs and behaviour. Stubs and drivers are used in top-down
integration and bottom-up integration testing respectively and are created mainly for the testing
purpose.

Defining Stubs:

Stubs are used to test modules and are created by the team of testers during the process of Top-
Down Integration Testing. With the assistance of these test stubs testers are capable of
stimulating the behaviour of the lower level modules that are not yet integrated with the software.
Moreover, it helps stimulates the activity of the missing components.

Types of Stubs:

There are basically four types of stubs used in top-down approach of integration testing, which are
mentioned below:

o Displays the trace message.

o Values of parameter is displayed.

o Returns the values that are used by the modules.

o Returns the values selected by the parameters that were used by modules being tested.

Defining Drivers:

Drivers, like stubs, are used by software testers to fulfil the requirements of missing or incomplete
components and modules. These are usually complex than stubs and are developed during Bottom-
Up approach of Integration Testing. Drivers can be utilized to test the lower levels of the code,
when the upper level of codes or modules are not developed. Drivers act as pseudo codes that are
mainly used when the stub modules are ready, but the primary modules arenot ready.

Stubs and Drivers: Example

Consider an example of a web application, which consists of 4 modules i.e., Module-A,
Module-B, Module-C and Module-D. Each of the following modules is responsible for some
specific activity or functionality, as under:

Consider an example of a web application, which consists of 4 modules i.e., Module-A, Module-

B, Module-C and Module-D. Each of the following modules is responsible for some specific
activity or functionality, as under

DEPT OF ISE

https://www.professionalqa.com/software-testing
https://www.professionalqa.com/test-harness
https://www.professionalqa.com/test-data-and-its-importance
https://www.professionalqa.com/top-down-integration-testing
https://www.professionalqa.com/top-down-integration-testing
https://www.professionalqa.com/bottom-up-approach
https://www.professionalqa.com/bottom-up-approach

SOFTWARE TESTING 181S62

Module-A ?Login page of the web application.

Module-B — Home page of the web application.

Module-C — Print Setup.

Module-D — Log out page.

modules A, B, C & D involves the interdependencies of each module over other.

Itis always preferable, to perform testing, in parallel, to the development process. Thus, it implies
that subsequent testing must be carried out, immediately after the development of the each module.

Module-A will be tested, as soon as, it develops. However, to carry out and validate the testing
procedures in respect of module-A, there urges the need of Module-B, which is not yet developed.
The expected functionality of the login page (module-A) could be validated, only if itis directed
to the home page (Module-B), based on the valid and correct inputs.

But, on the non-availability of theModule-B, it will not be possible to test module-A. These types
of circumstances, introduces the stubs & drivers in the process of software testing. A dummy
module, representing the basic functionality or feature of the module-B, is being developed, and
thereafter, it is being integrated with the module-A, to perform testing, efficiently.

Similarly, stubs and drivers, are used to fulfil the requirements of other modules, such asLog
out page (Module-D), needs to be directed to the login page (Module-A), after successfully
logging out from the application. In the event of unavailability of Module-A, stubs and drivers
will work as a substitute for it, in order to carry out the testing of module-D.

Stubs vs Drivers

Stubs are dummy modules that always used to simulate the low level modules.
Stubs are the called programs.

Stubs are used when sub programs are under construction.

Stubs are used in top down approach

Drivers are dummy modules that always used to simulate the high level modules.
Drivers are the calling programs.

Drivers are only used when main programs are under construction.

Drivers are used in bottom up integration.

Generic versus specific scaffolding,
Generic versus Specific Scaffolding
The simplest form of scaffolding is a driver program that runs a single, specific test case. If, for

example, a test case specification calls for executing method calls in a particular sequence, this is
easy to accomplish by writing the code to make the method calls in that sequence.

DEPT OF ISE

https://www.professionalqa.com/test-process

SOFTWARE TESTING 181S62

Writing hundreds or thousands of such test-specific drivers, on the other hand, may be
cumbersome and a disincentive to thorough testing. At the very least one will want to factor out
some of the common driver code into reusable modules.

Sometimes it is worthwhile to write more generic test drivers that essentially interpret test case
specifications. At least some level of generic scaffolding support can be used across a fairly wide
class of applications.

Test oracles,

Test Oracles

It is little use to execute a test suite automatically if execution results must be manually inspected
to apply a pass/fail criterion. Relying on human intervention to judge test outcomes is not merely
expensive, but also unreliable.

Even the most conscientious and hard-working person cannot maintain the level of attention
required to identify one failure in a hundred program executions, little more one or ten thousand.

That is a job for a computer. Software that applies a pass/fail criterion to a program execution is
called a test oracle, often shortened to oracle.

In addition to rapidly classifying a large number of test case executions, automated test oracles
make it possible to classify behaviors that exceed human capacity in other ways, such aschecking
real-time response against latency requirements or dealing with voluminous output data in a
machine-readable rather than human-readable form.

Capture-replay testing, a special case of this in which the predicted output or behavior ispreserved
from an earlier execution, is discussed in this chapter. A related approach is to capture the output
of a trusted alternate version of the program under test.

For example, one may produce output from a trusted implementation that is for some reason
unsuited for production use; it may too slow or may depend on a component that is not available
in the production environment.

It is not even necessary that the alternative implementation be more reliable than the program
under test, as long as it is sufficiently different that the failures of the real and alternate version are
likely to be independent, and both are sufficiently reliable that not too much time is wasted
determining which one has failed a particular test case on which they disagree.

DEPT OF ISE

SOFTWARE TESTING 181S62

Test Case

Test Harness
with Comparison Based

Test Input ¥ Oracle
: | Expected Output 1 \\ » Compare e Pass/Fail

\ 7
Program }
Under Test I

independently compute the route to ascertain that it is in fact a valid route that starts at A and ends
at B.

Oracles that check results without reference to a predicted output are often partial, in the sense that
they can detect some violations of the actual specification but not others.

They check necessary but not sufficient conditions for correctness. For example, if the
specification calls for finding the optimum bus route according to some metric, partial oracle a
validity check is only a partial oracle because it does not check optimality.

Similarly, checking that a sort routine produces sorted output is simple and cheap, but it is only a
partial oracle because the output is also required to be a permutation of the input.

A cheap partial oracle that can be used for a large number of test cases is often combined with a
more expensive comparison-based oracle that can be used with a smaller set of test cases for which
predicted output has been obtained.

Ideally, a single expression of a specification would serve both as a work assignment and as a
source from which useful test oracles were automatically derived. Specifications are often
incomplete, and their informality typically makes automatic derivation of test oracles impossible.

The idea is nonetheless a powerful one, and wherever formal or semiformal specifications

(including design models) are available, it is worth- while to consider whether test oracles can be
derived from them.

(Oracles) Testing of Copy/Paste in Office Suites

Summary

We can do a quick evaluation of the capabilities of Open Office by comparing its behaviors to
Microsoft Office. In doing so, we find a critical difference in how the products handle cutting

DEPT OF ISE

SOFTWARE TESTING 181S62

and pasting text. In MS Office's word processor, users can create huge files by pasting large
amounts of text. In OO Writer, you cannot create a file larger than 65,535 characters.

Application Description

OpenOffice.orq is a free office suite that includes a word processor, a spreadsheet creator, and a

presentation creator. Writer is the word processor component of OpenOffice.org and is used to
write and edit text documents.

Microsoft Office 2003 is the most widely used office suite. Word is the word processor component
of Office 2003 and can be used to perform the same tasks as Writer.

E untitled1 - Openoffice.org 1.1.1

=T gl
File Edit View Insert Format Tools ilfindow Help x © File Edit Wiew Insert Format Tools Table Window Help X
| A Esaz 28 2 DEEHRSISRIVE @98 35 i
IDefaukt j I'I'lmes New Roman_] [_j B : U H%]E = E i} [t] X

= e e e T T T 5 ‘Ej

@k

b=
= =
¥
W]«
i
&
[m]
a8
=

1»_1"

[

lPage 141 [Defaut 78% |INSRT [sTD |HvP | |

Page 1 Sec 1 11 At 1" tn1 Coli REC TRK ERT OVR English(L

OpenOffice.org's Writer Microsoft Office 2003 Word

Test Design

In Oracle-based testing, we compare the behavior of the program under test to the behavior of a
source we consider accurate (an oracle).

One of the common early tasks when testing a program is a survey of the program's capabilities.
You walk through then entire product, trying out each feature to see what the product can do, what
it does well, what seems awkward, and what seems obviously unstable.

The tester doing the survey has to constantly evaluate the program: Is this behavior reasonable?
Correct? In line with user expectations? A tester who is expert with this type of product will have

no problem making these evaluations, but a newcomer needs a reference for guidance. An oracle
is one such reference.

DEPT OF ISE

49

http://www.openoffice.org/
http://office.microsoft.com/

SOFTWARE TESTING

181S62

Open Office (O0) is an office productivity suite that was designed to compete with Microsoft
Office. It makes sense to us to use Office as the reference point when surveying Open Office.

Performing the Test

A survey involves rapid testing of many different features. We focus here on just one part of the

survey, evaluation of cutting and pasting.

1. We use Open OpenOffice.org Writer and Microsoft Word.
2. In Writer, type a few lines of the character ‘a'.

3. Highlight the characters and use Ctrl-C (Copy) and Ctrl-V (Paste) to fill the document

with text.
4. Repeat step 3 to paste in as many characters as possible:

% Untitled1 - OpenOffice.org 1.1.1 g

File Edit View

Ihsert Format Tools Window Help

ST

1]
1]
1 | KA IR

IDefault Z| I'ﬁmes New Roman:l I12 ZI B : U ‘_
g [R T FE Ry SR S BEP c B R (R Y S é
o o L L A o L L o L L
e d43333333333333333333333333333333333334333333333333333333333333333333333443333333333
pE=_>~ d43333333444933933333333333433433933333323333334333333933232333433433333333332333334484
b A313333343433333933392333343343333333392333333333333339333333333433333333332333343333484
@l 43132333343339333332333483334333333333332333333233333333323233343333333333334333333484
[?b A4333334344333333333333434343343333333333333343443333393333333343333333333333343343344
A43333338443433333333333343433433433933933333833383334339393333333834333333393333334343338344
E? A4333333343433343333333333433339339333333333333333343333933233333334333334933233333333484
B A313333343433333933392333343433333333323333333333333393333333334334333333332333343333484
‘:{ d438344833393343933339934343333343433333934333333433333334333334343333333333333333333433333333343 =1
aaaaag v
1 -
s
3
v
s
)4 | >
Page 18718 |Default [78% [INSRT [sTD |HvP k|

This picture shows that Writer has stopped accepting characters on Page 18.

5. In Word, type a few lines of the character ‘a'.
6. Highlight the characters and use Ctrl-C (Copy) and Ctrl-V (Paste) to fill the document
with text.
7. Repeat step 6 to paste in as many characters as possible:
DEPT OF ISE

50

SOFTWARE TESTING 181S62

i pocuments -Mirosoftword -loixd

 Flle Edit View Insert Format Tools Table Window Help Type aquestionforhelp » X
DEFHRIEGRIVE BRAIY-8E " -@ ue Hin

(] Y i2oi3iaose - STSS——
a

B

- mmm@
= ola]=z 4
Page 891 Sec 1 891/891 At 2.5" Ln @ Col 13 REC TRK EXT OVYR English (U.S 4

We stopped that at page 891. Word will still accept characters.

Results/Relevance
x|
GeneraII Description I User Defined | Internet Statislicsl zl
Number of Pages: 18 St atl Stl cs:
Number of Tables: 0
Number of Graphics: 1] Pages 891
Number of OLE Objects: 0 Words
Numoer of Peragraphs: ! Characters (no spaces) 3,316,800
Number of Words: 1
Characters {with spaces) 3,316,800
pasrsh
' : Lines 40,949
I Include footnotes and endnotes
Show Toolbar I
0K | Cancel | Help Reset |
Writer's character count statistics Word's character count statistics

DEPT OF ISE

SOFTWARE TESTING 181S62

OpenOffice.org Writer stopped accepting text at 65,535 characters (about 18 pages with size 12
Times New Roman font with standard margins). At the 65,535 character limit, we are unable to
add characters by pasting or by typing. We can edit the text already in the document.

Even if the character limit for Writer documents is supposed to be 65,535 characters, this test
reveals a separate problem. When pasting text that fills the document, the overflow text was cut
off without a warning. The user has thus lost data, without necessarily realizing it.

In Word, we saw a completely different situation. After 890 pages, it was still accepting characters.
In fact, we could have kept pasting until the system ran out of memory. There is apparently no
limit on the amount of characters that Word will accept.

How is this relevant to oracle-based testing? People often write about oracles as test automation
support tools. They can be. But as we see here, even in a simple exploration, an oracle can be a
useful supplement to specifications and documentation, or a surrogate for these documents if
they are unavailable.

Self-checks as oracles,

A program or module specification describes all correct program behaviors, so an oracle based
on a specification need not be paired with a particular test case.

WP VALV SR AL SAM RS AL WA JPAAE WAAE | UE AMWA- X MISAL SAL TARCAL - VALY RMebbad Nl s

Test Hamess ‘
Test Case Program |
| Under Test
Test Input —] | Eai
Self-checks H—t» SIS

d Notification

Figure 3.8: When self-checks are embedded in the program, test cases need not include predicted
outputs.

Self-check assertions may be left in the production version of a system, where they provide much
better diagnostic information than the uncontrolled application crash the customer may otherwise
report. If this is not acceptable - for instance, if the cost of a runtime assertion check is too high -
most tools for assertion processing also provide controls for activating and deactivating assertions.

It is generally considered good design practice to make assertions and self-checks be free of side-
effects on program state. Side-effect free assertions are essential when assertions may be
deactivated, because otherwise suppressing assertion checking can introduce program failures that
appear only when one is not testing. Self-checks in the form of assertions embedded in program
code are useful primarily for checking module and subsystem-level specifications,rather than
overall program behavior.

Devising program assertions that correspond in a nuartal way to specifications (formal or informal)
poses two main challenges: bridging the gap between concrete execution values and

DEPT OF ISE

SOFTWARE TESTING 181S62

abstractions used in specification, and dealing in a reasonable way with quantification over
collections of values.

(|(k,v) € ¢(dict))
o = dict.get(k)
(Jo=vl)

@ is an abstraction function that constructs the abstract model type (sets of key, value pairs) from
the concrete data structure. ¢ is a logical association that need not be implemented whenreasoning
about program correctness.

To create a test oracle, it is useful to have an actual implementation of ¢. For this example, we
might implement a special observer method that creates a simple textual representation of the set
of (key, value) pairs. Assertions used as test oracles can then correspond directly to the
specification.

Besides simplifying implementation of oracles by implementing this mapping once and using it
in several assertions, structuring test oracles to mirror a correctness argument is rewarded when a
later change to the program invalidates some part of that argument

In addition to an abstraction function, reasoning about the correctness of internal structures usually
involves structural invariants, that is, properties of the data structure that are preserved byall
operations. Structural invariants are good candidates for self checks implemented as assertions.

They pertain directly to the concrete data structure implementation, and can be implemented within
the module that encapsulates that data structure. For example, if a dictionary structure is
implementedas a red-black tree or an AVL tree, the balance property is an invariant of the structure
that can be checked by an assertion within the module.

1 package org.eclipse.jdt.internal.ui.text;

2 import java.text.Characterlterator;

3 import org.eclipse.jface.text. Assert; 4 /**

5 *A <code>CharSequence</code> based implementation of

6 * <code>Characterlterator</code>. 7 * @since 3.0

8 */

9 public class SequenceCharacterlteratorimplements Characterlterator{ 13 ...
14 private void invariant() {

15 Assert.isTrue(findex>= fFirst);

16 Assert.isTrue(flndex<=flLast); 17 }

49 ...

50 public SequenceCharacterlterator(CharSequence sequence, intfirst, intlast)

DEPT OF ISE

SOFTWARE TESTING 181S62

51 throws lllegal ArgumentException {
52 if (sequence == null)
53 throw new NullPointerException();

54
55
56
57
58
59
60
61
62

63 }

143
144
145
146
147
148
149
150
151
152
263
264 }|

if (first < 0 || first = last)
throw new Illegal ArgumentException();
if (last > sequence length())
throw new Illegal ArgumentException(),
fSequence= sequence;
fFirst= first;
fLast= last;
fIndex= first;
mvariant();

public char setIndex(int position) {

if (position >= getBeginlndex() && position <= getEndIndex())
fIndex= position;

else
throw new Illegal ArgumentException();

mvariant();
return current();

There is a natural tension between expressiveness that makes it easier to write and understand
specifications, and limits on expressiveness to obtain efficient implementations.

It is not much of a stretch to say that programming languages are just formal specification
languages in which expressiveness has been purposely limited to ensure that specifications can

be executed with predictable and satisfactory performance.

An important way in which specifications used for human communication and reasoning about
programs are more expressive and less constrained than programming languages is that they freely

quantify over collections of values.

DEPT OF ISE

54

SOFTWARE TESTING 181S62

For example, a specification of database consistency might state that account identifiers are unique;
that is, for all account records in the database, there does not exist another account recordwith the
same identifier.

The problem of quantification over large sets of values is a variation on the basic problem of
program testing, which is that we cannot exhaustively check all program behaviors.

Instead, we select a tiny fraction of possible program behaviors or inputs as representatives. The
same tactic is applicable to quantification in specifications. If we cannot fully evaluate the
specified property, we can at least select some elements to check (though at present we know of
no program assertion packages that support sampling of quantifiers).

For example, although we cannot afford to enumerate all possible paths between two points in a
large map, we may be able to compare to a sample of other paths found by the same procedure.
program may use ghost variables to track entry and exit of threads from a critical section.

The postcondition of an in-place sort operation will state that the new value is sorted and a
permutation of the input value. This permutation relation refers to both the "before™ and "after"
values of the object to be sorted.

A run-time assertion system must manage ghost variables and retained "before” values and must
ensure that they have no side-effects outside assertion checking.

It may seem unreasonable for a program specification to quantify over an infinite collection, but
in fact it can arise quite naturally when quantifiers are combined with negation. If we say "there
IS no integer greater than 1 that divides k evenly,” we have combined negation with “there exists"
to form a statement logically equivalent to universal (“for all'") quantification over the integers.
We may be clever enough to realize that it suffices to check integers between 2 and Vk, but that
is no longer a direct translation of the specification statement.

Capture and replay

Capture and Replay

Sometimes it is difficult to either devise a precise description of expected behavior or adequately
characterize correct behavior for effective self-checks.

For example, while many properties of a program with a graphical interface may be specified in
a manner suitable for comparison-based or self-check oracles, some properties are likely to require
a person to interact with the program and judge its behavior.

If one cannot completely avoid human involvement in test case execution, one can at least avoid
unnecessary repetition of this cost and opportunity for error. The principle is simple. The first time
such a test case is executed, the oracle function is carried out by a human, and theinteraction
sequence is captured.

DEPT OF ISE

SOFTWARE TESTING 181S62

Provided the execution was judged (by the human tester) to be correct, the captured log now forms
an (input, predicted output) pair for subsequent automated retesting. The savings from automated
retesting with a captured log depends on how many build- and-test cycles we can continue to use
it in, before it is invalidated by some change to the program.

Distinguishing between significant and insignificant variations from predicted behavior, in order
to prolong the effective lifetime of a captured log, is a major challenge for capture/replay testing.
Capturing events at a more abstract level suppresses insignificant changes.

For example, if we log only the actual pixels of windows and menus, then changing even a typeface
or background color can invalidate an entire suite of execution logs.
Mapping from concrete state to an abstract model of interaction sequences is sometimes possible

but is generally quite limited.

A more fruitful approach is capturing input and output behavior at multiple levels of abstraction
within the implementation

DEPT OF ISE

181562
SOFTWARE TESTING

MODULE 4
Process Framework :Basic principles: Sensitivity, redundancy, restriction, partition,
visibility, Feedback, the quality process, Planning and monitoring, Quality goals,
Dependability properties ,Analysis Testing, Improving the process, Organizational factors.

Planning and Monitoring the Process: Quality and process, Test and analysis strategies and
plans, Risk planning, monitoring the process, Improving the process, the quality team

Documenting Analysis and Test: Organizing documents, Test strategydocument, Analysis

and test plan, Test design specifications documents, Test and analysis reports.

Process Framework : Basic principles
MENTION THE BASIS PRINCIPLES UNDERLYING A & T TECHNIQUES. ?
Analysis and testing (A&T) has been common practice since the earliest software projects.

Six principles that characterize various approaches and techniques for analysis and testing are
sensitivity, redundancy, restriction, partition, visibility, and feedback.

General engineering principles:

Partition: divide and conquer

Visibility: making information accessible
Feedback: tuning the development process

Specific A&T principles:

Sensitivity: better to fail every time than sometimes

Redundancy: making intentions explicit
Restriction: making the problem easier

Sensitivity

Human developers make errors, producing faults in software. Faults may lead to failures, but
faulty software may not fail on every execution.

The sensitivity principle states that it is better to fail every time than sometimes.

If a fault is detected in unit testing, the cost of repairing is relatively small.

If a fault survives at the unit level, but triggers a failure detected in integration testing, the
cost of correction is much greater.

If the first failure is detected in system or acceptance testing, the cost is very high indeed, and
the most costly faults are those detected by customers in the field.

DEPT OF ISE 1

181562
SOFTWARE TESTING

A fault that triggers a failure on every execution is unlikely to survive past unit testing.

For example, a fault that results in a failure only for some unusual configurations of customer
equipment may be difficult and expensive to detect. A fault that results in a failure randomly
but very rarely.

The small C program that has three faulty calls to string copy procedures is shown below,

#include <assert.h> int main(int argc, char *argv)

char before[] = "=Before="; {

char middle[] = "Middle"; show();

char after[] = "=After=", strcpy(middle, "Muddled"); /* Fault, but may
not fail */

void show() { show();

printf("%s\n%s\n%s\n", before, middle, strncpy(middle, "Muddled", sizeof(middle)); /*

after); Fault, may not fail */

} show();

stringCopy(middle, "Muddled",sizeof(middle));
void stringCopy(char *target, const char | /* Guaranteed to fail */

*source, int howBig) { show();
assert(strlen(source) < howBig); }
strcpy(target, source);

}

Standard C functions strcpy and strncpy may or may not fail when the source string is too
long. The procedure stringCopy is sensitive: It is guaranteed to fail in an observable way if
the source string is too long.

The call to strcpy, strncpy, and stringCopy all pass a source string "Muddled," which is too
long to fit in the array middle. For strcpy, the fault may or may not cause an observable
failure depending on the arrangement of memory.

While strncpy avoids overwriting other memory, it truncates the input without warning, and
sometimes without properly null-terminating the output.

The function stringCopy, uses an assertion to ensure that, if the target string is too long, the
program always fails in an observable manner.

The sensitivity principle made these faults easier to detect by making them cause failure more
often by applying in three main ways:

At the design level, changing the way in which the program fails;

At the analysis and testing level, choosing a technique more reliable with respect to the
property of interest;

At the environment level, choosing a technique that reduces the impact of external factors on
the results.

DEPT OF ISE 2

181562
SOFTWARE TESTING

Examples of application of the sensitivity principle:
Replacing strcpy and strncpy with stringCopy in the above program.
Run-time array bounds checking in many programming languages.

A variety of tools and replacements for the standard memory management library are
available to enhance sensitivity to memory allocation and reference faults.

The fail-fast property of Java iterators provides an immediate and observable failure when the
illegal modification occurs.

A run time deadlock analysis works better if it is machine independent, i.e., if the program
deadlocks when analyzed on one machine, it deadlocks on every machine

A test selection criterion works better if every selected test provides the same result, i.e., if
the program fails with one of the selected tests, it fails with all of them (reliable criteria)

Redundancy

Redundancy is the opposite of independence. In software test and analysis, we wish to detect
faults that could lead to differences between intended behavior and actual behavior, so the
redundancy is in the form of making intentions explicit.

Redundancy can be introduced to declare intent and automatically check for consistency.
Static type checking is a classic application of this principle: The type declaration is a
statement of intent that is at least partly redundant with the use of a variable in the source
code.

The type declaration constrains other parts of the code, so a consistency check can be applied.

Redundancy check is not limited to program source code, one can also intentionally introduce
redundancy in other software artifacts (design) where, software design tools typically provide
ways to check consistency between different design views or artifacts.

Redundancy is exploited instead with run-time checks which is another application of
redundancy in programming.

Restriction
When there are no acceptably cheap and effective ways to check a property, checking can be
done on more restrictive property or limit the check to a smaller, more restrictive class of
programs.

Consider the problem of ensuring that each variable is initialized before it is used, on every

execution. It is not possible for a compiler or analysis tool to precisely determine whether it
holds.

DEPT OF ISE 3

181562
SOFTWARE TESTING

The program shown below illustrates : Can the variable k ever be uninitialized the first time i
is added to it? If someCondition(0) always returns true, then k will be initialized to zero on
the first time through the loop, before k is incremented, so perhaps there is no potential for a
run-time error - but method someCondition could be arbitrarily complex and might even
depend on some condition in the environment.

Java's solution to this problem is to enforce a stricter, simpler condition: A program is not
permitted to have any syntactic control paths on which an uninitialized reference could occur,
regardless of whether those paths could actually be executed. The program has such a path,
so the Java compiler rejects it.

The choice of programming language(s) for a project may entail a number of source code
restrictions that impact test and analysis.

Additional restrictions may be imposed in the form of programming standards such as the use
of type casts or pointer arithmetic in C and Other forms of restriction can apply to
architectural and detailed design.

Restrictions can be imposed as the property of serializability on the schedule of transactions
that happens serially in some order. This is done by using a particular locking scheme on the
program at design time.

Stateless component interfaces are an example of restriction applied at the architectural level.
An interface is stateless if the service does not remember anything about previous requests.
One such stateless interface is the Hypertext Transport Protocol (HTTP) 1.0 of the World-
Wide-Web which made Web servers much simpler and easier to test.

1 /%% A trivial method with a potentially uninitialized variable.
2 * Maybe someCondition(0)is always true, and therefore k is
3 * always initialized before use ... but it's impossible, in

4 * general, to know for sure. Java rejects the method.

5*/

6 static void questionable() {

7intk;

8 for (int i=0; i < 10; ++i) {

9 if (someCondition(i)) {

10 k=0;

11 lelse {

12 k+=i;

13}

14}

15 System.out.println(k);

16}

17}

DEPT OF ISE 4

181562
SOFTWARE TESTING

Partition

Partition, often also known as "divide and conquer,” is a general engineering principle.
Dividing a complex problem into sub problems to be attacked and solved independently is
probably the most common human problem-solving strategy.

In Analysis and testing the partition principle is widely used and exploited.

Partitioning can be applied both at process and technique levels.

At the process level, we divide complex activities into sets of simple activities that can be
attacked independently. For example, testing is usually divided into unit, integration,
subsystem, and system testing. In this way, we can focus on different sources of faults at
different steps, and at each step, we can take advantage of the results of the former steps.
Many static analysis techniques divide the overall analysis into two subtasks,

Simplify the system to make the proof of the desired properties feasible

And then prove the property with respect to the simplified model.

Identify a finite number of classes of test cases either from specifications (functional testing)
or from program structure (structural testing) to execute.

Visibility

Visibility means the ability to measure progress or status against goals.

In software engineering, the visibility principle is in the form of process visibility, and project
schedule visibility.

Quality process visibility also applies to measuring achieved (or predicted) quality against
quality goals.

Visibility is closely related to observability, the ability to extract useful information from a
software artifact.

A variety of simple techniques can be used to improve observability as in the Internet
protocols like HTTP and SMTP (Simple Mail Transport Protocol, used by Internet mail
servers) are based on the exchange of simple textual commands. The choice of simple,
human-readable text rather than a more compact binary encoding has a small cost in
performance and a large payoff in observability.

A variant of observability through direct use of simple text encodings is providing readers

and writers to convert between other data structures and simple, human readable and editable
text.

DEPT OF ISE 5

181562
SOFTWARE TESTING

Feedback
Feedback is another classic engineering principle that applies to analysis and testing.

Feedback applies both to the process itself (process improvement) and to individual
techniques.

Systematic inspection derive its success from feedback.

Participants in inspection are guided by checklists, and checklists are revised and refined
based on experience.

New checklist items may be derived from root cause analysis, analyzing previously observed
failures to identify the initial errors that lead to them.

SUMMARY

The discipline of test and analysis is characterized by 6 main principles:

Sensitivity: better to fail every time than sometimes

Redundancy: making intentions explicit

Restriction: making the problem easier

Partition: divide and conquer

Visibility: making information accessible

Feedback: tuning the development process

They can be used to understand advantages and limits of different approaches and compare
different techniques.

The quality process

Quality process is a set of activities and responsibilities that focused primarily on ensuring
adequate dependability of the software product and concerned with project schedule or with
product usability.

Like other parts of an overall software process, the quality process provides a framework for
selecting and arranging activities aimed at a particular goal, while also considering
interactions and trade-offs with other important goals.

The quality process should be structured for, completeness: appropriate activities are planned
to detect each important class of faults.

Timeliness : faults are detected at a point of high leverage which means they are detected as
early as possible.

Cost-effectiveness: it is the constraints of completeness and timeliness. Cost must be
considered over the whole development cycle and product life, so the dominant factor is
usually the cost of repeating an activity through many change cycles.

Activities of quality process are considered as being in the domain of quality assurance or
quality improvement.

DEPT OF ISE 6

181562
SOFTWARE TESTING

Carryout quality activities at the earliest opportunity because a defect introduced in coding is
far cheaper to repair during unit test than later during integration or system test, and most
expensive if it is detected by a user of the fielded system.

3.2 PLANNING AND MONITORING:
Process visibility is a key factor in software quality processes.

Process visibility in software quality process emphasizes on progress against quality goals.
If one cannot gain confidence in the quality of the software system long before it reaches
final testing, the quality process has not achieved adequate visibility.

A well-designed quality process balances several activities across the whole development
process, selecting and arranging them to be as cost-effective as possible, and to improve early
visibility.

Planning and monitoring

Planning improves early visibility which motivates the use of “proxy” measures which means
the use of quantifiable attributes that are not identical to the properties wished to measure but
have the advantage of being measured earlier in development. Ex: the number of faults in
design or code is not a true measure of reliability, but we may count faults discovered in
design inspections as an early indicator of potential quality problems

Quality goals can be achieved only through careful planning of activities that are matched to
the identified objectives.

Planning is integral to the quality process.

The overall analysis and test strategy identifies company- or project-wide standards that must
be satisfied, procedures required, e.g., for obtaining quality certificates techniques and tools
that must be used documents that must be produced.

A complete analysis and test plan is a comprehensive description of the quality process that
includes several items:

objectives and scope of A&T activities

documents and other items that must be available:
items to be tested

features to be tested and not to be tested
analysis and test activities

staff involved in A&T

constraints

pass and fail criteria

schedule

deliverables

hardware and software requirements
risks and contingencies

DEPT OF ISE 7

181562
SOFTWARE TESTING

Quality goals
Quality process visibility includes distinction among dependability qualities.

Product qualities are the goals of software quality engineering , and process qualities are
mean to achieve those goals.

Software product qualities can be divided in to those that are directly visible to a client and
those that primarily affect the software development organization.

Reliability is directly visible to the client. Maintainability affects development organization ,
and indirectly affects client.

Properties that are directly visible to users of a software product, such as dependability,
latency, usability and throughput are called external properties.

Properties that are not directly visible to end users , such as maintainability, reusability and
traceability are called internal properties, even when their impact on the software
development and evolution processes may indirectly affect users.

The external properties of software can be divided into dependability and usefulness.

Quality can be considered as fulfillment of required and desired properties as distinguished
from specified properties.

Critical tasks in software quality analysis is to make desired properties explicit.

Dependability properties

BRIEFLY DISCUSS THE DEPENDABILITY PROPERTIES IN PROCESS
FRAMEWORK. ?

Correctness:
A program or system is correct if it is consistent with its specification. A specification divides
all possible system behaviors into two classes, successes (or correct executions) and failures.

All of the possible behaviors of a correct system are successes.

A program cannot be mostly correct or somewhat . It is absolutely correct on all possible
behaviors, or else it is not correct.

It is very easy to achieve correctness, with respect to some (very bad) specification.

Achieving correctness with respect to a useful specification, on the other hand, is seldom
practical for nontrivial systems.

DEPT OF ISE 8

181562
SOFTWARE TESTING

Reliability:
It is a statistical approximation to correctness which means 100% reliable = correctness.
It is the likelihood of correct function for some “"unit" of behavior.

It is relative to a specification and usage profile. The same program can be more or less
reliable depending on how it is used.

Availability:

Particular measures of reliability can be used for different units of execution and different
ways of counting success and failure.

Availability is an appropriate measure when a failure has some duration in time.

The availability of the router is the time in which the system is "up™ (providing normal
service) as a fraction of total time. Between the initial failure of a network router and its

restoration we say the router is "down" or "unavailable.” Thus, a network router that averages
1 hour of down time in each 24-hour period would have an availability of 23/24, or 95.8%.

Mean time between failures (MTBF) is yet another measure of reliability, also using time as
the unit of execution.

The hypothetical network switch that typically fails once in a 24-hour period and takes about
an hour to recover has a mean time between failures of 23 hours.

Note that availability does not distinguish between two failures of 30 minutes each and one
failure lasting an hour, while MTBF does.

The definitions of correctness and reliability have (at least) two major weaknesses.

First, since the success or failure of an execution is relative to a specification, they are only as
strong as the specification.

Second, they make no distinction between a failure that is a minor annoyance and a failure
that results in catastrophe.

These are simplifying assumptions that we accept for the sake of precision.

Safety and hazards:

Software safety is an extension of the well-established field of system safety into software.
Safety is concerned with preventing certain undesirable behaviors, called hazards.

Software safety is typically a concern in "critical” systems such as avionics and medical

systems, but the basic principles apply to any system in which undesirable behaviors can be
distinguished from failure.

DEPT OF ISE 9

181562
SOFTWARE TESTING

For example, the developers of a word processor might consider safety with respect to the
hazard of file corruption separately from reliability with respect to the complete functional
requirements for the word processor.

Safety is meaningless without a specification of hazards to be prevented, and in practice the
first step of safety analysis is always finding and classifying hazards.

Typically, hazards are associated with some system in which the software is embedded (e.g.,
the medical device), rather than the software alone.

Safety is that it is concerned only with these hazards, and not with other aspects of correct
functioning.

The dead-man switch of the mower , does not contribute in any way to cutting grass; its sole
purpose is to prevent the operator from reaching into the mower blades while the engine runs
by acting as the interlock device.

Safety is best considered as a quality distinct from correctness and reliability for two reasons.
First, by focusing on a few hazards and ignoring other functionality, a separate safety
specification can be much simpler than a complete system specification, and therefore easier
to verify.

Second, even if the safety specification were redundant with regard to the full system
specification, it is important because (by definition) we regard avoidance of hazards as more
crucial than satisfying other parts of the system specification.

Robustness:

Software that fails under some conditions, which violate the premises of its design, may still
be "correct" in the strict sense, yet the manner in which the software fails is important.

It is acceptable that the word processor fails to write the new file that does not fit on disk, but
unacceptable to also corrupt the previous version of the file in the attempt.

It is acceptable for the database system to cease to function when the power is cut, but
unacceptable for it to leave the database in a corrupt state.

It is usually preferable for the Web system to turn away some arriving users rather than
becoming too slow for all, or crashing.

Software that gracefully degrades or fails "softly" outside its normal operating parameters is
robust.

Software safety is a kind of robustness, that concerns not only avoidance of hazards (e.g.,
data corruption) but also partial functionality under unusual situations.

Robustness, like safety, begins with explicit consideration of unusual and undesirable

situations, and should include augmenting software specifications with appropriate responses
to undesirable events.

DEPT OF ISE 10

181562
SOFTWARE TESTING

| Rebable but Nnot cormroct Robust bt not safe

{ fallures can occur raraly catastrophic fallures can occur |

E——

i Reliable (<4 - Safe :. Robust

Comrect bt not salo Safe but Nnot cormect
the spechcation is inadoguEasta annoying faldures can occu

Relation among dependability properties

Analysis Testing
ILLUSTRATE THE PURPOSE OF SOFTWARE ANALYSIS?

Analysis techniques that do not involve actual execution of program source code play a
prominent role in overall software quality processes.

Manual inspection techniques and automated analyses can be applied at any development
stage.

Inspection:-

Applied to any document including requirements documents, architectural and design
documents, test plans, test cases and program source code.

Inspection also benefits by spreading good practices and shared standards of quality.

Inspection used primarily where other techniques are inapplicable and where other techniques
do not provide sufficient coverage

Inspection on the other hand takes a considerable amount of time. Moreover re-inspecting a
changed component can be as expensive as the initial inspection.

Automated static analyses:-

It is more limited in applicability, but used when available because substituting machine
cycles for human effort is cost-effective. Due to the substantial effort for structuring a model
for analysis, the cost advantage is diminished.

But their application has the ability to check for particular classes of faults for which
checking with other technique are very difficult or expensive.

Sometimes the best aspects of manual inspection and automated static analysis can be
obtained by carefully decomposing properties to be checked.

For example, consider property of special term in the application domain appear in a glossary
of terms.

DEPT OF ISE 11

181562
SOFTWARE TESTING

This property is not directly agreeable to an automated static analysis, since current tools
cannot distinguish meaningful domain terms from other terms that have their ordinary
meanings.

The property can be checked with manual inspection, but the process is tedious, expensive,
and error-prone.

Hence a hybrid approach can be applied if each domain term is marked in the text. Manually
checking that domain terms are marked is much faster and therefore less expensive.

3.6 Testing:
ILLUSTRATE THE PURPOSE OF SOFTWARE TEST?

Despite the attractiveness of automated static analyses, manual inspections, dynamic testing
remains a dominant technique.

Dynamic testing is divided into several distinct activities that may occur at different points in
a project.

Tests are executed when the corresponding code is available, but testing activities start
earlier, as soon as the artifacts required for designing test case specifications are available.

Thus, acceptance and system test suites should be generated before integration and unit test
suites.

By early test design tests are specified independently from code.

Moreover, test cases may highlight inconsistencies and incompleteness in the corresponding
software specifications.

Early design of test cases also allows for early repair of software specifications, preventing
specification faults from propagating to later stages in development.

Finally, programmers may use test cases to illustrate and clarify the software specifications,
especially for errors and unexpected conditions.

Just as the "earlier is better" rule dictates using inspection to reveal flaws in requirements and
design before they are propagated to program code, the same rule dictates module testing to
uncover as many program faults as possible before they are incorporated in larger subsystems
of the product.

Improving the process
Improving the Process:
Confronted by similar problems, developers tend to make the same kinds of errors over and

over, and consequently the same kinds of software faults are often encountered project after
project.

DEPT OF ISE 12

181562
SOFTWARE TESTING

The quality process and the software development process can be improved by gathering,
analyzing, and acting on data regarding faults and failures.

The goal of quality process improvement is to find cost-effective countermeasures for classes
of faults that are expensive because they occur frequently, or failures they cause are
expensive, or expensive to repair.

Countermeasures may be prevention or detection or quality assurance activities or aspects of
software development aspects.

The first part of a process improvement is gathering sufficiently complete and accurate raw
data about faults and failures.

A main obstacle is that data gathered in one project goes mainly to benefit other projects in
the future and may seem to have little direct benefit for the current project.

It is therefore helpful to integrate data collection with normal development activities, such as
version and configuration control, project management, and bug tracking.

Raw data on faults and failures must be aggregated into categories and prioritized. Faults may
be categorized with similar causes and possible remedies.

The analysis step consists of tracing several instances of an observed fault or failure back to
the human error from which it resulted, or even further to the factors that led to that human
error.

The analysis also involves the reasons the fault was not detected and eliminated earlier. This
process is known as "root cause analysis”.

For the buffer overflow errors in network applications, the countermeasure could involve
differences in programming methods or improvements to quality assurance activities or
sometimes changes in management practices.

Organizational factors.
WHY ORGANIZATIONAL FACTORS ARE NEEDED IN PROCESS FRAMEWORK. ?

The quality process includes a wide variety of activities that require specific skills and
attitudes and may be performed by quality specialists or by software developers.

Planning the quality process involves not only resource management but also identification
and allocation of responsibilities.

A poor allocation of responsibilities can lead to major problems in which pursuit of
individual goals conflicts with overall project success.

For example, splitting responsibilities of development and quality-control between a
development and a quality team, and rewarding may produce undesired results.

DEPT OF ISE 13

181562

SOFTWARE TESTING

The development team, not rewarded to produce high-quality software, may attempt to
maximize productivity to the detriment of quality.

Combining development and quality control responsibilities in one undifferentiated team,
while avoiding the perverse incentive of divided responsibilities, can also have unintended
effects: As deadlines near, resources may be shifted from quality assurance to coding, at the
expense of product quality.

Conflicting considerations support both the separation of roles and the mobility of people and
roles.

At Chipmunk, responsibility for delivery of the new Web presence is distributed among a
development team and a quality assurance team. The quality assurance team is divided into,

The analysis and testing group- Responsible for the dependability of the system
The usability testing group- Responsible for usability.

Responsibility for security issues is assigned to the infrastructure development group, which
relies partly on external consultants for final tests based on external attack attempts.

At Chipmunk, specifications, design, and code are inspected by mixed teams,
scaffolding and oracles are designed by analysts and developers

integration, system, acceptance, and regression tests are assigned to the test and analysis
team.

unit tests are generated and executed by the developers
coverage is checked by the testing team before starting integration and system testing

A specialist has been hired for analyzing faults and improving the process. The process
improvement specialist works incrementally while developing the system and proposes
improvements at each release.

Planning and Monitoring the Process:

Learning objectives Learning objectives

« Understand the purposes of planning and monitoring

« Distinguish strategies from plans, and understand their relation

+ Understand the role of risks in planning

« Understand the potential role of tools in monitoring a quality process
« Understand team organization as an integral part of planning

Planning:

— Scheduling activities (what steps? in what order?)
— Allocating resources (who will do it?)

— Devising unambiguous milestones for monitoring

DEPT OF ISE

14

SOFTWARE TESTING

« Monitoring: Judging progress against the plan

— How are we doing?

* A good plan must have visibility :

— Ability to monitor each step, and to make objective judgments of progress
— Counter wishful thinking and denial

Quality and process,

Quality process: Set of activities and responsibilities
— focused primarily on ensuring adequate dependability

— concerned with

project schedule or with product usability

« A framework for

— selecting and arranging activities

— considering interactions and trade-offs
* Follows the overall software process in which it is embedded

— Example: waterfall
implementation and finishes before integration
— Example: XP and agile methods —> emphasis on unit testing and rapid iteration for
acceptance testing by customers

CLEANROON PROCESS MODEL

Customer Requirements

software process —> “V model”:

Formal Design
Correctness Verification

istical test case
generation

gl Specification
Function Usage
>
. — Incremental -
Functional specifications Development Usage specifications
Planning
Source code v Test cases
—>| Statistical testing
Interfa%imes

Improvement Feedback

i j;h“" : “F‘

The philosophy of the “cleanroom” in hardware fabrication technologies:

Quality Certification Model ‘

MTTF statistics

181562

unit testing starts with

It is cost-effective and time-effective to establish a fabrication approach that precludes the
introduction of product defects.

Rather than fabricating a product and then working to remove defects, the cleanroom
approach demands the discipline required to eliminate defects in specification and design and
then fabricate in a “clean” manner.

DEPT OF ISE

15

181562

SOFTWARE TESTING

ncrement =1
Bow Sructure Fermnad Cormectress Code L s
Requremerts [| Pecfiodion [[] Design [l \erfiotion |} iepection 351';‘1.“' Carfification
Gathenng Testing
Test Mamirg
E-mw increnent =2
Bt Stnuctune Formal Coor ectress Ciosde e e
Reqirernerte || | Specificstion] Desin I Verification I| repedion E*Litrd Carffication
Gaheng Testirg
Test Flarmirg I
p—
IIeied =%
Box Stnchre Forra Cometress Cock e))
Fsqarerint ; Speoification ||| Design Ill ‘erFication I| Irapectian a“':.":d Cerificalicn
Gathering Testrg
Test Flannirg
|

Increment Planning —adopts the incremental strategy

Requirements Gathering —defines a description of customer level requirements (for each
increment)

Box Structure Specification —describes the functional specification

Formal Design —specifications (called “black boxes”) are iteratively refined (with an
increment) to become analogous to architectural and procedural designs (called “state boxes”
and “clear boxes,” respectively).

Correctness Verification —verification begins with the highest level box structure
(specification) and moves toward design detail and code using a set of “correctness
questions.” If these do not demonstrate that the specification is correct, more formal
(mathematical) methods for verification are used.

Code Generation, Inspection and Verification —the box structure specifications, represented
in a specialized language, are transmitted into the appropriate programming language.

Statistical Test Planning —a suite of test cases that exercise of “probability distribution
[A probability distribution is a list of all of the possible outcomes of a random variable
along with their corresponding probability values.]” of usage are planned and designed

Statistical Usage Testing —execute a series of tests derived from a statistical sample (the
probability distribution noted above) of all possible program executions by all users from a
targeted population

Certification —once verification, inspection and usage testing have been completed (and all
errors are corrected) the increment is certified as ready for integration.

DEPT OF ISE

16

181S62
SOFTWARE TESTING

Box Structure Spectfication

DEPT OF ISE 17

181562
SOFTWARE TESTING

Box Structures

State
= T -
' i
s—| fs'+R |*R | i
I
3 ——*l- black bowg Ll »p
black box
state box
State
Ir—‘ T =
| |
| |
| tha |
s Y[, @ }_L |+ R
tha
_ clear box

A) Black-Box Specification

A Dblack-box specification describes an abstraction, stimuli, and response using the notation
shown in . The function f is applied to a sequence, S*, of inputs (stimuli), S, and transforms
them into an output (response), R. For simple software components, f may be a mathematical
function, but in general, f is described using natural language (or a formal specification
language).

B) State-Box Specification

The state box is “a simple generalization of a state machine” [MIL88]. As processing occurs,
a system responds to events (stimuli) by making a transition from the current state to some
new state.

As the transition is made, an action may occur. The state box uses a data abstraction to
determine the transition to the next state and the action (response) that will occur as a
consequence of the transition. the state box incorporates a black box.

C) Clear-Box Specification

The clear-box specification is closely aligned with procedural design and structured
programming. In essence, the sub function g within the state box is replaced by the structured

DEPT OF ISE 18

181562
SOFTWARE TESTING

programming constructs that implement g. These, in turn, can be refined into lower-level
clear boxes as stepwise refinement proceeds. It is important to note that the procedural
specification described in the clear-box hierarchy can be proved to be correct.

Example Process: Software Reliability
Engineering Testing (SRET)

Define “Necessary”
Reliability

Development

Operational Profiles

Prepare
for Testing
Interpret Failure
» Execute Data
tests
Requirements and Design and System Test and
Architecture Implementation Acceptance Test

What is Software Reliability Engineering (SRE)? The quantitative study of the operational
behavior of software-based systems with respect to user requirements concerning reliability.
SRE has been adopted either as standard or as best practice by more than 50 organizations in
their software projects including AT&T, Lucent, IBM, NASA and Microsoft, plus many
others worldwide. This presentation will provide an introduction to software reliability
engineering

Why is SRE Important? There are several key reasons a reliability engineering program
should be implemented: So that it can be determined how satisfactorily products are
functioning. Avoid over-designing — products could cost more than necessary and lower
profit. If more features are added to meet customer demand then reliability should be
monitored to ensure that defects are not designed in, which could impact reliability. If a
customer’s product is not designed well, with reliability and quality in mind, then they may
well turn to a COMPETITOR! Having a software reliability engineering process can make
organizations more competitive as customers will always expect reliable software that is
better and cheaper

Why is SRE Beneficial? For Engineers: Managing customer demands: Enables software to be
produced that is more reliable; built faster and cheaper. Makes engineers more successful in
meeting customer demands. In turn this avoids conflicts — risk, pressure, schedule,
functionality, cost etc. For the organization: Improves competitiveness. Reduces development
costs. Provides customers with quantitative reliability metrics. Places less emphasis on tools
and a greater emphasis on “designing in reliability.” Products can be developed that are

DEPT OF ISE 19

181562
SOFTWARE TESTING

delivered to the customer at the right time, at an acceptable cost, and with satisfactory
reliability.

Common SRE Challenges Data is collected during test phases, so if problems are discovered
it is too late for fundamental design changes to be made. Failure data collected during in-
house testing may be limited, and may not represent failures that would be uncovered in the
product’s actual operational environment. Reliability metrics obtained from restricted testing
data may result in reliability metrics being inaccurate. There are many possible models that
can be used to predict the reliability of the software, which can be very confusing. Even if the
correct model is selected there may be no way of validating it due to having insufficient field
data.

Fault Lifecycle Techniques Prevent faults from being inserted. Avoids faults being designed
into the software when it is being constructed. Remove faults that have been inserted. Detect
and eliminate faults that have been inserted through inspection and test. Design the software
so that it is fault tolerant. Provide redundant services so that the software continues to work
even though faults have occurred or are occurring. Forecast faults and/or failures. Evaluate
the code and estimate how many faults are present and the occurrences and consequences of
software failures.

Preventing Faults From Being Inserted Initial approach for reliable software A fault that is
never created does not cost anything to fix. This should be the ultimate objective of software
engineering. This requires: A formal requirement specification always being available that
has been thoroughly reviewed and agreed to. Formal inspection and test methods being
implemented and used. Early interaction with end-users (field trials) and requirement
refinement if necessary. The correct analysis tools and disciplined tool use. Formal
programming principles and environments that are enforced. Systematic techniques for
software reuse. Formal software engineering processes and tools, if applied successfully, can
be very effective in preventing faults (but is no guarantee!) However, software reuse without
proper verification can result in disappointment.

Removing Faults When faults are injected into the software, the next method that can be used

is fault removal. Approaches: Software inspection. Software testing. Both have become
standard industry practices. This presentation will focus closely on these.

DEPT OF ISE 20

181562
SOFTWARE TESTING

SRE Process Overview

This slide shows a general SRE — Difiia OneraliaAal
process flow that has six major Objective Profile
components:

+ Determine the reliability Target.

+ Define a software operational Profile. Continue
Testing

+ Conduct code inspection.

+ Perform software testing.

Reliability
Objectives
met?

+ Conduct reliability modelling to measure
the software reliability — continuously
improve the software reliability until the
target is reached.

Software Release Acceptable
from Reliability Perspective

+ Field reliability validation.

Validate Field Reliability

Software Reliability Engineering Testing

(SRET)

Activities and
responsibilities
focused on quality

Define “Necessary”
Reliability

Development
Operational Pro& ‘

Prepare
Integrated into an for Testing
overall development T — ‘

process | _Interpret Failure
» Execute — Data
tests T

Requirements and | Design and | System Test and

Architecture Implementation Acceptance Test

DEPT OF ISE 21

181562
SOFTWARE TESTING

SRE Terms

Q@ Reliability objective: The product's reliability goal from the customer's viewpoint.

@ Operational profile: A set of system operational scenarios with their associated
probability of occurrence.

This encourages testers to select test cases according to the system’s likely operational
usage.

@ Reliability modeling: This is an essential element of SRE that determines whether the
product meets its reliability objective.

One or more models can be used to calculate, from failure data collected during system
testing, various estimates of a product's reliability as a function of test time. It can also provide
the following information:

+ Product reliability at the end of various test phases.

+ Amount of additional test time required to reach the product’s reliability objective.
+ The reliability growth that is still required (ratio of initial to target reliability).

+ Prediction of field reliability.

@ Field Reliability Validation: Determination of whether the actual field reliability meets
the customer’s target.

Software Reliability Objectives
@ Reliability target(s) should be defined and used to:

+ Manage customer expectations.

+ Determine how reliability growth can and will be tracked throughout
the program.

+ Determine availability targets. Software reliability is commonly
expressed as an availability metric though rather than as a
probabilistic reliability metric. This is defined as:

Software uptime

Availability =
Software uptime + downtime

@ A data collection and analysis methodology also has to be defined:
+ How inspections will be conducted.
+ How failure data will be collected.
+ How the data will be analyzed, i.e., what model will be used?

+ This helps project managers track metrics and plan resource.

DEPT OF ISE 22

181562
SOFTWARE TESTING

Managing the Software Reliability Objective

@ Defects are often inserted from the beginning of project.

This is usually related to the intensity of the effort, i.e. o..,c..m.,m Defect Discovery
the number of engineers working on the program, the '"“°""‘“’"
project schedule and the various design decisions that

’\
are made etc. / e
@ Defects are most often detected and \ \
addressed at a later date than the original — e
design effort.

Defects

+ Test efforts are relied on to discover most defects, this lag can have a negative impact on
the program.

+ This can be mitigated against by using code inspection, but some testing will still be
necessary. Code inspections should be conducted to IEEE 1028.

+ There is still a lag though between defect insertion and correction, which can have a
negative impact on the program.

Q@ The eventual defect rate represents the reliability target, and as defects are
discovered and addressed the software reliability is increased, or grown —
this is termed ‘Reliability Growth Management”.

Example Process: Extreme Programming
(XP)

Next versi Incremental
///_amn_—,——- Release
Review,
Refine, A
prlontlze\ / Passed all unit tests pass
[- I
Generate User Create Unit Pr raar:mrmin Passed all Acceptance
Stories | Tests = g unittests 7| Testing
+ unit testing

Failed acceptance tesl///

Create
Acceptance
Tests

Back in the 1990s, the rise of the Internet necessitated a change in software development. If a
company’s success depended on the speed at which the company could grow and bring
products to market, businesses needed to dramatically reduce the software development life
cycle.

It was in this environment that Kent Beck created extreme programming (XP), an agile
project management methodology that supports frequent releases in short development cycles
to improve software quality and allow developers to respond to changing customer
requirements.

DEPT OF ISE 23

181562
SOFTWARE TESTING

Although you may recognize some of these practices and values from other project
management methodologies, XP takes these practices to “extreme” levels, as the
methodology’s name suggests. In an interview with Informit, Kent explains:

“The first time I was asked to lead a team, I asked them to do a little bit of the things |
thought were sensible, like testing and reviews. The second time there was a lot more on the
line. | ... asked the team to crank up all the knobs to 10 on the things | thought were essential
and leave out everything else.”

If you and your team need to quickly release and respond to customer requests, take a look at
the values and rules of extreme programming—it could be a perfect fit.

Values of extreme programming methodology
XP is more than just a series of steps to manage projects—it follows a set of values that will
help your team work faster and collaborate more effectively.

Simplicity
Teams accomplish what has been asked for and nothing more. XP breaks down each step of a
major process into smaller, achievable goals for team members to accomplish.

Streamlined communication

Teams work together on every part of the project, from gathering requirements to
implementing code, and participate in daily standup meetings to keep all team members
updated. Any concerns or problems are addressed immediately.

Consistent, constructive feedback

In XP, teams adapt their process to the project and customer needs, not the other way around.
The team should demonstrate their software early and often so they can gather feedback from
the customer and make the necessary changes.

Respect

Extreme programming encourages an “all for one and one for all” mentality. Each person on
the team, regardless of hierarchy, is respected for their contributions. The team respects the
opinions of the customers and vice versa.

Courage

Team members adapt to changes as they arise and take responsibility for their work. They tell
the truth about their progress—there are no “white lies” or excuses for failure to make people
feel better. There’s no reason to fear because no one ever works alone.

Rules of extreme programming methodology

Don Wells published the first XP rules in 1999 to counter claims that extreme programming
doesn’t support activities that are necessary to software development, such as planning,
managing, and designing. From planning to testing the software, follow these basic steps for
each iteration.

DEPT OF ISE 24

181562

SOFTWARE TESTING

Planning and Feedback Loops

Release Plan

months\

Iteration Plan
weeks

Acceptance Test
days

Standup Meeting

one day

Pair Negotiation
hours

Unit Test

minuty

Pair Programming

y
Code

Extreme Programming Feedback/Planning Loops (Click on image to modify online)

1. Planning

This stage is where the UX magic happens. Rather than a lengthy requirements document, the
customer writes user stories, which define the functionality the customer would like to see,
along with the business value and priority of each of those features. User stories don’t need to
be exhaustive or overly technical—they only need to provide enough detail to help the team
determine how long it’ll take to implement those features.

With Lucidchart, customers can create a basic flowchart and easily record and share the
desired functionality.

From there, the team creates a release schedule and divides the project into iterations (one to
three weeks long). Project managers might want to create a timeline or a simplified Gantt
chart to share the schedule with the team.

2. Managing

At this stage, the project manager will set the team up to succeed in this methodology.
Everyone needs to work collaboratively and effectively communicate to avoid any slipups.
This stage involves:

Creating an open workspace for your team

Setting a sustainable pace (i.e. determining the right length for iterations)
Scheduling a daily standup meeting

Measuring project velocity (the amount of work getting done on your project)
Reassigning work to avoid bottlenecks or knowledge loss

Changing the rules if XP isn’t working perfectly for the team

DEPT OF ISE

25

181562
SOFTWARE TESTING

3. Designing

This rule goes back to the value of simplicity: Start with the simplest design because it will
take less time to complete than the complex solution. Don’t add functionality early. Refactor
often to keep your code clean and concise. Create spike solutions to explore solutions to
potential problems before they put your team behind.

Kent Beck and Ward Cunningham also created class-responsibility-collaboration (CRC)
cards to use as part of the XP methodology. These cards allow the entire project team to
design the system and see how objects interact. If you’d like to try this brainstorming tool for
yourself, get started with our Lucidchart template.

Template Example

Class Name

(collection of similar objects) Customer

Responsibilities Collaborators Places order Order
(something that the class (another class that Knows name
knows or does) this class interacts Knows address
with)

Knows customer #
Knows order history

4. Coding

Then the time finally comes to implement code. XP practices collective code ownership:
Everyone reviews code and any developer can add functionality, fix bugs, or refactor. For
collective code ownership to work, the team should:

Choose a system metaphor (standardized naming scheme).

Practice pair programming. Team members work in pairs, at a single computer, to create code
and send it into production. Only one pair integrates code at a time.

Integrate and commit code into the repository every few hours.

The customer should be available, preferably on site, during this entire process so they can
answer questions and establish requirements.

5. Testing
The team performs unit tests and fixes bugs before the code can be released. They also run
acceptance tests frequently.

When to use extreme programming
Still unsure whether XP will fit your team’s needs, even after reading its rules and values?
Extreme programming can work well for teams that:

Expect their system’s functionality to change every few months.

Experience constantly changing requirements or work with customers who aren’t sure what
they want the system to do.

Want to mitigate project risk, especially around tight deadlines.

Include a small number of programmers (between 2 and 12 is preferable).

DEPT OF ISE 26

181562
SOFTWARE TESTING

Are able to work closely with customers.
Are able to create automated unit and functional tests.

If collaboration and continuous development are priorities for your team, extreme
programming might be worth a try. Because this highly adaptable model requires ongoing
feedback from customers, anticipates errors along the way, and requires developers to work
together, XP not only ensures a health product release but has also unintentionally improved
productivity for development teams everywhere.

Overall Organization of a Quality Process

« Key principle of quality planning — the cost of detecting and repairing a fault increases as a
function of time between committing an error and detecting the resultant faults

« therefore ... — an efficient quality plan includes matched sets of intermediate validation and
verification activities that detect most faults within a short time of their introduction

e and ... — V&YV steps depend on the intermediate work products and on their anticipated
defects

Verification Steps for Intermediate Artifacts

« Internal consistency checks — compliance with structuring rules that define “well-formed”
artifacts of that type — a point of leverage: define syntactic and semantic rules thoroughly and
precisely enough that many common errors result in detectable violations

« External consistency checks — consistenc y with related artifacts — Often: conformance to a
“prior” or “higher-level” specification

 Generation of correctness conjectures — Correctness conjectures: lay the groundwork for
external consistency checks of other work products Often: motivate refinement of the current
product

Strategies vs Plans

Strategy Plan

Scope Organization Project

Structure Organization structure, |Standard structure

and content |experience and policy |prescribed in

based on over several projects strategy

Evolves Slowly, with Quickly, adapting to
organization and policy [project needs
changes

Test and analysis strategies and plans,

Test and Analysis Strategy Test and Analysis Strategy
« Lessons of past experience — an organizational asset built and refined over time

DEPT OF ISE 27

181562
SOFTWARE TESTING

» Body of explicit knowledge — more valuable than islands of individual competence —
amenable to improvement — reduces vulnerability to organizational change (e.g., loss of key
individuals)

 Essential for — avoiding recurring errors — maintaining consistency of the process —
increasing development efficiency

Considerations in Fitting a Strategy to an Organization

« Structure and size — example
« Distinct quality groups in large organizations, overlapping of roles in smaller organizations
* Greater reliance on documents in large than small organizations
* Overall process — example

- Cleanroom requires statistical testing and forbids unit testing — fits with tight, formal
specs and emphasis on reliability

- XP prescribes “test first” and pair programming — fits with fluid specifications and
rapid evolution
* Application domain — example
» Safety critical domains may impose particular quality objectives and require documentation
for certification

Elements of a Strategy

« Common quality requirements that apply to all or most products — unambiguous definition
and measures

« Set of documents normally produced during the quality process — contents and relationships
« Activities prescribed by the overall process — standard tools and practices

« Guidelines for project staffing and assignment of roles and responsibilities

Test and Analysis Plan Test and Analysis Plan answer the following questions:

» What quality activities will be carried out?

« What are the dependencies among the quality activities and between quality and other
development activities?

» What resources are needed and how will they be allocated? « How will both the process and
the product be monitored?

Main Elements of a Plan

« Items and features to be verified — Scope and target of the plan

« Activities and resources — Constraints imposed by resources on activities
» Approaches to be followed — Methods and tools

» Criteria for evaluating results

Quality Goals Quality Goals

» Expressed as properties satisfied by the product — must include metrics to be monitored
during the project — example: before entering acceptance testing, the product must pass
comprehensive system testing with no critical or severe failures — not all details are available
in the early stages of development

« Initial plan — based on incomplete information — incrementally refined

DEPT OF ISE 28

181562
SOFTWARE TESTING

Task Schedule Task Schedule

« Initially based on — quality strategy — past experience

« Breaks large tasks into subtasks — refine as process advances

* Includes dependencies — among quality activities — between quality and development
activities * Guidelines and objectives: — schedule activities for steady effort and continuous
progress and evaluation without delaying development activities — schedule activities as early
as possible — increase process visibility (how do we know we’re on track?)

Sample Schedule

1st quarter 2nd quarter 3rd quarter

|
| Al L1l TTTTTTIPTTTITTTPTTTPTTITITTT]
e —

] Task Name

Development framework
Requirements specifications T]

1
4
3| Architectural design I]
4| Detailed cesign of shogping aEessssssss——" |
facility subsys.
5|) I
administrative biz logic
6| Shopping fac code and I

integration (incl unit test)
- fSay::r-n: and stabilize shopping - = m
B | fmn b logie et and —

integration (including unit tesf) I
Sync and stabilize
administrative biz logic -]
10 | Design inspection
Inspection of requirements
" specs. -

Inspection of archilectural

design -

Inspection of det Design of
shop. facilities

Inspection of detailed design
of admin logic

15 [Code inspection

Inspection of shop. Fun. Core
code and unit tests
Inspection of admin. Biz Log.
Code code and unit tests

[
-
I
I
18 | Design tests W —
]
I
I
L]
 eeetE—————SEE——
)

19 Design acceptance tests

20 Design system lests

Design shop fun subsystem
integration test

Design admin bix log
subsystem integration tests

23 | Test execution

24 Exec integration tests

25 Exec system tests

26 Exec acceptance tests [|

Schedule Risk Schedule Risk

« critical path = chain of activities that must be completed in sequence and that have
maximum overall duration

—Schedule critical tasks and tasks that depend on critical tasks as early as possible to

* provide schedule slack

* prevent delay in starting critical tasks

« critical dependence = task on a critical path scheduled immediately after some other task on
the critical path

— May occur with tasks outside the quality plan (part of the project plan)

DEPT OF ISE 29

181562
SOFTWARE TESTING

— Reduce critical dependences by decomposing tasks on critical path, factoring out subtasks
that can be performed earlier

Reducing the Impact of Critical Paths

Task name January Febrary March April May
CRITICAL SCHEDULE
Project start ﬁ

Analysis and design h

Code and integration
Design and execute

subsystem tests

Design and execute

system tests

Produce user
documentation

Product delivery "

Task name January Febrary March April May

UNLIMITED RESOURCES

Project start w

Analysis and design

Code and integration

Design subsystem tests

Design system tests

Produce user

F[[[

documentation

Execute subsystem

tests ﬁ

Execute system tests #

Product delivery n

DEPT OF ISE 30

181562
SOFTWARE TESTING

Task name January Febrary March April May

LIMITED RESOURCES

Project start H

Analysis and design _\
Code and integration %
Design subsystem tests w\ \

Design system tests l* \
Produce user

documentation

Execute subsystem

tests

Execute system tests L

Product delivery ™
D e] | Do 2006 | Jan 2007 | Feb 2007 | Mar 2007 Apr 2007

sk Marrre
L 1 1 I 1 1 [[[1 [1 [[11 |

1 |CRITICAL SCHEDULE A iy
2 FProject start K

3 Analysis and design L“__:I

= Code and integration -—-_E:l

5 Design and execute

subsystem tests —l

o | Ormenamioeeue - e—
7| et - e—

a8 FProduct delivery o
9 [UNLIMITED RESOURCES A d
10 Project start j
11 Analysis and design Lb__:
12 Code and integration =
13 Dasign subsystem tests -]
14 Design system tests -
15| Gocumentation - —
18 Execute subsystem tests -:-?_
17 Execute system lests -
18 Product delivery L
19 | LIMITED RESOURCES A |
20 Project start]
21 Analysis and design L T 1
22| Code and integration If#—
23 Design subsystem tests L —— |
24 Design system tests b I
25| Gocumoniston - —
26 Execute subystem tests '-b--_-l
27 Execule system lests L-m
28 Product delivery o

Risk planning,

Risks cannot be eliminated but they can be Risks cannot be eliminated, but they can be
assessed, controlled, and monitored

« Generic management risk

— personnel

DEPT OF ISE 31

SOFTWARE TESTING

— technology
— schedule

* Quality risk
— development
— execution

— requirements

Example Risks

e Loss of a staff
member

« Staff member
under-qualified for
task

SAFTWARF TFCTINR

181562

Personnel

Control Strategies

cross training to avoid over-
dependence on individuals

continuous education
identification of skills gaps
early in project
competitive compensation

and promotion policies and
rewarding work

including training time in
project schedule

Technology

Example Risks

« High fault rate due
to unfamiliar COTS
component
interface

« Test and analysis
automation tools do
not meet
expectations

TWARE TESTING
AAAAAAAA

DEPT OF ISE

Control Strategies

Anticipate and schedule extra
time for testing unfamiliar
interfaces.

Invest training time for COTS
components and for training
with new tools

Monitor, document, and
publicize common errors and
correct idioms.

Introduce new tools in lower-
risk pilot projects or
prototyping exercises

32

SOFTWARE TESTING

181562

Schedule

Example Risks

 Inadequate unit .
testing leads to
unanticipated
expense and delays
in integration
testing

o Difficulty of
scheduling meetings
makes inspection a
bottleneck in
development

Control Strategies

Track and reward quality unit
testing as evidenced by low
fault densities in integration

Set aside times in a weekly
schedule in which inspections
take precedence over other
meetings and work

Try distributed and
asynchronous inspection
techniques, with a lower
frequency of face-to-face
inspection meetings

Development

Example Risks

« Poor quality .
software delivered
to testing group

 Inadequate unit
test and analysis
before committing
to the code base

DEPT OF ISE

Control Strategies

Provide early warning and
feedback

Schedule inspection of design,
code and test suites

e Connect development and

inspection to the reward
system

Increase training through
inspection

Require coverage or other
criteria at unit test level

33

181562
SOFTWARE TESTING

Test Execution

Example Risks Control Strategies
« Execution costs higher e Minimize parts that
than planned require full system to be
« Scarce resources executed

available for testing

Inspect architecture to
assess and improve

testability
 Increase intermediate
feedback
e Invest in scaffolding
Requirements
Example Risk Control Strategies
» High assurance « Compare planned testing
critical requirements effort with former projects
increase expense with similar criticality level
and uncertainty to avoid underestimating

testing effort
e Balance test and analysis

« Isolate critical parts,
concerns and properties

Contingency Plan

« Part of the initial plan

— What could go wrong? How will we know, and how will we recover?
* Evolves with the plan

* Derives from risk analysis

— Essential to consider risks explicitly and in detail

* Defines actions in response to bad news

— Plan B at the ready (the sooner, the better)

DEPT OF ISE 34

181562
SOFTWARE TESTING

Evolution of the Plan

Preliminary First Second Final
plan » release release . plan

N N N

h 4

Emergenc
y plan

~NL

monitoring the process,

Identify deviations from the quality plan as

early as possible and take corrective action

* Depends on a plan that is

— realistic

— well organized

— sufficiently detailed with clear, unambiguous milestones and criteria
* A process is visible to the extent that it can be effectively monitored

Evaluate Aggregated Data by Analogy

160
140 A

120 / \\

100 Total
80 // A~ \’\ -’-C(:':fical

[2)

=

= y RPN

8 / FooTN \ —a—Severe
60 ‘ 7 e ™ Moderate
40 - e " c

0 P T T T T T T T T T =
= 2 digs ™~ °

DEPT OF ISE 35

SOFTWARE TESTING

Process Improvement
Monitoring and improvement within a project or across multiple projects:

Orthogonal Defect Classification (ODC)
&Root Cause Analysis (RCA)

Orthogonal Defect Classification (ODC)

« Accurate classification schema

— for very large projects

— to distill an unmanageable amount of detailed information
» Two main steps

— Fault classification

* when faults are detected

* when faults are fixed

— Fault analysis

ODC Fault Classification ODC Fault Classification
When faults are detected

« activity executed when the fault is revealed

« trigger that exposed the fault

« impact of the fault on the customer

When faults are fixed

* Target: entity fixed to remove the fault

* Type: type of the fault

« Source: origin of the faulty modules (in-house, library, imported, outsourced)
* Age of the faulty element (new, old, rewritten, refixed code)

ODC activities and triggers

« Review and Code Inspection » Functional (Black box) Test
Design Conformance: Coverage
- Logic/Flow Variation
Backward Compatibility Sequencing
Internal Document Interaction

Lateral Compatibility
Concurrency
Language Dependency
Side Effects

Rare Situation

e Structural (White Box) Test

DEPT OF ISE

Simple Path
Complex Path

System Test

Workload/Stress
Recovery/Exception
Startup/Restart
Hardware Configuration
Software Configuration
Blocked Test

181562

36

181562
SOFTWARE TESTING

ODC Classification of Triggers Listed by Activity

Design Review and Code Inspection

Design Conformance A discrepancy between the reviewed artifact and a prior-stage artifact
that serves as its specification.

Logic/Flow An algorithmic or logic flaw.

Backward Compatibility A difference between the current and earlier versions of an artifact
that could be perceived by the customer as failure.

Internal Document An internal inconsistency in the artifact (e.g., inconsistency between
code and comments).

Lateral Compatibility An incompatibility between the artifact and some other system or
module with which it should interoperate.

Concurrency A fault in interaction of concurrent processes or threads.

Language Dependency A violation of language-specific rules, standards, or best practices.
Side Effects A potential undesired interaction between the reviewed artifact and some other
part of the system

Rare Situation An inappropriate response to a situation that is not anticipated in the artifact.
(Error handling as specified in a prior artifact design conformance, not rare situation.)
Structural (White-Box) Test

Simple Path The fault is detected by a test case derived to cover a single program element.
Complex Path The fault is detected by a test case derived to cover a combination of program
elements.

Functional (Black-Box) Test

Coverage The fault is detected by a test case derived for testing a single procedure (e.g., C
function or Java method), without considering combination of values for possible parameters.
Variation The fault is detected by a test case derived to exercise a particular combination of
parameters for a single procedure.

Sequencing The fault is detected by a test case derived for testing a sequence of procedure
calls.

Interaction The fault is detected by a test case derived for testing procedure interactions.
System Test

Workload/Stress The fault is detected during workload or stress testing.
Recovery/Exception The fault is detected while testing exceptions and recovery procedures.
Startup/Restart The fault is detected while testing initialization conditions during start up or
after possibly faulty shutdowns.

Hardware Configuration The fault is detected while testing specific hardware
configurations

Software Configuration The fault is detected while testing specific software configurations.
Blocked Test Failure occurred in setting up the test scenario

DEPT OF ISE 37

181562

SOFTWARE TESTING

ODC impact

 Installability « Usability
e Integrity/Security « Standards
e Performance « Reliability
e Maintenance e Accessibility
« Serviceability « Capability
e Migration e Requirements

e Documentation

Performance

The perceived and actual impact of the software on the time required for the customer and
customer end users to complete their tasks.

Maintenance The ability to correct, adapt, or enhance the software system quickly and at
minimal cost.

Serviceability Timely detection and diagnosis of failures, with minimal customer impact.
Migration Ease of upgrading to a new system release with minimal disruption to existing
customer data and operations.

Documentation Degree to which provided documents (in all forms, including electronic)
completely and correctly describe the structure and intended uses of the software.

Usability The degree to which the software and accompanying documents can be understood
and effectively employed by the end user.

Standards The degree to which the software complies with applicable standards.

Reliability The ability of the software to perform its intended function without unplanned
interruption or failure.

Accessibility The degree to which persons with disabilities can obtain the full benefit of the
software system.

Capability

The degree to which the software performs its intended functions consistently with
documented system requirements.

Requirements The degree to which the system, in complying with document requirements,
actually meets customer expectations

DEPT OF ISE

38

181562
SOFTWARE TESTING

ODC Classification of Defect Types for Targets Design and Code

Assignment/Initialization A variable was not assigned the correct initial value or was not
assigned any initial value.

Checking Procedure parameters or variables were not properly validated before use.
Algorithm/Method A correctness or efficiency problem that can be fixed by reimplementing
a single procedure or local data structure, without a design change.

Function/Class/Object

A change to the documented design is required to conform to product requirements or
interface specifications.

Timing/Synchronization

The implementation omits necessary synchronization of shared resources, or violates the
prescribed synchronization protocol.

Interface/Object-Oriented Messages

Module interfaces are incompatible; this can include syntactically compatible interfaces that
differ in semantic interpretation of communicated data.

Relationship

Potentially problematic interactions among procedures, possibly involving different
assumptions but not involving interface incompatibility.

A good RCA classification should follow the uneven distribution of faults across categories.
If, for example, the current process and the programming style and environment result in
many interface faults, we may adopt a finer classification for interface faults and a coarse-
grain classification of other kinds of faults. We may alter the classification scheme in future
projects as a result of having identified and removed the causes of many interface faults

ODC Fault Analysis (example 1/4)

« Distribution of fault types versus activities

— Different quality activities target different classes of faults

— example:

« algorithmic faults are targeted primarily by unit testing.

—a high proportion of faults detected by unit testing should belong to this class
« proportion of algorithmic faults found during unit testing

— unusually small

— larger than normal

unit tests may not have been well designed

» proportion of algorithmic faults found during unit testing unusually large
integration testing may not focused strongly enough on interface faults

ODC Fault Analysis (example 2/4)

« Distribution of triggers over time during field test

— Faults corresponding to simple usage should arise early during field test, while faults
corresponding to complex usage should arise late.

— The rate of disclosure of new faults should asymptotically decrease

— Unexpected distributions of triggers over time may indicate poor system or acceptance test
« Triggers that correspond to simple usage reveal many faults late in acceptance testing

The sample may not be representative of the user population

« Continuously growing faults during acceptance test

System testing may have failed

DEPT OF ISE 39

181562
SOFTWARE TESTING

ODC Fault Analysis (example 3/4)

Age distribution over target code

— Most faults should be located in new and rewritten code

— The proportion of faults in new and rewritten code with respect to base and re-fixed code
should gradually increase

— Different patterns

—=may indicate holes in the fault tracking and removal process

—may indicate inadequate test and analysis that failed in revealing faults early
— Example

« increase of faults located in base code after porting

= may indicate tests for portability

Improving the process,

Improving the Process Improving the Process

» Many classes of faults that occur frequently are rooted in process and development flaws

— examples

« Shallow architectural design that does not take into account resource allocation can lead to
resource allocation faults

» Lack of experience with the development environment, which leads to misunderstandings
between analysts and programmers on rare and exceptional cases, can result in faults in
exception handling.

« The occurrence of many such faults can be reduced by modifying the process and
environment

— examples

* Resource allocation faults resulting from shallow architectural design can be reduced by
introducing specific inspection tasks

« Faults attributable to inexperience with the development environment can be reduced with
focused training

Improving Current and Next Processes Improving Current and Next Processes

« Identifying weak aspects of a process can be difficult

* Analysis of the fault history can help software engineers build a feedback mechanism to
track relevant fault s to their root causes

— Sometimes information can be fed back directly into the current product development the
current product development

— More often it helps software engineers improve the development of future products

Root cause analysis (RCA) Root cause analysis (RCA)

« Technique for identifying and eliminating process faults

— First developed in the nuclear power industry; used in many fields.
* Four main steps

— What are the faults?

— When did fault occur ? When, and when were they found?

— Why did faults occur?

— How could faults be prevented?

DEPT OF ISE 40

SOFTWARE TESTING

What are the faults?
« Identify a class of important faults
« Faults are categorized by

— severity = impact of the fault on the product

— Kind

* No fixed set of categories; Categories evolve and adapt

» Goal:

— ldentify the few most important classes of faults and remove their causes
— Differs from ODC: Not trying to compare trends for different classes of faults but rather
classes of faults, but rather focusing on a few important classes

Fault Severity

181562

Level Description Example

Critical The product is unusable The fault causes the program to crash

Severe Some product features The fault inhibits importing files
cannot be used, and there | saved with a previous version of the
is no workaround program, and there is no workaround

Moderate | Some product features The fault inhibits exporting in
require workarounds to Postscript format.
use, and reduce Postscript can be produced using the
efficiency, reliability, or printing facility, but with loss of
convenience and usability | usability and efficiency

Cosmetic | Minor inconvenience The fault limits the choice of colors

NARE TESTING
MALYSIS

Pareto Distribution (80/20)
— in many populations, a few (20%) are vital and many (80%) are trivial

« Fault analysis

for customizing the graphical
interface, violating the specification
but causing only minor inconvenience

— 20% of the code is responsible for 80% of the fault s
» Faults tend to accumulate in a few modules
— identifying potentially faulty modules can improve the cost effectiveness of fault detection
» Some classes of faults predominate
— removing the causes of a predominant class of fault s can have a major impact on the
quality of the process and of the resulting product

Why did faults occur? did faults occur?

» Core RCA step

— trace representative faults back to causes
— objective of identifying a “root” cause

* Iterative analysis

DEPT OF ISE

41

181562
SOFTWARE TESTING

— explain the error that led to the fault
— explain the cause of that error

— explain the cause of that cause

* Rule of thumb

— “ask why six times”

Example of fault tracing Example of fault tracing

 Tracing the causes of faults requires experience Tracing the causes of faults requires
experience, judgment, and knowledge of the development process

* example

— most significant class of faults = memory leaks

— cause = forgetting to release memory in exception handlers

— cause = lack of information: “Programmers can't easily

determine what needs to be cleaned up in exception handlers”

— cause = design error: cause = design error: The resource management scheme “The
resource management scheme

assumes normal flow of control”

— root problem = early design problem: “Exceptional conditions were an afterthought dealt
with late in design”

How could faults be prevented? How could faults be prevented?

» Many approaches depending on fault and process:

« From lightweight process changes

— example

« adding consideration of exceptional conditions to a design

inspection checklist

* To heavyweight changes:

—example

» making explicit consideration of exceptional conditions a part of all requirements analysis
and design steps

The Quality Team

* The quality plan must assign roles and responsibilities to people

« Assignment of responsibility occurs at

— strategic level

« test and analysis strategy

« structure of the organization

« external requirements (e g certification agency) external requirements (e.g., certification
agency)

— tactical level

« test and analysis plan

Roles and Responsibilities at Tactical Level

« halance level of effort across time
* manage personal interactions

DEPT OF ISE 42

181562

SOFTWARE TESTING

« ensure sufficient accountability that quality tasks are not easily overlooked
* encourage objective judgment of quality

* prevent it from being subverted by schedule pressure

« foster shared commitment to quality among all team members

« develop and communicate shared knowledge and values regarding quality

Alternatives in Team Structure

« Conflicting pressures on choice of structure

— example

* autonomy to ensure objective assessment

* cooperation to meet overall project objectives

« Different structures of roles and responsibilities
—same individuals play roles of developer and tester

— most testing responsibility assigned to a distinct group
— some responsibility assigned to a distinct organization
« Distinguish

— oversight and accountability for approving a task

— responsibility for actually performing a task

Roles and responsibilities

pros and cons

« Same individuals play roles of developer and tester

— potential conflict between roles

* example

—a developer responsible for delivering a unit on schedule

— responsible for integration testing that could reveal faults that delay delivery
— requires countermeasures to control risks from conflict

* Roles assigned to different individuals

— Potential conflict between individuals

* example

— developer and a tester who do not share motivation to deliver a quality product on schedule
— requires countermeasures to control risks from conflict

Independent Testing Team Independent Testing Team

 Minimize risks of conflict between roles played by the same individual
— Example

* project manager with schedule pressures cannot

— bypass quality activities or standards

— reallocate people from testing to development

— postpone quality activities until too late in the project

* Increases risk of conflict between goals of the independent quality team and the developers
* Plan

— should include checks to ensure completion of quality activities

— Example

« developers perform module testing

« independent quality team performs integration and system testing

« quality team should check completeness of module tests

DEPT OF ISE

43

181562

SOFTWARE TESTING

Managing Communication

« Testing and development teams must share the goal of shipping a high-quality product on
schedule

— testing team

 must be perceived as relieving developers from responsibility for quality

« should not be completely oblivious to schedule pressure

« Independent quality teams require a mature development process

— Test designers must

« work on sufficiently precise specifications

* execute tests in a controllable test environment

« Versions and configurations must be well defined

« Failures and faults must be suitably tracked and monitored across versions

Testing within XP

« Full integration of quality activities with development

— Minimize communication and coordination overhead

— Developers take full responsibility for the quality of their work

— Technology and application expertise for quality tasks match expertise available for
development tasks

* Plan

— check that quality activities and objective assessment are not easily tossed aside as
deadlines loom

— example

» XP “test first” together with pair programming guard against some

of the inherent risks of mixing roles

Outsourcing Test and Analysis ¢ (Wrong) motivation

— testing is less technically demanding than development and can be carried out by lower-
paid and lower-skilled individuals

* Why wrong

— confuses test execution (straightforward) with analysis and test design (as demanding as
design and programming)

* A better motivation

— to maximize independence

« and possibly reduce cost as (only) a secondary effect

* The plan must define

— milestones and delivery for outsourced activities

— checks on the quality of delivery in both directions

Summary

* Planning is necessary to

— order, provision, and coordinate quality activities

« coordinate quality process with overall development

« includes allocation of roles and responsibilities

— provide unambiguous milestones for judging progress
* Process visibility is key

— ability to monitor quality and schedule at each step

« intermediate verification steps: because cost grows with time between error and repair
— monitor risks explicitly, with contingency plan ready
» Monitoring feeds process improvement

DEPT OF ISE

44

181562
SOFTWARE TESTING

— of a single project, and across projects

DEPT OF ISE 45

